81 research outputs found

    Fatty acid oxidation in immune function

    Get PDF
    Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism’s ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway

    Baseline body mass index among children and adults undergoing allogeneic hematopoietic cell transplantation: clinical characteristics and outcomes

    Get PDF
    Obesity is an important public health problem that may influence the outcomes of hematopoietic cell transplantation (HCT). We studied 898 children and adults receiving first-time allogeneic hematopoietic stem cell transplants between 2004 and 2012. Pre-transplant body mass index (BMI) was classified as underweight, normal weight, overweight, or obese using the WHO classification, or age-adjusted BMI percentiles for children. The study population was predominantly Caucasian, and the median age was 51 years (5 months – 73 years). The cumulative 3-year incidence of non-relapse mortality (NRM) in underweight, normal weight, overweight, and obese patients was 20%, 19%, 20%, and 33%, respectively. Major causes of NRM were acute and chronic graft-versus-host disease (GVHD). The corresponding incidence of relapse was 30%, 41%, 37%, and 30%, respectively. Three-year overall survival was 59%, 48%, 47%, and 43%, respectively. Multivariate analysis showed that obesity was associated with higher NRM (HR 1.43, p=0.04), and lower relapse (HR 0.65, p=0.002). Pre-transplant plasma levels of ST2 and TNFR1 biomarkers were significantly higher in obese compared with normal weight patients (p=0.04 and p=0.05, respectively). The increase in NRM observed in obese patients was partially offset by lower incidence of relapse with no difference in overall survival

    The Therapeutic Potential of T Cell Metabolism

    Full text link
    Transplant rejection mediated by the adaptive immune system remains a major barrier to achieving long-term tolerance and graft survival. Emerging evidence indicates that lymphocytes rapidly shift their metabolic programs in response to activation, co-stimulatory, and cytokine signals to support required effector cell differentiation and function. These observations have led to the hypothesis that manipulating the metabolic programs of immune cells could serve as a powerful therapeutic strategy for attenuating deleterious immune responses and facilitating durable tolerance in the setting of allogeneic solid organ or bone marrow transplant. In this mini-review, we introduce the fundamentals of metabolism, highlight the current understanding of how adaptive immune cells utilize their metabolic programs, and discuss the potential for targeting metabolism as a therapeutic approach to induce tolerance in the transplant setting

    Much Ado About the TPP’s Effect on Pharmaceuticals

    Get PDF
    Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues

    T cell Allorecognition Pathways in Solid Organ Transplantation.

    Get PDF
    Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway; and as self-restricted processed alloantigen via the indirect pathway. Direct pathway responses are viewed as strong but short-lived and hence responsible for acute rejection, whereas indirect pathway responses are typically thought to be much longer lasting and mediate the progression of chronic rejection. However, this is based on surprisingly scant experimental evidence, and the recent demonstration that MHC alloantigen can be re-presented intact on recipient dendritic cells-the semi-direct pathway-suggests that the conventional view may be an oversimplification. We review recent advances in our understanding of how the different T cell allorecognition pathways are triggered, consider how this generates effector alloantibody and cytotoxic CD8 T cell alloresponses and assess how these responses contribute to early and late allograft rejection. We further discuss how this knowledge may inform development of cellular and pharmacological therapies that aim to improve transplant outcomes, with focus on the use of induced regulatory T cells with indirect allospecificity and on the development of immunometabolic strategies. KEY POINTS Acute allograft rejection is likely mediated by indirect and direct pathway CD4 T cell alloresponses.Chronic allograft rejection is largely mediated by indirect pathway CD4 T cell responses. Direct pathway recognition of cross-dressed endothelial derived MHC class II alloantigen may also contribute to chronic rejection, but the extent of this contribution is unknown.Late indirect pathway CD4 T cell responses will be composed of heterogeneous populations of allopeptide specific T helper cell subsets that recognize different alloantigens and are at various stages of effector and memory differentiation.Knowledge of the precise indirect pathway CD4 T cell responses active at late time points in a particular individual will likely inform the development of alloantigen-specific cellular therapies and will guide immunometabolic modulation

    T cell metabolism drives immunity

    Get PDF
    Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism

    Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung

    Get PDF
    Asthma pathogenesis is focused around conducting airways. The reasons for this focus have been unclear because it has not been possible to track the sites and timing of antigen uptake or subsequent antigen presentation to effector T cells. In this study, we use two-photon microscopy of the lung parenchyma and note accumulation of CD11b(+) dendritic cells (DCs) around the airway after allergen challenge but very limited access of these airway-adjacent DCs to the contents of the airspace. In contrast, we observed prevalent transepithelial uptake of particulate antigens by alveolar DCs. These distinct sites are temporally linked, as early antigen uptake in alveoli gives rise to DC and antigen retention in the airway-adjacent region. Antigen-specific T cells also accumulate in the airway-adjacent region after allergen challenge and are activated by the accumulated DCs. Thus, we propose that later airway hyperreactivity results from selective retention of allergen-presenting DCs and antigen-specific T cells in airway-adjacent interaction zones, not from variation in the abilities of individual DCs to survey the lung

    Metabolic Control of Dendritic Cell Functions: Digesting Information

    Get PDF
    Dendritic cells (DCs) control innate and adaptive immunity by patrolling tissues to gather antigens and danger signals derived from microbes and tissue. Subsequently, DCs integrate those environmental cues, orchestrate immunity or tolerance, and regulate tissue homeostasis. Recent advances in the field of immunometabolism highlight the notion that immune cells markedly alter cellular metabolic pathways during differentiation or upon activation, which has important implications on their functionality. Previous studies showed that active oxidative phosphorylation in mitochondria is associated with immature or tolerogenic DCs, while increased glycolysis upon pathogen sensing can promote immunogenic DC functions. However, new results in the last years suggest that regulation of DC metabolism in steady state, after immunogenic activation and during tolerance in different pathophysiological settings, may be more complex. Moreover, ontogenically distinct DC subsets show different functional specializations to control T cell responses. It is, thus, relevant how metabolism influences DC differentiation and plasticity, and what potential metabolic differences exist among DC subsets. Better understanding of the emerging connection between metabolic adaptions and functional DC specification will likely allow the development of therapeutic strategies to manipulate immune responses

    The Role of Fatty Acid Oxidation in the Metabolic Reprograming of Activated T-Cells

    Get PDF
    Activation represents a significant bioenergetic challenge for T cells, which must undergo metabolic reprogramming to keep pace with increased energetic demands. This review focuses on the role of fatty acid metabolism, both in vitro and in vivo, following T cell activation. Based upon previous studies in the literature, as well as accumulating evidence in allogeneic cells, I propose a multi-step model of in vivo metabolic reprogramming. In this model, a primary determinant of metabolic phenotype is the ubiquity and duration of antigen exposure. The implications of this model, as well as the future challenges and opportunities in studying T cell metabolism, will be discussed
    • …
    corecore