175 research outputs found
Hadron widths in mixed-phase matter
We derive classically an expression for a hadron width in a two-phase region
of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons
larger widths than they would have in a pure hadron gas. We find that the
width observed in a central Au+Au collision at
GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part
of observed hadron widths due to QGP is approximately proportional to
.Comment: 8 pages, latex, no figures, KSUCNR-002-9
Effect of tensor couplings in a relativistic Hartree approach for finite nuclei
The relativistic Hartree approach describing the bound states of both
nucleons and anti-nucleons in finite nuclei has been extended to include tensor
couplings for the - and -meson. After readjusting the parameters
of the model to the properties of spherical nuclei, the effect of
tensor-coupling terms rises the spin-orbit force by a factor of 2, while a
large effective nucleon mass sustains. The overall
nucleon spectra of shell-model states are improved evidently. The predicted
anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include
Formation of superdense hadronic matter in high energy heavy-ion collisions
We present the detail of a newly developed relativistic transport model (ART
1.0) for high energy heavy-ion collisions. Using this model, we first study the
general collision dynamics between heavy ions at the AGS energies. We then show
that in central collisions there exists a large volume of sufficiently
long-lived superdense hadronic matter whose local baryon and energy densities
exceed the critical densities for the hadronic matter to quark-gluon plasma
transition. The size and lifetime of this matter are found to depend strongly
on the equation of state. We also investigate the degree and time scale of
thermalization as well as the radial flow during the expansion of the
superdense hadronic matter. The flow velocity profile and the temperature of
the hadronic matter at freeze-out are extracted. The transverse momentum and
rapidity distributions of protons, pions and kaons calculated with and without
the mean field are compared with each other and also with the preliminary data
from the E866/E802 collaboration to search for experimental observables that
are sensitive to the equation of state. It is found that these inclusive,
single particle observables depend weakly on the equation of state. The
difference between results obtained with and without the nuclear mean field is
only about 20\%. The baryon transverse collective flow in the reaction plane is
also analyzed. It is shown that both the flow parameter and the strength of the
``bounce-off'' effect are very sensitive to the equation of state. In
particular, a soft equation of state with a compressibility of 200 MeV results
in an increase of the flow parameter by a factor of 2.5 compared to the cascade
case without the mean field. This large effect makes it possible to distinguish
the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques
Molecular Programming of Biodegradable Nanoworms via Ionically Induced Morphology Switch toward Asymmetric Therapeutic Carriers
Engineering biodegradable nanostructures with precise morphological characteristics is a key objective in nanomedicine. In particular, asymmetric (i.e., nonspherical) nanoparticles are desirable due to the advantageous effects of shape in a biomedical context. Using molecular engineering, it is possible to program unique morphological features into the self-assembly of block copolymers (BCPs). However, the criteria of biocompatibility and scalability limit progress due to the prevalence of nondegradable components and the use of toxic solvents during fabrication. To address this shortfall, a robust strategy for the fabrication of morphologically asymmetric nanoworms, comprising biodegradable BCPs, has been developed. Modular BCPs comprising poly (ethylene glycol)-block-poly(caprolactone-gradient-trimethylene carbonate) (PEG−PCLgTMC), with a terminal chain of quaternary ammonium-TMC (PTMC-Q), undergo self-assembly via direct hydration into well-defined nanostructures. By controlling the solution ionic strength during hydration, particle morphology switches from spherical micelles to nanoworms (of varying aspect ratio). This ionically-induced switch is driven by modulation of chain packing with salts screening interchain repulsions, leading to micelle elongation. Nanoworms can be loaded with cytotoxic cargo (e.g., doxorubicin) at high efficiency, preferentially interact with cancer cells, and increase tumor penetration. This work showcases the ability to program assembly of BCPs and the potential of asymmetric nanosystems in anticancer drug delivery
2-Aminophenoxazine-3-one and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one cause cellular apoptosis by reducing higher intracellular pH in cancer cells
We examined intracellular pH (pHi) of ten cancer cell lines derived from different organs and two normal cell lines including human embryonic lung fibroblast cells (HEL) and human umbilical vein endothelial cells (HUVEC) in vitro, and found that pHi of most of these cancer cells was evidently higher (pH 7.5 to 7.7) than that of normal cells (7.32 and 7.44 for HEL and HUVEC, respectively) and that of primary leukemic cells and erythrocytes hitherto reported (≤7.2). Higher pHi in these cancer cells could be related to the Warburg effect in cancer cells with enhanced glycolytic metabolism. Since reversal of the Warburg effect may perturb intracellular homeostasis in cancer cells, we looked for compounds that cause extensive reduction of pHi, a major regulator of the glycolytic pathway and its associated metabolic pathway. We found that phenoxazine compounds, 2-aminophenoxazine-3-one (Phx-3) and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one (Phx-1) caused a rapid and drastic dose-dependent decrease of pHi in ten different cancer cells within 30 min, though the extent of the decrease of pHi was significantly larger for Phx-3 (ΔpHi = 0.6 pH units or more for 100 µM Phx-3) than for Phx-1 (ΔpHi = 0.1 pH units or more for 100 µM Phx-1). This rapid and drastic decrease of pHi in a variety of cancer cells caused by Phx-3 and Phx-1 possibly perturbed their intracellular homeostasis, and extensively affected the subsequent cell death, because these phenoxazines exerted dose-dependent proapoptotic and cytotoxic effects on these cells during 72 h incubation, confirming a causal relationship between ΔpHi and cytotoxic effects due to Phx-3 and Phx-1. Phx-3 and Phx-1 also reduced pHi of normal cells including HEL and HUVEC, although they exerted less proapoptotic and cytotoxic effects on these cells than on cancer cells. Drugs such as Phx-3 and Phx-1 that reduce pHi and thereby induce cellular apoptosis might serve as benevolent anticancer drugs
Assessing trace-element mobility in Algeciras Bay (Spain) sediments by acid and complexing screening
Acetic acid (HOAc) and diethylenetriaminepentaacetic acid (DTPA) single extraction agents were evaluated as screening methods to estimate the mobility of some trace elements in coastal sediments from Algeciras Bay. Sediments’ total metal concentrations of most heavy metals were found to be high around the areas impacted by anthropogenic activities such a sewage, atmospheric deposition and industrial activities, with notable values for As, Ni, Cr, Pb and Cd. The order of significant extraction efficiencies obtained with DTPA, were as follows: Pb (25.65%),
Cu (19.78%), Cd (14.80%) and Zn (11.25%), while those obtained with HOAc were: Mn (33.00%), Tl (24.88%), Pb (18.99%), Cd (13.59%) and Co (11.78%). The comparison between the risk assessment codes (RAC) and the percent metal extractable fractions provided results of serious concern. Very high risk values of Cu, Zn, Cd and Pb extracts in DTPA were observed near the metallurgical industry, with Mn and Tl in HOAc extracts showing high risk values near the same industrial area and harbour activities. Sediments’ total metal concentrations were compared with the Low Alert-Level (LAL) sediment quality guidelines, where Co, Pb, Zn and Ni in both extractants and Cd and Cu in DTPA as well as Tl extracted in HOAc exceeded the LAL values respectively. The Spearman Rank test showed positive correlations between Co, Cu, Ni and Zn in DTPA extracts and their corresponding total metal concentrations, with Co, Cr, Fe, Ni, Tl and Zn in HOAc and total concentrations showing positive correlations. Furthermore, higher positive correlations were found between both extraction methods for Co (q= 0.797), Cu (q = 0.777), Ni (q = 0.789) and Zn (q = 0.942), indicating comparable potential extraction efficiencies between these extractants for these metals in the sediment studied
A standard protocol to report discrete stage‐structured demographic information
Stage-based demographic methods, such as matrix population models (MPMs), are powerful tools used to address a broad range of fundamental questions in ecology, evolutionary biology and conservation science. Accordingly, MPMs now exist for over 3000 species worldwide. These data are being digitised as an ongoing process and periodically released into two large open-access online repositories: the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. During the last decade, data archiving and curation of COMPADRE and COMADRE, and subsequent comparative research, have revealed pronounced variation in how MPMs are parameterized and reported.
Here, we summarise current issues related to the parameterisation and reporting of MPMs that arise most frequently and outline how they affect MPM construction, analysis, and interpretation. To quantify variation in how MPMs are reported, we present results from a survey identifying key aspects of MPMs that are frequently unreported in manuscripts. We then screen COMPADRE and COMADRE to quantify how often key pieces of information are omitted from manuscripts using MPMs.
Over 80% of surveyed researchers (n = 60) state a clear benefit to adopting more standardised methodologies for reporting MPMs. Furthermore, over 85% of the 300 MPMs assessed from COMPADRE and COMADRE omitted one or more elements that are key to their accurate interpretation. Based on these insights, we identify fundamental issues that can arise from MPM construction and communication and provide suggestions to improve clarity, reproducibility and future research utilising MPMs and their required metadata. To fortify reproducibility and empower researchers to take full advantage of their demographic data, we introduce a standardised protocol to present MPMs in publications. This standard is linked to www.compadre-db.org, so that authors wishing to archive their MPMs can do so prior to submission of publications, following examples from other open-access repositories such as DRYAD, Figshare and Zenodo.
Combining and standardising MPMs parameterized from populations around the globe and across the tree of life opens up powerful research opportunities in evolutionary biology, ecology and conservation research. However, this potential can only be fully realised by adopting standardised methods to ensure reproducibility
EuFeAs under high pressure: an antiferromagnetic bulk superconductor
We report the ac magnetic susceptibility and resistivity
measurements of EuFeAs under high pressure . By observing nearly
100% superconducting shielding and zero resistivity at = 28 kbar, we
establish that -induced superconductivity occurs at ~30 K in
EuFeAs. shows an anomalous nearly linear temperature dependence
from room temperature down to at the same . indicates that
an antiferromagnetic order of Eu moments with ~20 K persists
in the superconducting phase. The temperature dependence of the upper critical
field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.
Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV
A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
- …