288 research outputs found
Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space
One of the atom interferometer gravitational wave missions proposed by
Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested
gravitational wave sensitivity set by the atom state detection shot noise level
that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20
mHz, and had better sensitivity from 20 to 500 mHz. The separation between the
spacecraft was 1,000 km, with atom interferometers 200 m long and shades from
sunlight used at each end. A careful analysis of many error sources was
included, but requirements on the time-stability of both the laser wavefront
aberrations and the atom temperatures in the atom clouds were not investigated.
After including these considerations, the laser wavefront aberration stability
requirement to meet the quoted sensitivity level is about 1\times10-8
wavelengths, and is far tighter than for LISA. Also, the temperature
fluctuations between atom clouds have to be less than 1 pK. An alternate atom
interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite
separation has been suggested recently. The reduction of wavefront aberration
noise by sending the laser beam through a high-finesse mode-scrubbing optical
cavity is discussed briefly, but the requirements on such a cavity are not
given. Unfortunately, such an Earth-orbiting mission seems to be considerably
more difficult to design than a non-geocentric mission and does not appear to
have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves
and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital
Using Nonlinear Response to Estimate the Strength of an Elastic Network
Disordered networks of fragile elastic elements have been proposed as a model
of inner porous regions of large bones [Gunaratne et.al., cond-mat/0009221,
http://xyz.lanl.gov]. It is shown that the ratio of responses of such
a network to static and periodic strain can be used to estimate its ultimate
(or breaking) stress. Since bone fracture in older adults results from the
weakening of porous bone, we discuss the possibility of using as a
non-invasive diagnostic of osteoporotic bone.Comment: 4 pages, 4 figure
Fundamental constants and tests of general relativity - Theoretical and cosmological considerations
The tests of the constancy of the fundamental constants are tests of the
local position invariance and thus of the equivalence principle. We summarize
the various constraints that have been obtained and then describe the
connection between varying constants and extensions of general relativity. To
finish, we discuss the link with cosmology, and more particularly with the
acceleration of the Universe. We take the opportunity to summarize various
possibilities to test general relativity (but also the Copernican principle) on
cosmological scales.Comment: Proceedings of the workshop ``The nature of gravity, confronting
theory and experiment in space'', ISSI, Bern, october 200
Evidence for multiple roles for grainyheadlike 2 in the establishment and maintenance of human mucociliary airway epithelium
Most of the airways of the human lung are lined by an epithelium made up of ciliated and secretory luminal cells and undifferentiated basal progenitor cells. The integrity of this epithelium and its ability to act as a selective barrier are critical for normal lung function. In other epithelia, there is evidence that transcription factors of the evolutionarily conserved grainyheadlike (GRHL) family play key roles in coordinating multiple cellular processes required for epithelial morphogenesis, differentiation, remodeling, and repair. However, only a few target genes have been identified, and little is known about GRHL function in the adult lung. Here we focus on the role of GRHL2 in primary human bronchial epithelial cells, both as undifferentiated progenitors and as they differentiate in air-liquid interface culture into an organized mucociliary epithelium with transepithelial resistance. Using a dominant-negative protein or shRNA to inhibit GRHL2, we follow changes in epithelial phenotype and gene transcription using RNA sequencing or microarray analysis. We identify several hundreds of genes that are directly or indirectly regulated by GRHL2 in both undifferentiated cells and air-liquid interface cultures. Using ChIP sequencing to map sites of GRHL2 binding in the basal cells, we identify 7,687 potential primary targets and confirm that GRHL2 binding is strongly enriched near GRHL2-regulated genes. Taken together, the results support the hypothesis that GRHL2 plays a key role in regulating many physiological functions of human airway epithelium, including those involving cell morphogenesis, adhesion, and motility
Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions
We consider a Brans-Dicke scalar field stabilized by a general power law
potential with power index at a finite equilibrium value. Redshifting
matter induces oscillations of the scalar field around its equilibrium due to
the scalar field coupling to the trace of the energy momentum tensor. If the
stabilizing potential is sufficiently steep these high frequency oscillations
are consistent with observational and experimental constraints for arbitrary
value of the Brans-Dicke parameter . We study analytically and
numerically the equation of state of these high frequency oscillations in terms
of the parameters and and find the corresponding evolution of the
universe scale factor. We find that the equation of state parameter can be
negative and less than -1 but it is not related to the evolution of the scale
factor in the usual way. Nevertheless, accelerating expansion is found for a
certain parameter range. Our analysis applies also to oscillations of the size
of extra dimensions (the radion field) around an equilibrium value. This
duality between self-coupled Brans-Dicke and radion dynamics is applicable for
where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying
discussions, new references. Accepted in Phys. Rev. D (to appear
Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness
Mapped topographic features are important for understanding processes that sculpt the Earth's surface. This paper presents maps that are the primary product of an exercise that brought together 27 researchers with an interest in landform mapping wherein the efficacy and causes of variation in mapping were tested using novel synthetic DEMs containing drumlins. The variation between interpreters (e.g. mapping philosophy, experience) and across the study region (e.g. woodland prevalence) opens these factors up to assessment. A priori known answers in the synthetics increase the number and strength of conclusions that may be drawn with respect to a traditional comparative study. Initial results suggest that overall detection rates are relatively low (34–40%), but reliability of mapping is higher (72–86%). The maps form a reference dataset
TRY plant trait database – enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …