6 research outputs found

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the tt¯ → dilepton channel (lepton = e,μ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the tt¯ → dilepton and tt¯ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV

    Measurement of D*±, D± and Ds± meson production cross sections in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The production of D∗±, D± and D±s charmed mesons has been measured with the ATLAS detector in pp collisions at √s= 7 TeV at the LHC, using data corresponding to an integrated luminosity of 280 nb−1. The charmed mesons have been reconstructed in the range of transverse momentum 3.5 <pT(D) <100 GeV and pseudorapidity |η(D)| <2.1. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for D∗± and D± production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible D cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange D mesons produced in a vector state, and the total cross section of charm production at √s= 7 TeV were derived

    Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    Get PDF
    Energy flows in deep inelastic electron-proton scattering are investigated at a center-of-mass energy of 296 GeV for the range Q2 greater-than-or-equal-to 10 GeV2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap events compared to the events without a large rapidity gap

    Observation of events with a large rapidity gap in deep inelastic scattering at HERA

    Get PDF
    In deep inelastic, neutral current scattering of electrons and protons at &#8730; s = 296 GeV, we observe in the ZEUS detector events with a large rapidity gap in the hadronic final state. They occur in the region of small Bjorken x and are observed up to Q&lt;sup&gt;2&lt;/sup&gt; of 100 GeV&lt;sup&gt;2&lt;/sup&gt;. They account for about 5% of the events with Q&lt;sup&gt;2&lt;/sup&gt; &#8805; 10 GeV&lt;sup&gt;2&lt;/sup&gt;. Their general properties are inconsistent with the dominant mechanism of deep inelastic scattering, where color is transferred between the scattered quark and the proton remnant, and suggest that the underlying production mechanism is the diffractive dissociation of the virtual photon
    corecore