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Abstract

Background: Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron
Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer’s Disease (AD) diagnosis.
However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis
(CAD) Systems.

Methods: It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly,
Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE)
features restricted to be located within a predefined brain activation mask. In order to address the small sample-size
problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a
rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also
analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN
using Euclidean, Mahalanobis and Energy-based metrics were compared.

Results: Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction
algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique,
and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of
k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT)
and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in
combination with a SVM classifier, thus outperforming recently reported baseline methods.

Conclusions: All the proposed methods turned out to be a valid solution for the presented problem. One of the
advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes
but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization
ability is another advance since several experiments were performed on two image modalities (SPECT and PET).

Background
Alzheimer’s Disease (AD)
Alzheimer’s Disease (AD) is the most common cause of
dementia in the elderly and affects approximately 30 mil-
lion individuals worldwide [1]. Its prevalence is expected
to triple over the next 50 years due to the growth of the
older population. To date there is no single test that can
predict whether a particular person will develop the dis-
ease.With the advent of several effective treatments of AD
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symptoms, current consensus statements have empha-
sized the need for early recognition [2].

Functional brain imaging
Single Positron Emission Computed Tomography (SPECT)
is a widely used technique to study the functional prop-
erties of the brain [3]. After the reconstruction and a
proper normalization of the SPECT raw data, taken with
Tc-99m ethyl cysteinate dimer (ECD) as a tracer, one
obtains an activation map displaying the local intensity
of the regional cerebral blood flow (rCBF). Therefore,
this technique is particularly applicable for the diagno-
sis of neuro-degenerative diseases like AD [4,5]. On the
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other hand, Positron Emission Tomography (PET) mea-
sures the rate of glucose metabolism with the tracer [18F]
Fluorodeoxyglucose. In AD, characteristic brain regions
show decreased glucose metabolism, specifically bilater-
ally regions in the temporal and parietal lobes, posterior
cingulate gyri and precunei, as well as frontal cortex and
whole brain in more severely affected patients [6]. SPECT
modality has lower resolution and higher variability than
PET, but the use of SPECT tracers [7] is relatively cheap,
and the longer half-lives when compared to PET tracers
makes SPECT well suited, if not required, when biologi-
cally active radiopharmaceuticals have slow kinetics.

Computer Aided Diagnosis (CAD)
In order to improve the prediction accuracy especially
in the early stage of the disease, when the patient could
benefit most from drugs and treatments, computer aided
diagnosis (CAD) tools are desirable [8].
Several approaches for designing CAD systems of the

AD can be found in the literature [9]. Univariate method-
ology is based on the analysis of regions of interest (ROIs)
by means of some discriminant functions, whereas the
second approach (multivariate) is related to statistical
analysis techniques. Regarding the first, themost common
and used approach is named Statistical Parametric Map-
ping (SPM) [10] software tool and its numerous variants.
It was not developed specifically to study a single image,
but for comparing groups of images. Regarding multi-
variate techniques, it is remarkable MANCOVA, which
considers as one observation all the voxels in a single
scan and requires a higher number of available samples
than the one of features. This fact reports the well-known
small sample size problem that is very common in nuclear
medicine studies since the number of images is limited. In
this work context, with the clear goal to solve the dimen-
sionality issue, some techniques of feature space reduction
were used and combined.
Firstly, a 3D binary mask is obtained from the average

of control subjects which contains a set of activated voxels
in certain brain regions characterized by an intensity level
above half of the maximum intensity of the mean image.
The use of activationmasks and the automatic selection of
spatial image components reports improved discrimina-
tion ability and reduces the complexity of the direct voxel
as feature (VAF) approach [6]. The system was developed
by exploring the masked brain volume in order to identify
discriminant ROIs using different shaped subsets of voxels
or components.
ROIs are defined as blocks of voxels represented by the

so called NormalizedMean Square Error (NMSE) (further
explanation in section Feature extraction) and are selected
by means of a t-test [11]. These ROIs act as inputs for
obtaining kernel Principal Component Analysis (KPCA),
Partial Least Squares (PLS) or Large Margin Nearest

Neighbours using a rectangular matrix (LMNN-RECT)
in order to reduce the dimension of the feature vector
to address the small sample size problem. In addition, it
can be transformed the PLS or PCA space using a linear
transformation matrix (denoted by L) that is built through
the Euclidean distance based on the LMNN method that
learns a linear transformation which attempts to make
input neighbours share the same labels. This is achieved
by minimizing a loss function (see section Loss function).
Finally, the classification task of the supervised learner

is to predict by using several paradigms the class of an
unknown pattern after a training procedure based on a
subset of samples.
On the one hand, Support Vector Machines (SVMs)

have achieved general success in the last decade [12-14] in
the learning from examples paradigm and it can be con-
sidered as a special kind of large margin classifier. Recent
developments in the definition and training of statistical
classifiers make it possible to build reliable classifiers in
very small sample size problems since SVM circumvents
the curse of dimensionality, and even may find nonlin-
ear decision boundaries for small training sets. On the
other hand, LMNN classifier [15,16] aims to improve the
Euclidean distance metric (which learns a linear transfor-
mation L, see section Large Margin Nearest Neighbors
(LMNN)) by a new Mahalanobis one (which is described
by the matrix M = L · LT , see also section Large Margin
Nearest Neighbors (LMNN)) through linear transforma-
tions. In addition, Energy-based method is also analysed
for LMNN, leading to further improvements in test error
rates over the ones obtained with Euclidean or Maha-
lanobis distances as shown in Results and discussion
Section. These transformations can improve significantly
[17] in k Nearest Neighbors (KNN) [15] which are aimed
to be organised to the same class, while examples from
different classes are separated by a large margin [18,19].

Methods
Subjects and preprocessing
SPECT database
Baseline SPECT data from 97 participants were col-
lected from the Virgen de las Nieves hospital in Granada
(Spain). The patients were injected with a gamma emit-
ting 99mTc-ECD radiopharmeceutical and the SPECT raw
data was acquired by a three head gamma camera Picker
Prism 3000. A total of 180 projections were taken with
a 2-degree angular resolution. The images of the brain
cross sections were reconstructed from the projection
data using the filtered backprojection (FBP) algorithm
in combination with a Butterworth noise removal filter.
The SPECT images are first spatially normalized using
the SPM software, in order to ensure that voxels in dif-
ferent images refer to the same anatomical positions in
the brain allowing us to compare the voxel intensities of
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different subjects. In this work, the images have been nor-
malized using a general affine model, with 12 parameters
([20-22]). After the affine normalization, the resulting
image is registered using a more complex non-rigid spa-
tial transformation model [21]. The deformations are
parameterized by a linear combination of the lowest
frequency components of the three-dimensional cosine
transform bases [23]. A small-deformation approach is
used, and regularization is by the bending energy of the
displacement field. Then, we normalize the intensities of
the SPECT images with respect to themaximum intensity,
which is computed for each image individually by aver-
aging over 3% of the highest voxel intensities, similarly
as in [24]. After the spatial normalization, one obtains a
95 × 69 × 79 voxel representation of each subject, where
each voxel represents a brain volume of 2 × 2 × 2mm3.
The database is built up of imaging studies of subjects fol-
lowing the protocol of an hospital-based service. First, the
neurologist evaluated the cognitive function, and those
patients with findings of memory loss or dementia were
referred to the nuclear medicine department in the Virgen
de las Nieves hospital (Granada, Spain), in order to acquire
complementary screening information for diagnosisb.
Experienced physicians evaluated the images visually.
The images were assessed using 4 different labels: Control
(CTRL) for subjects without scintigraphic abnormalities
and mild perfusion deficit (AD1), moderate deficit (AD2)
and severe deficit (AD3), to distinguish between different
levels of presence of hypo-perfusion patterns compatible
with AD. In total, the database consists ofN =97 subjects:
41 CTRL, 30 AD1, 22 AD2 and 4 AD3 (see Table 1(a) for
demographic details). Since the patients are not patholog-
ically confirmed, the subject’s labels possess some degree
of uncertainty, as the pattern of hypo-perfusion may not
reflect the underlying pathology of AD, nor the differ-
ent classification of scans necessarily reflect the severity
of the patients symptoms. However, when pathological
information is available, visual assessments by experts

have been shown to be very sensitive and specific labeling
methods, in contrast to neuropsychological tests [25,26].
Given that this is an inherent limitation of ’in vivo’ stud-
ies, our working-assumption is that the labels are true,
considering the subject label positive when belonging to
any of the AD classes, and negative otherwise. This work
does not imply any experimental intervention and has
been performed under the approval and supervision of
the Clinical and Investigation Ethical Commission of the
University Hospital Virgen de las Nieves (CEIC).

PET database
PET data was obtained from the ADNIa Laboratory
on NeuroImaging (LONI, University of California, Los
Angeles) website (http://www.loni.ucla.edu/ADNI/). The
ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical compa-
nies and non-profit organizations, as a 60 million, 5-year
public- private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imag-
ing (MRI), PET, other biological markers, and clinical and
neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI)
and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and
cost of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Cen-
ter and University of California – San Francisco. ADNI
is the result of efforts of many co- investigators from a
broad range of academic institutions and private corpo-
rations, and subjects have been recruited from over 50
sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 adults, ages 55 to 90, to participate in
the research, approximately 200 cognitively normal older

Table 1 Demographic details of the SPECT dataset and PET dataset

(a)Demographic details of the SPECT dataset

Num. of Samples Sex (M/F) (%) Age μ [range/σ ]

CTRL 41 32.95/12.19 71.51 [46-85/7.99]

AD 1 30 10.97/18.29 65.20 [23-81/13.36]

AD 2 22 13.41/9.76 65.73 [46-86/8.25]

AD 3 4 0/2.43 76 [69-83/9.90]

(b)Demographic details of the PET dataset

Num. of Samples Sex (M/F) (%) Age μ [range/σ ]

CTRL 75 29.33/20.67 75.97 [62-86/4.91]

AD 75 31.33/18.67 75.72 [55-88/7.40]

AD 1 =mild perfusion deficit, AD 2 =moderate deficit, AD 3 = severe deficit. μ and σ stands for population mean and standard deviation respectively.
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individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years and 200 people with early
AD to be followed for 2 years. For up-to-date information,
see www.adni-info.org. FDG PET scans were acquired
according to a standardized protocol. A 30-min dynamic
emission scan, consisting of 6 5-min frames, was acquired
starting 30 min after the intravenous injection of 5.0 ±0.5
mCi of 18F-FDG, as the subjects, who were instructed to
fast for at least 4 h prior to the scan, lay quietly in a dimly
lit room with their eyes open and minimal sensory stimu-
lation. Data were corrected for radiation-attenuation and
scatter using transmission scans from Ge-68 rotating rod
sources and reconstructed using measured-attenuation
correction and image reconstruction algorithms specified
for each scanner. Following the scan, each image was
reviewed for possible artifacts at the University of Michi-
gan and all raw and processed study data was archived.
Subsequently, the images were normalized through a gen-
eral affine model, with 12 parameters [27] using the SPM5
software. After the affine normalization, the resulting
image was registered using a more complex non-rigid spa-
tial transformation model. The non-linear deformations
to the Montreal Neurological Imaging (MNI) Template
were parameterized by a linear combination of the lowest-
frequency components of the three-dimensional cosine
transform bases [28]. A small-deformation approach was
used, and regularization was by the bending energy of
the displacement field, ensuring that the voxels in dif-
ferent FDG-PET images refer to the same anatomical
positions in the brains. After spatial normalization, an
intensity normalization was required in order to perform
direct images comparisons between different subjects.
The intensity of the images was normalized to a value
Imax, obtained averaging the 0.1% of the highest voxel
intensities exceeding a threshold. The threshold was fixed
to the 10th bin intensity value of a 50-bins intensity his-
togram, for discarding most low intensity records from
outside-brain regions, and preventing image saturation.
Participant’s enrolment was conditioned to some eligi-
bility criteria. General inclusion-exclusion criteria were
as follows:

• Normal control subjects: Mini Mental State
Examination (MMSE) scores between 24−30
(inclusive), a Clinical Dementia Ratio (CDR) of 0, non
depressed, non MCI, and non demented. The age
range of normal subjects will be roughly matched to
that of MCI and AD subjects. Therefore, there should
be minimal enrolment of normals under the
age of 70.

• Mild AD: MMSE scores between 20−26 (inclusive),
CDR of 0.5 or 1.0, and meets NINCDS/ADRDA
criteria for probable AD.

The PET database collected from ADNI consists of
150 labeled PET images: 75 control subjects and 75
AD patients (see Table 1(b) for demographic details).
ADNI patient diagnostics are not pathologically con-
firmed, introducing some uncertainly on the subject’s
labels. Using these labels, allows to test the robustness of
the classifier. This should be also considered when com-
paring to other methods tested on autopsy confirmed AD
patients, on which every classifier is expected to improve
its performance [6].
Written informed consent was obtained from all ADNI

participants before protocol-specific procedures were
performed. The informed consent not only covers con-
sent for the trial itself, but for the genetic research,
biomarker studies, biological sample storage and imaging
scans as well. The consent for storage includes consent
to access stored data, biological samples, and imaging
data for secondary analyses. By signing the consent,
ADNI participants authorize the use of the data for large
scale, multicenter studies that combine data from similar
populations.

Feature extraction
In this article, we propose to apply a combination of dif-
ferent extraction methods in order to obtain the most
important features in the early diagnosis of AD. In this
way, we can save the memory space and reduce the
system complexity removing those useless and harmful
noisy components. We are also able to deal with data set
of few samples and high dimensions and thus weaken-
ing the disadvantages caused by the so-called curse-of-
dimensionality problem [16].
As detailed in Figure 1, first of all the masking process

is done. Control subjects are averaged in a tridimensional
image sm(x,y,z). In functional imaging, each voxel car-
ries a grey intensity level I(xj), which is related to the
regional cerebral blood flow, glucose metabolism, etc. in
the brain of a patient, depending on the image acquisition
modality. Secondly, it is obtained a 3D mask(x,y,z) that
consists of all the voxels with sm(x,y,z)> aT . The thresh-
old aT is equivalent to the 50% of the maximum intensity
in sm(x,y,z).
Secondly the Block Division is done as shown in

Figure 1. Baseline VAF is a way of including in vaf(x,y,z)
all the voxels inside the obtained mask(x,y,z) and consid-
ering them as features. Therefore, voxels outside the brain
and poorly activated regions are excluded from this analy-
sis. The main problem to be faced up by these techniques
is the well-known small sample size problem, that is, the
number of available samples is much lower than the num-
ber of features used in the training step. However in this
work, the combination of feature reduction techniques
does not only solve this problem, but also helps to reach
better results of classification.



Chaves et al. BMCMedical Informatics and DecisionMaking 2012, 12:79 Page 5 of 17
http://www.biomedcentral.com/1472-6947/12/79

Figure 1 Feature extraction and classification diagram. Voxels and Features, combination of feature reduction techniques and classifiers
evaluated with k-Fold cross validation.

Finally, instead of using directly all the voxels, the
regions are considered in 3D because not all the brain
regions provide the same discriminant value for detecting
the early AD. In fact, the posterior cingulate gyri and pre-
cunei, as well as the temporo-parietal region are typically
affected by hypo-perfusion in the AD [14]. That is the rea-
son why, each functional image is processed by means of
3D v × v × v cubic voxels defining ROIs, or block(x,y,z)
centered in (x,y,z) coordinates which belong to vaf(x,y,z).
Then, it is calculated the Normalized Minimum Squared
Error or NMSEp(x,y,z) defined as:

NMSEp(x, y, z)

=
∑v

l,m,n=−v [ f (x−l, y−m, z−n)−gp (x−l, y−m, z−n)]2∑v
l,m,n=−v [ f (x−l, y−m, z−n)]2

(1)

It is obtained for each subject and block (see Figure 1)
where f (x, y, z) is the mean voxel intensity of all the con-
trol subjects and gp(x, y, z) is the voxel intensity of the
p-th subject at (x, y, z) coordinates. Themost discriminant
ROIs are obtained by means of an absolute value two-
sample t-test with pooled covariance estimate on NMSE
features as in [14].
Widely used methods for the analysis of data sets are

PCA [29,30] and projections to latent structures (PLS) [31,
32], that work computationally well formany variables and
observations. By contrast, LMNN algorithm is aimed at
the organization of the k-nearest neighbors to the same
class, while examples from different classes are separated
by a large margin [15,17,33,34].

In this work we propose and compare several feature
extraction methods (shown in Figure 1) that includes on
the one hand the combination of NMSE with PCA (see
section LargeMargin Nearest Neighbors (LMNN)) or PLS
(see section Partial Least Squares (PLS)) plus the LMNN
transformation. On the other hand, NMSE is directly
combined with a LMNN-RECT reduction (see section
LMNN-RECT as feature reduction technique).

Principal Component Analysis: PCA
PCA is a multivariate approach often used in neuroimag-
ing to significantly reduce the original high-dimensional
space of the brain images to a lower dimensional subspace
[35]. PCA generates an orthonormal basis vector that
maximizes the scatter of all the projected samples, which
is equivalent to find the eigenvalues from the covariance
matrix. PCA can be used in combination with the so-
called kernel methods [36]. The basic idea of the kernel
PCA [37] method (further details in appendix 1: Kernel
PCA) is to first pre process the data by some non-linear
mapping and then to apply the same linear PCA.

Partial Least Squares (PLS)
PLS can model the observed variablesX (representing the
feature space of input) and Y (representing the labels) by
means of linear latent variables (not directly observed or
measured) according to the regression models [38,39]:

X = T · PT + Ex (2)

Y = U · QT + Ey (3)
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where T, U are the score matrices; Ex, Ey are the error
matrices andP,Q are the loadingmatrices with number of
columns being the number of PLS components. The score
matrices result from projection of the data matricesX and
Y on loading matrices. The fundamental goal of PLS is to
maximize the covariance between the scores of X and Y.
PLS can be used as a regression tool or as a dimension
reduction technique similar to PCA. The main difference
between PLS and PCA is that the former creates orthogo-
nal weight vectors by maximizing the covariance between
the variablesX andY, thus, PLS does not only consider the
variance of the samples but also the class label [40]. Par-
tial least squares modeling [40] is an effective method for
feature extraction that has shown improved results over
other conventional feature extraction methods such as
PCA in classification problems. In this work, PLS is imple-
mented by means of SIMPLS algorithm (further details in
Appendix 2: Partial Least Squares SIMPLS algorithm).

Large Margin Nearest Neighbors (LMNN)
Distance metric [41] is a key issue in many machine
learning algorithms. LMNN is used in this work in dif-
ferent ways: i) as a transformation of the feature space
obtained by means of PLS or PCA in order to better sep-
arate the control subject and AD patient classes, ii) as
feature reduction technique by performing the transfor-
mation as a rectangular matrix (LMNN-RECT), and iii)
as a classifier as reported in section Large margin nearest
classifier.
The objective of LMNN is to obtain a family of metrics

over the feature space. Let
{
(xi, yi)

}
denote a training set

of n labeled examples with inputs xi ε R
d and associated

class labels yi. Our goal is to learn a linear transformation
L: Rd → R

d. These metrics compute squared distances
as:

DL(xi, xj) = ∥∥L(xi − xj)
∥∥2
2 (4)

Equation 4 is commonly used to express squared dis-
tances in terms of the squared matrix:

M = LT · L (5)

On the other hand, the squared distances are denoted as
Mahalanobis metrics in terms ofM:

DM(xi, xj) = (xi − xj)T · M · (xi − xj) (6)

A Mahalanobis distance can be parameterized in terms
of the matrix L or the matrix M [15]. The first is uncon-
strained, whereas the second must be positive semidefi-
nite.
The main idea of LMNN consists of minimizing the loss

function (see the following section Loss function) that is
able to learn a distance metric under which inputs and
their target neighbours are closer together.

Loss function
In LMNN, target neighbours are defined as input patterns
of the same class that are wanted to be closer. The loss
function to be minimized consists of two terms. One acts
to pull target neighbours closer together penalizing large
distances between each input and its target neighbours.
The other term acts to push differently labeled examples
further apart. It penalizes small distances between differ-
ently labeled examples. The pull term is represented by
the following equation:

εpull(L) =
∑
j→i

∥∥L(xi − xj)
∥∥2 (7)

where j → i means that input xj is a target neighbour of
input xi. A new indicator variable is introduced to define
the push term of the loss function:

yil =
{
1 if yi = yl
0 otherwise (8)

so that:

εpush(L) =
∑
i,j→i

∑
l

(1 − yil) · [ 1 + ∥∥L(xi − xj)
∥∥2 − ‖L(xi − xl)‖2 ]+

(9)

where [ ]+ = max(z, 0) denotes the standard hinge loss
[15].
Finally, we combine the two terms εpull(L) and εpush(L)

into a single loss function for distance metric learning.
The two terms can have competing effects, to attract
target neighbours and to repel impostors. Impostors are
defined as the inputs with different labels. A weighting
parameter μ ∈[ 0, 1] balances these goals.

ε(L) = (1 − μ) · εpull(L) + μ · εpush(L) (10)

LMNN-RECT as feature reduction technique
The loss function needs to be optimized in order to obtain
the distance metric transforms in terms of the explicitly
low-rank linear and rectangular matrix transformation L.
The optimization over L is not convex unlike the origi-
nal optimization over M, but a (possibly local) minimum
can be computed by standard gradient-based methods.
We call this approach LMNN-RECT [42], in which L is a
matrix with a size equal to the number of features selected
by the t-test. In particular, in this work the matrix L is
multiplied by the matrix consisting of the NMSE fea-
tures selected by the t-test and defined above in order to
obtain a new space of features that better separates con-
trol subjects from AD patients. This fact is experimentally
demonstrated in the Results and discussion Section.

Kernel LMNN
It is interesting to consider the case where xi are mapped
into a high dimensional feature space φ(xi) and a Maha-
lanobis distance is sought in this space. We focus on the
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case where dot products in the feature space may be
expressed via a kernel function, such that

φ(xi) · φ(xj) = k(xi, xj) (11)

for some kernel k [19]. When we use the Kernel PCA
trick framework (appendix 1), the original LMNN can
be immediately used as Kernel LMNN (KLMNN) as it is
explained in [43]. The new KPCA trick framework offers
several practical advantages over the classical kernel trick
framework, e.g. no mathematical formulas and no repro-
gramming are required for a kernel implementation, a
way to speed up an algorithm is provided with no extra
work, the framework avoids troublesome problems such
as singularity.

Feature/model selection
The number of features used is a trade-off between ROIs
that are really important and that do not worsen the
computational time of the CAD. We demonstrated exper-
imentally that 200 NMSE features (ROIs) is a number high
enough to guarantee the quality of the image in poste-
rior classification. However, this number must be reduced
in order to improve the computational time of the sys-
tem with strategies such as PCA, PLS or LMNN-RECT.
The final number of features used has been experimentally
tuned by the observation of Figure 2 in which the per-
centage of variance explained for features (PCA or PLS)
chosen are drawn as bars and a line represents the cumu-
lative Variance Explained. In the case, Variance Explained
accounts for the variation of a feature subset when PCA or
PLS strategies are applied. In this graphic, we can observe

that up to six components, the variance explained for PCA
and PLS does not change significantly.

Classification
LMNN and SVM classifierswere used in this work to build
the AD CAD system. They present many similarities, for
example its potential to work in nonlinear feature spaces
by using the kernel trick. On the other hand, features can
be extracted by means of the kernel trick and PCA (kernel
PCA, KPCA) or LMNN (kernel LMNN, KLMNN) [43].
LMNN can be viewed as the logical counterpart to SVMs
in which kNN classification replaces linear classification.
However, LMNN contrasts with classification by SVMs,
in that it requires no modification for multiclass problems
that involve combining the results of many binary classi-
fiers, that is there is no explicit dependence in the number
of classes.

Largemargin nearest classifier
Some techniques were developed to learn feature weights
to manage the change of distance structure of sam-
ples in nearest neighbour classification. Euclidean dis-
tance, the most commonly used, assumes that each fea-
ture is equally important and independent from oth-
ers. By contrast, a distance metric with good qual-
ity such as Mahalanobis, should identify relevant fea-
tures assigning different weights or importance fac-
tors to the extracted ROIs [44]. Only when the fea-
tures are uncorrelated, the distance under a Maha-
lanobis distance metric is identical to that under the
Euclidean distance metric. On the other hand, our
work has been inspired by energy-based metric (EBC)
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learning, obtaining with it the best results in terms of
accuracy, specificity and sensitivity [33,45]. EBC con-
sists of computing the loss function for every possi-
ble label yi. We compute the minimization of three
terms. The first one term is defined to be the squared
distances to the k target neighbours of xi. The sec-
ond term accumulates the hinge loss over all impostors
(that is differently labeled) which invade the perimeter
around xi determined by its target neighbours. The third
term is the accumulation of the hinge loss for differ-
ently labelled examples whose perimeters are invaded
by xi.

Support vector machines classifier
SVMs [46,47] let to build reliable classifiers in very small
sample size problems [48] and even may find nonlin-
ear decision boundaries for small training sets. SVM
[13] separates a set of binary-labeled training data by
means of a maximal margin hyperplane, building a deci-
sion function R

N → {±1}. The objective is to build
a decision function f: RN → {±1} using training data
that is, l N-dimensional patterns xi and class labels yi:
(x1, y1), (x2, y2), . . . , (xl, yl), so that f will correctly classify
new unseen examples (x, y). Linear discriminant functions
define decision hyperplanes in a multidimensional feature
space: g(x) =wT ·x+w0 where w is the weight vector to be
optimized that is orthogonal to the decision hyperplane
and w0 is the threshold. The optimization task consists
of finding the unknown parameters wi, i= 1, . . . , N and
w0 that define the decision hyperplane. When no linear
separation of the training data is possible, SVM can work
effectively in combination with kernel techniques such as
quadratic, polynomial or radial basis function (RBF), so
that the hyperplane defining the SVM corresponds to a
non-linear decision boundary in the input space [14].

Results and discussion
Several experiments were conducted in order to evaluate
the proposed LMNN-based feature extraction algorithms
and its benefits as: i) linear transformation of the PLS or
PCA reduced data, ii) feature reduction technique, and iii)
classifier (with Euclidean, Mahalanobis or Energy-based
methodology). SVM classification including transforma-
tion of the input space by means of linear, polynomial,
quadratic or rbf kernels, which define non-linear decision
surfaces, was adopted for the first two approaches. The
classification performance of our approach was tested by
means of k-fold cross validation (instead of Leave-One-
Out), which is widely used to compare the performances
of different predictive modelling procedures as in [49].
Although there are studies that consider k indepen-

dent training and test splits (for instance in [50,51]),
we focus on the standard k-fold cross-validation that is
widely used ([6,51,52]). In k-fold procedure, there is no

overlap between test sets: each example of the original
data set is used once and only once as a test example.
In k-fold cross-validation, sometimes called rotation esti-
mation, the dataset D is randomly split into k mutually
exclusive subsets (the folds) D1, D2,. . . ,Dk of approxi-
mately equal size. The inducer is trained and tested k
times; each time t ε {t1, t2, ..., tN}, it is trained on D-{Dt}
and tested on Dt [53]. 10 folds were used in each experi-
ment which yielded accurate estimates of the error rates.
For each iteration (t=1,...,10), the algorithm returns ran-
domly generated indices for a k-fold cross-validation of
D observations. Testing rate is mostly equal to the inte-
ger of the fraction 100/number of folds, that is 10% in our
experiments, but it can vary randomly one or two sam-
ples in each iteration if the number of observations is a
prime number. These indices are used for testing and the
rest (approximately 90%) for training. Statistical results
obtained in each iteration are averaged.
Thus, by using cross-validation, several feature extrac-

tion and classification methods were objectively com-
pared in terms of their respective fractions of misclassified
samples. In this way, the classifier was evaluated in depth
as a tool for the early detection of AD in terms of the accu-
racy (Acc), sensitivity (Sen) and specificity (Spe), which
are defined as:

Sensitivity = TP
TP+FN ; Specificity = TN

TN+FP

respectively, where TP is the number of true positives:
number of AD patients correctly classified; TN is the
number of true negatives: number of control subjects
correctly classified; FP is the number of false positives:
number of control subjects classified as AD patients; FN
is the number of false negatives: number of AD patients
classified as control subjects.
For posterior analysis, the data was arranged in two dif-

ferent Groups: AD subjects were labeled as positive and
controls as negative. The motivation of doing that is to
test our method with all the available stages of the disease,
keeping the database as balanced as possible (41 CTRL
versus 56 AD for SPECT and 75 CTRL versus 75 AD
for PET) and to include several types of patterns in the
classification task (training and test).
In the feature reduction process, there are certain

parameters to tune such as the number of NMSE-Blocks,
the number of PCA, PLS or LMNN reduced features
and the selection of the kernel shape (linear, polynomial,
quadratic or RBF) which define better decision surfaces
in SVM classification. The NMSE features were computed
using 5×5×5 voxel blocks since reduced size cubic NMSE
features yield better results as shown in [14]. Further-
more, 200 discriminant features were selected bymeans of
t-test reduction (a higher number of NMSE blocks means
a decrease of the classification method effectiveness). The
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posterior reduction of the size of the feature vector is
achieved by means of PCA, PLS or LMNN-RECT.

Experiments with SPECT database
In a first experiment, the different feature extraction
techniques considered in this work (PCA+LMNN,
PLS+LMNN and LMNN-RECT) were compared in
Figure 3(a)-3(c). All the feature extraction methods were
found to be very robust to the selection of the number
of input features to the classifier. To conclude, when
six features were used for classification, PCA-LMNN
yielded Acc=91.75%, Sen=91.07% and Spe=92.68%, while
PLS-LMNN outperformed these values yielding
Acc=92.78%, Sen=91.07% and Spe=95.12%. As LMNN-
RECT is concerned, the best results were obtained when
18 features are transformed: Acc=90.72%, Sen=96.43%,
Spe=82.93%. The advantage of the last method is its speed
since it does not need the combination with another
reduction technique nor space transformation LMNN.
The second experiment analyzes classification using

LMNN using Euclidean, Mahalanobis and Energy-based
models whenNMSE-PCA orNMSE-PLS features are con-
sidered. Figures 4(a)and 4(b) show the accuracy obtained
by LMNN classification as a function of the number of
PCA coefficients and PLS coefficients, respectively. The
results show that LMNN classification using energy-
based models and Mahalanobis distances performs better
than when the Euclidean distance is considered, which
suffers a decrease in the accuracy as the number of fea-
tures increases. LMNN classification using energy-based
models and Mahalanobis distances were found to be very
robust against the selection of the dimension of the fea-
ture vector yielding peak values of the accuracy of 91.76%
and 90.87%, respectively, when NMSE-PCA features are
used. If PLS technique is used instead of PCA, the accu-
racy results improved yielding accuracy values of 91.78%
and 89.78% for energy-based models and Mahalanobis
distance, respectively. In all these cases, energy-based
models outperformed the others.
Since PLS feature extraction in combination with a

LMNN transformation reported the best results and,
aimed at further improving the accuracy of the classifi-
cation, the selection of the best kernel-transformation of
the input space by means of kernels and SVM was ana-
lyzed. Figure 5(a) shows the accuracy of the system as
a function of the number of PLS coefficients for linear,
polynomic and RBF kernel-based SVM classification. In
conclusion, linear kernel outperformed the others with a
92.7% of accuracy.
It is remarkable the fact that when using the combina-

tion of 3-D NMSE blocks as input features and afterwards
transformed them with LMNN algorithm in its mul-
tiple possibilities (both as reduction technique, linear
transformer or classifier) adds a valuable robustness to

the system. This can be proven in view of the experi-
ments shown in Figures 3(a), 3(b), 3(c), 4(a), 4(b), 5(a).
In Figure 5(b), PCA was used directly over the voxels
reduced to the half (because of the high computational
cost) and treated with the same type of mask as explained
in this work. The results in Figure 5(b) showed that the
variation of accuracy increases when voxels are used as
features. By contrast, in this work the advantage of the
combination of the methods proposed, is that they main-
tain stable around the 90%. We can conclude that the fact
of obtaining the ROIs by using the combination of NMSE
Blocks with LMNN algorithm favors the stability in all the
range of reduced features, thus promoting the robustness
of the algorithm.
Finally, Table 2 shows the accuracy, sensitivity and speci-

ficity rates of the proposed methods and compares them
with other recently reported techniques including VAF,
Gaussian Mixture Models (GMM) and PCA [36,54-56].
Based on the analysis shown in section Feature/model
selection regarding the feature selection model, PCA and
PLS feature extraction considered up to six features that
retain most of the variance of the data. It can be con-
cluded from the Table 2 that the LMNN transformation
when combined with PCA or PLS yields the best results
and reports benefits when compared to other reference
methods.
To sum up, LMNN was presented as a valid solution

to make broader the margin between the classes. It was
developed an effective CAD system in which it is not
necessary to incorporate an a priori knowledge about the
pathology, since up to its first feature extraction step, all
the voxels with a considerable activation (that is, those
voxels that are located inside the calculated mask) are
considered. The analysis shown in this papers reports
clear advantages in the following ROI-selection steps as
well, because they were computed in an automatic way
for the early diagnosis of Alzheimer’s disease. The best
combination of feature reduction techniques yielded
an accuracy value of 92.72%, thus outperforming other
recently and consolidated reported methods such as VAF,
PCA and GMM (Table 2). Finally, in order to study in
depth the AD classification with LMNN-based techniques
, we have also included additional information about
the classification of AD1 subjects versus CTRL. This set
up is more difficult to be classified since AD1 pattern is
still a challenge to be diagnosed. If we only consider the
case CTRL versus AD1 the precision rates of the method
are for PCA plus LMNN: Acc =84.51%, Sen=73.33%,
Spe=92.68%, for PLS plus LMNN transformation: Acc=
83.10%, Sen=70%, Spe=92.68% and for LMNN-RECT:
Acc=84.51%, Sen=76.67%, Spe=90.24%. These results
still represent a great advance in the field in compar-
ison with the baseline VAF: Acc=77.46%, Sen=70%,
Spe=82.93%.



Chaves et al. BMCMedical Informatics and DecisionMaking 2012, 12:79 Page 11 of 17
http://www.biomedcentral.com/1472-6947/12/79

Experiments with PET database
Additionally, several experiments were performed on a
PET database in order to highlight the generalization
ability of the proposed method. The same parameters
such as voxel size or number of NMSE Blocks than
for SPECT data were used. Figure 6(a)shows the differ-
ent feature extraction techniques of this work, that is,
PCA or PLS plus LMNN transformation and LMNN-
RECT in comparison with PCA or VAF baseline when
a linear SVM classification is performed. In the light
of the graphic, this manuscript technique reaches a

maximum accuracy rate of 90.67% (88% sensitivity and
93.33% specificity) for both PCA and PLS plus LMNN
transformation and when used LMNN-RECT, accuracy
87.33% (82.67% sensitivity and 92% specificity), thus out-
performing the PCA (Acc=85.33%) or baseline VAF
(Acc=81.18%) techniques.
Figure 6(b) shows LMNN classification using energy-

based models, Mahalanobis and Euclidean distances for
PCA and PLS features. Maxima accuracy rates were
obtained for Energy-based classifier (90.11% for PCA and
89.99% for PLS).
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Figure 4 LMNN classification (Euclidean, Mahalanobis and Energy-based models) for SPECT. Feature reduction techniques: a)PCA, b)PLS.
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ROC analysis
Figures 7(a) and 7(b) show the receiver operating charac-
teristic (ROC) curves of the proposed systems and other
methods that were considered as a reference for SPECT
and PET databases respectively. Several experiments were
carried out on the different image modalities (SPECT and
PET) in order to highlight the generalization ability of
the proposed method. The analysis shows that the pre-
sented CAD system based on LMNN algorithm and SVM
yields the best trade-off between sensitivity and speci-
ficity by shifting the operating point up and to the left in
the ROC space [57] in comparison with other reported
methods such as VAF SVM, PCA SVM and GMM SVM.
As shown in Figure 7(a), PLS plus LMNN transformation

provides an operation point located in the upper left than
other approaches on the ROC space. In addition, the
improvement of the proposed LMNN-based technique
is also supported by the AUC analysis for SPECT/PET
databases respectively: PLS plus LMNN transforma-
tion: 0.9424/0.9437, PCA plus LMNN transformation
0.9411/0.9505, LMNN-RECT: 0.9076/0.9325 that outper-
form the AUC of other reported methods such as VAF
SVM: 0.8993/0.8500 and PCA SVM: 0.9177/0.9006.

Conclusions
Kernel Distance Metric Learning Methods were investi-
gated for SVM-based classification of SPECT brain images
in order to improve the early AD’s diagnosis. Several
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experiments were conducted in order to evaluate the pro-
posed LMNN-based feature extraction algorithms and its
benefits as: i) linear transformation of the PLS or PCA
reduced data, ii) feature reduction technique, and iii)
classifier (with Euclidean, Mahalanobis or Energy-based
methodology). LMNN classification using energy-based
models and Mahalanobis distances performs better than
when the Euclidean distance is considered, which suf-
fers a decrease in the accuracy as the number of features
increases. Aiming at further improving the accuracy of
the classification, SVM was also compared to LMNN-
based classification yielding improved results. Thus, the
proposed methods yielded Acc rates of 92.7% for SPECT
and 90.11% for PET when an advanced feature extrac-
tion technique consisting of NMSE feature selection, PLS
feature reduction and LMNN transformation in combina-
tion with linear SVM classification was considered, thus
outperforming other recently and consolidated reported
methods such as VAF, PCA or GMM. One of the prin-
cipal advantages of our techniques is the robustness and
stability of the proposed methods shown in this work as
stated in the Results. Another property is its generaliza-
tion ability in the light of the results obtained with an PET
database.

Endnotes
a Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). As such, the inves-
tigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did
not participate in analysis or writing of this report. A

complete listing of ADNI investigators can be found at:
http://adni.loni.ucla.edu/wp-content/uploads/how to
apply/ADNI Acknowledgement List.pdf

b Clinical information is unfortunately not available for
privacy reasons, but only demographic information.

Appendix
Appendix 1: Kernel PCA
In kernel PCA, each vector x is projected from the input
space,Rn, to a high dimensional feature spaceRf by a non-
linear mapping function where φ:Rn → R

f with f > n.
Note that the dimensionality of the feature space can be
arbitrarily large [56]. In R

f , the corresponding eigenvalue
problem is

Cφ · ωφ = λ · ωφ (12)

whereCφ is a covariance matrix. All solutionsωφ with λ �=
0 lie in the space spanned by φ(x1),..., φ(xN ) where N is
the number of samples, and there exist coefficients αi such
that

ωφ =
N∑
i=1

αi · φ(xi) (13)

Denoting an N × N matrix K by

Ki,j = K(xi, xj) = φ(xi) · φ(xj) (14)

the kernel PCA problem becomes [58]

N · λ · K · α = K2 · α = N · λ · α = K · α (15)

Table 2 Statisticalmeasures of performance of LMNN-based techniques in comparison with other reportedmethods for
SPECT database

SVM-linear classifier Accuracy (%) Sensitivity (%) Specificity(%)

VAF 83.51 83.93 82.93

PCA 86.56 91.07 80.49

GMM 89.69 90.24 89.29

Gaussian kernel PCA+LMNN Transformation 91.75 91.07 92.68

Gaussian kernel PLS+LMNN Transformation 90.72 91.07 90.24

PLS+LMNN Transformation 92.78 91.07 95.12

LMNN-RECT 80.28 70 87.80

LMNN-Classifier Accuracy (%) Euclidean Mahalanobis Energy

PCA 80.54 81.63 87.65

PLS 84.33 89.56 88.67

SVM classifier: Comparison of the methods reported in this work with VAF, GMM and PCA operation points. LMNN-based techniques parameters: linear SVM classifier
with 6 components. VAF parameters: linear SVM classifier, GMM parameters: σ=6 RBF-SVM classifier with 8 components and PCA parameters: σ=6 RBF-SVM classifier
with 16 components. LMNN Classifier with 6 components: Euclidean, Mahalanobis and Energy.

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Figure 6 a) SVM classification: Accuracy, Specificity and Sensitivity (%) versus number of reduced features for PET database. Feature
reduction techniques: PCA plus LMNN Transformation, PLS plus LMNN Transformation, LMNN-RECT, PCA and VAF b) LMNN classification (Euclidean,
Mahalanobis and Energy-based models) for PCA and PLS features.

where α denotes a column vector with entries α1,...,αN .
The above derivation assumes that all the projected sam-
ples φ(x) are centered in R

f . In this work, we have used
the Gaussian kernel PCA:

e
‖x−y‖2
2·σ2 (16)

We found two advantages of nonlinear kernel PCA:
first, nonlinear principal components afforded better
recognition rates and second, the performance for
nonlinear components can be further improved by

using more components than possible in the linear case
[59].

Appendix 2: Partial Least Squares SIMPLS
algorithm
The SIMPLS algorithm [60] was proposed by Sijmen de
Jong in 1993 as an alternative to the NIPALS algorithm
for PLS. The main difference to NIPALS is the kind of
deflation. In SIMPLS, no deflation of the centered data
matrices X and Y is made, but the deflation is carried out
for the covariance matrix, or more precisely, the cross-
product matrix S = XTY between the x-data and y-data
[61]. SIMPLS algorithm can be described as follows:
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Figure 7 ROC Analysis. LMNN-basedmethods SVM classified (PCA+LMNN Transformation, PLS+LMNN Transformation, LMNN-RECT). Comparison
to other recently reported methods represented by their operation points. a) SPECT database. The AUC obtained for each ROC is: PCA+LMNN
(0.9411), PLS+LMNN (0.9424), LMNN-RECT (0.9076), VAF SVM (0.8993) and PCA SVM (0.9177). b)PET database. The AUC obtained for each ROC is:
PCA+LMNN (0.9505), PLS+LMNN (0.9437), LMNN-RECT (0.9325), VAF SVM (0.8500) and PCA SVM (0.9006).

1. initialize S0 = XTY and iterate steps 2 to 8 for
j = 1, . . . , n

2. if j = 1, Sj = S0 else,
Sj = Sj−1 − Pj−1(PT

j−1Pj−1)−1PT
j−1Sj−1

3. compute wj as the first singular vector of Sj
4. wj = wj

‖wj‖
5. tj = Xwj

6. tj = tj
‖tj‖

7. pj = XT
j tj

8. Pj =[ p1, p2, . . . , pj−1]

The resulting weights wj and scores tj are stored as
columns in the matrixW and T respectively.
The nonlinear kernel PLS method is based on mapping

the original input data into a high dimensional feature
space [62]. SIMPLS needs to be reformulated into its ker-
nel variant (in this work Gaussian kernel PLS pls LMNN
transformation Acc result is shown in Table 2), assuming
a zero mean nonlinear kernel PLS.
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