1,700 research outputs found

    Personalized additive manufacturing of devices for the management of enteroatmospheric fistulas

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Additive manufacturing techniques allow the customized design of medical devices according to the patient's requirements. Enteroatmospheric fistula is a pathology that benefits from this personalization due to its extensive clinical variability since the size and morphology of the wound differ extensively among patients. Standard prosthetics do not achieve proper isolation of the wound, leading to a higher risk of infections. Currently, no effective personalized technique to isolate it has been described. In this work, we present the workflow for the design and manufacture of customized devices adapted to the fistula characteristics as it evolves and changes during the treatment with Negative Pressure Wound Therapy (NPWT). For each case, a device was designed with dimensions and morphology depending on each patient's requirements using white light scanning, CAD design, and additive manufacturing. The design and manufacture of the devices were performed in 230.50 min (184.00– 304.75). After the placement of the device, the wound was successfully isolated from the intestinal content for 48–72 h. The therapy was applied for 27.71 ± 13.74 days, and the device was redesigned to adapt to the wound when geometrical evolutionary changes occur during the therapy. It was observed a decrease in weekly cures from 23.63 ± 10.54 to 2.69 ± 0.65 (p = 0.001). The fistulose size was reduced longitudinal and transversally by 3.25 ± 2.56 cm and 6.06 ± 3.14 cm, respectively. The wound depth also decreased by 1.94 ± 1.08 cm. In conclusion, customization through additive manufacturing is feasible and offers promising results in the generation of personalized devices for the treatment of enteroatmospheric fistula.Instituto de Salud Carlos III PI19/0182

    Circulating Tumor Cells Enumeration from the Portal Vein for Risk Stratification in Early Pancreatic Cancer Patients

    Get PDF
    [Simple Summary] Effective biomarkers are needed to enable personalized medicine for pancreatic cancer patients. This study analyzes the prognostic value, in early pancreatic cancer, of circulating tumor cells and clusters from the central venous catheter and portal blood. Circulating tumor cells were isolated using an immunomagnetic selection and were detected by microscopy using immunocytochemistry staining. In conclusion, the circulating tumor cell number in portal blood identifies a death risk in patients with early pancreatic cancer.[Abstract] Background. Effective biomarkers are needed to enable personalized medicine for pancreatic cancer patients. This study analyzes the prognostic value, in early pancreatic cancer, of single circulating tumor cell (CTC) and CTC clusters from the central venous catheter (CVC) and portal blood (PV). Methods. In total, 7 mL of PV and CVC blood from 35 patients with early pancreatic cancer were analyzed. CTC were isolated using a positive immunomagnetic selection. The detection and identification of CTC were performed by immunocytochemistry (ICC) and were analyzed by Epi-fluorescence and confocal microscopy. Results. CTC and the clusters were detected both in PV and CVC. In both samples, the CTC number per cluster was higher in patients with grade three or poorly differentiated tumors (G3) than in patients with well (G1) or moderately (G2) differentiated. Patients with fewer than 185 CTC in PV exhibited a longer OS than patients with more than 185 CTC (24.5 vs. 10.0 months; p = 0.018). Similarly, patients with fewer than 15 clusters in PV showed a longer OS than patients with more than 15 clusters (19 vs. 10 months; p = 0.004). These significant correlations were not observed in CVC analyses. Conclusions. CTC presence in PV could be an important prognostic factor to predict poor prognosis in early pancreatic cancer. In addition, the number of clustered-CTC correlate to a tumor negative differentiation degree and, therefore, could be used as a diagnostic biomarker for pancreatic cancer.This research was funded by Carlos III Health Institute (Health Research Fund) grant number PI16/01465 and PI19/01821 (Co-financed by the European Regional Development Fund “A way to make Europe”)

    Drug-loaded PCL electrospun nanofibers as anti-pancreatic cancer drug delivery systems

    Get PDF
    Cancer is one of the main causes of death worldwide, being pancreatic cancer the second deadliest cancer in Western countries. Surgery, chemotherapy and radiotherapy form the basis of pancreatic cancer's current treatment. However, these techniques have several disadvantages, such as surgery complications, chemotherapy systemic side effects and cancer recurrence. Drug delivery systems can reduce side effects, increasing the effectivity of the treatment by a controlled release at the targeted tumor cells. In this context, coaxial electrospun fibers can increase the control on the release profile of the drug. The aim of this study was to encapsulate and release different anticancer drugs (5-Fluorouracil and Methotrexate) from a polymeric fiber mat. Different flows and ratios were used to test their effect on fiber morphology, FTIR spectrum, drug encapsulation and release. Good integration of the anticancer drugs was observed and the use of a desiccator for 24 h showed to be a key step to remove solvent remanence. Moreover, the results of this study demonstrated that the polymeric solution could be used to encapsulate and release different drugs to treat cancers. This makes coaxial electrospinning a promising alternative to deliver complex chemotherapies that involve more than one drug, such as FOLFIRINOX, used in pancreatic cancer treatment

    TARTESSUS: A customized electrospun drug delivery system loaded with Irinotecan for Local and sustained chemotherapy release in pancreatic cancer

    Get PDF
    Post-surgical chemotherapy in pancreatic cancer has notorious side effects due to the high dose required. Multiple devices have been designed to tackle this aspect and achieve a delayed drug release. This study aimed to explore the controlled and sustained local delivery of a reduced drug dose from an irinotecan-loaded electrospun nanofiber membrane (named TARTESSUS) that can be placed on the patients' tissue after tumor resection surgery. The drug delivery system formulation was made of polycaprolactone (PCL). The mechanical properties and the release kinetics of the drug were adjusted by the electrospinning parameters and by the polymer ratio between 10 w.t.% and 14 w.t.% of PCL in formic acid:acetic acid:chloroform (47.5:47.5:5). The irinotecan release analysis was performed and three different release periods were obtained, depending on the concentration of the polymer in the dissolution. The TARTESSUS device was tested in 2D and 3D cell cultures and it demonstrated a decrease in cell viability in 2D culture between 72 h and day 7 from the start of treatment. In 3D culture, a decrease in viability was seen between 72 h, day 7 (p < 0.001), day 10 (p < 0.001), 14 (p < 0.001), and day 17 (p = 0.003) as well as a decrease in proliferation between 72 h and day 10 (p = 0.030) and a reduction in spheroid size during days 10 (p = 0.001), 14 (p < 0.001), and 17 (p < 0.001). In conclusion, TARTESSUS showed a successful encapsulation of a chemotherapeutic drug and a sustained and delayed release with an adjustable releasing period to optimize the therapeutic effect in pancreatic cancer treatment

    Neoadjuvant Chemotherapy plus Interval Cytoreductive Surgery with or without Hyperthermic Intraperitoneal Chemotherapy (NIHIPEC) in the Treatment of Advanced Ovarian Cancer: A Multicentric Propensity Score Study

    Get PDF
    Simple Summary Advanced ovarian cancer (Stages III-IV) continues to be one of the gynecological tumors with the highest mortality. Standard treatment consists of debulking surgery and subsequent adjuvant chemotherapy. Recently, some authors have postulated that the administration of hyperthermic chemotherapy during surgery could increase the survival of patients, especially in cases in which chemotherapy had already been administered before surgery to reduce tumor volume. Our study is important because it collects data from 11 tertiary hospitals in Spain, and the data are subjected to a statistical technique that reproduces the data that we would find in a prospective study but using retrospective data (propensity score matching). It also offers a current view of the status of ovarian cancer treatment in our country.Abstract Introduction: Epithelial ovarian cancer (EOC) is primarily confined to the peritoneal cavity. When primary complete surgery is not possible, neoadjuvant chemotherapy (NACT) is provided; however, the peritoneum-plasma barrier hinders the drug effect. The intraperitoneal administration of chemotherapy could eliminate residual microscopic peritoneal tumor cells and increase this effect by hyperthermia. Intraperitoneal hyperthermic chemotherapy (HIPEC) after interval cytoreductive surgery could improve outcomes in terms of disease-free survival (DFS) and overall survival (OS). Materials and Methods: A multicenter, retrospective observational study of advanced EOC patients who underwent interval cytoreductive surgery alone (CRSnoH) or interval cytoreductive surgery plus HIPEC (CRSH) was carried out in Spain between 07/2012 and 12/2021. A total of 515 patients were selected. Progression-free survival (PFS) and OS analyses were performed. The series of patients who underwent CRSH or CRSnoH was balanced regarding the risk factors using a statistical analysis technique called propensity score matching. Results: A total of 170 patients were included in each subgroup. The complete surgery rate was similar in both groups (79.4% vs. 84.7%). The median PFS times were 16 and 13 months in the CRSH and CRSnoH groups, respectively (Hazard ratio (HR) 0.74; 95% CI, 0.58-0.94; p = 0.031). The median OS times were 56 and 50 months in the CRSH and CRSnoH groups, respectively (HR, 0.88; 95% CI, 0.64-1.20; p = 0.44). There was no increase in complications in the CRSH group. Conclusion: The addition of HIPEC after interval cytoreductive surgery is safe and increases DFS in advanced EOC patients

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð„with constraintsð ð ð„ „ ðandðŽð„ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (Ό̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ÂŻ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ÂŻ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),Ό̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| &lt; 0.03 at 95% confidence level. [Figure not available: see fulltext.
    • 

    corecore