84 research outputs found

    Targeting the cell cycle for cancer therapy

    Get PDF
    Most if not all neoplasias show a directly or indirectly deregulated cell cycle. Targeting its regulatory molecules, the cyclin-dependent kinases, as a therapeutic mode to develop new anticancer drugs, is being currently explored in both academia and pharmaceutical companies. The development of new compounds is being focused on the many features of the cell cycle with promising preclinical data in most fields. Moreover, a few compounds have entered clinical trials with excellent results maintaining the high hopes. Thus, although too early to provide a cell cycle target based new commercial drug, there is no doubt that it will be an excellent source of new anticancer compounds

    A Novel Zinc Finger Protein Zfp277 Mediates Transcriptional Repression of the Ink4a/Arf Locus through Polycomb Repressive Complex 1

    Get PDF
    Polycomb group (PcG) proteins play a crucial role in cellular senescence as key transcriptional regulators of the Ink4a/Arf tumor suppressor gene locus. However, how PcG complexes target and contribute to stable gene silencing of the Ink4a/Arf locus remains little understood.We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through direct interaction with Bmi1. Loss of Zfp277 in mouse embryonic fibroblasts (MEFs) caused dissociation of PcG proteins from the Ink4a/Arf locus, resulting in premature senescence associated with derepressed p16(Ink4a) and p19(Arf) expression. Levels of both Zfp277 and PcG proteins inversely correlated with those of reactive oxygen species (ROS) in senescing MEFs, but the treatment of Zfp277(-/-) MEFs with an antioxidant restored the binding of PRC2 but not PRC1 to the Ink4a/Arf locus. Notably, forced expression of Bmi1 in Zfp277(-/-) MEFs did not restore the binding of Bmi1 to the Ink4a/Arf locus and failed to bypass cellular senescence. A Zfp277 mutant that could not bind Bmi1 did not rescue Zfp277(-/-) MEFs from premature senescence.Our findings implicate Zfp277 in the transcriptional regulation of the Ink4a/Arf locus and suggest that the interaction of Zfp277 with Bmi1 is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways

    Can metabolic plasticity be a cause for cancer? Warburg–Waddington legacy revisited

    Get PDF
    Fermentation of glucose to lactate in the presence of sufficient oxygen, known as aerobic glycolysis or Warburg effect, is a universal phenotype of cancer cells. Understanding its origin and role in cellular immortalization and transformation has attracted considerable attention in the recent past. Intriguingly, while we now know that Warburg effect is essential for tumor growth and development, it is thought to arise because of genetic and/or epigenetic changes. In contrast to the above, we propose that Warburg effect can also arise due to normal biochemical fluctuations, independent of genetic and epigenetic changes. Cells that have acquired Warburg effect proliferate rapidly to give rise to a population of heterogeneous progenitors of cancer cells. Such cells also generate more lactate and alter the fitness landscape. This dynamic fitness landscape facilitates evolution of cancer cells from its progenitors, in a fashion analogous to Darwinian evolution. Thus, sporadic cancer can also occur first by the acquisition of Warburg effect, then followed by mutation and selection. The idea proposed here circumvents the inherent difficulties associated with the current understanding of tumorigenesis, and is also consistent with many experimental and epidemiological observations. We discuss this model in the context of epigenetics as originally enunciated by Waddington

    Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    Get PDF
    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination

    SPT clusters with des and HST weak lensing. I. Cluster lensing and Bayesian population modeling of multiwavelength cluster datasets

    Get PDF
    We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1% at z=0.25 to 10% at z=0.95, to which we add 2% in quadrature to account for uncertainties in the impact of baryonic effects. We implement an analysis pipeline that joins the cluster abundance likelihood with a multiobservable likelihood for the Sunyaev-Zel'dovich effect, optical richness, and weak-lensing measurements for each individual cluster. We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol ECS, and SPTpol 500d surveys and the DES Year 3 and HST-39 weak-lensing datasets. This work represents a crucial prerequisite for the subsequent cosmological analysis of the real dataset

    Dry Needling for Spine Related Disorders: a Scoping Review

    Get PDF
    Introduction/Background: The depth and breadth of research on dry needling (DN) has not been evaluated specifically for symptomatic spine related disorders (SRD) from myofascial trigger points (TrP), disc, nerve and articular structures not due to serious pathologies. Current literature appears to support DN for treatment of TrP. Goals of this review include identifying research published on DN treatment for SRD, sites of treatment and outcomes studied. Methods: A scoping review was conducted following Levac et al.’s five part methodological framework to determine the current state of the literature regarding DN for patients with SRD. Results: Initial and secondary search strategies yielded 55 studies in the cervical (C) region (71.43%) and 22 in the thoracolumbar-pelvic (TLP) region (28.57%). Most were randomized controlled trials (60% in C, 45.45% in TLP) and clinical trials (18.18% in C, 22.78% in TLP). The most commonly treated condition was TrP for both the C and TLP regions. In the C region, DN was provided to 23 different muscles, with the trapezius as treatment site in 41.88% of studies. DN was applied to 31 different structures in the TLP region. In the C region, there was one treatment session in 23 studies (41.82%) and 2–6 treatments in 25 (45.45%%). For the TLP region, one DN treatment was provided in 8 of the 22 total studies (36.36%) and 2–6 in 9 (40.9%). The majority of experimental designs had DN as the sole intervention. For both C and TLP regions, visual analogue scale, pressure pain threshold and range of motion were the most common outcomes. Conclusion: For SRD, DN was primarily applied to myofascial structures for pain or TrP diagnoses. Many outcomes were improved regardless of diagnosis or treatment parameters. Most studies applied just one treatment which may not reflect common clinical practice. Further research is warranted to determine optimal treatment duration and frequency. Most studies looked at DN as the sole intervention. It is unclear whether DN alone or in addition to other treatment procedures would provide superior outcomes. Functional outcome tools best suited to tracking the outcomes of DN for SRD should be explored.https://doi.org/10.1186/s12998-020-00310-

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
    corecore