19 research outputs found

    IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    Get PDF
    20 pages, 12 figures. Address correspondence to: E. Blaufuss, F. Halzen, C. Kopper (Changed to add one missing author, no other changes from initial version.)20 pages, 12 figures. Address correspondence to: E. Blaufuss, F. Halzen, C. Kopper (Changed to add one missing author, no other changes from initial version.)20 pages, 12 figures. Address correspondence to: E. Blaufuss, F. Halzen, C. Kopper (Changed to add one missing author, no other changes from initial version.)The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a 10km310\,\mathrm{km}^3 volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs

    The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part VI: IceCube-Gen2, the Next Generation Neutrino Observatory

    Get PDF
    Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Synthetic latices: general principles of production

    No full text

    Methods for reactive oxygen species (ROS) detection in aqueous environments

    No full text
    This review summarizes direct and indirect analytical methods for the detection and quantification of the reactive oxygen species (ROS): 1O2, O2·−/HOO·, H2O2, HO·, and CO3·− in aqueous solution. Each section briefly describes the chemical properties of a specific ROS followed by a table (organized alphabetically by detection method, i.e., absorbance, chemiluminescence, etc.) summarizing the nature of the observable (associated analytical signal) for each method, limit of detection, application notes, and reaction of the probe molecule with the particular ROS

    Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?

    No full text

    Mechanisms of Action of EMFs on Biological Systems

    No full text
    corecore