47 research outputs found

    Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3

    Get PDF
    The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria

    Genomic Testing in Localized Prostate Cancer Can Identify Subsets of African Americans With Aggressive Disease

    Get PDF
    BACKGROUND: Personalized genomic classifiers have transformed the management of prostate cancer (PCa) by identifying the most aggressive subsets of PCa. Nevertheless, the performance of genomic classifiers to risk classify African American men is thus far lacking in a prospective setting. METHODS: This is a prospective study of the Decipher genomic classifier for National Comprehensive Cancer Network low- and intermediate-risk PCa. Study-eligible non-African American men were matched to African American men. Diagnostic biopsy specimens were processed to estimate Decipher scores. Samples accrued in NCT02723734, a prospective study, were interrogated to determine the genomic risk of reclassification (GrR) between conventional clinical risk classifiers and the Decipher score. RESULTS: The final analysis included a clinically balanced cohort of 226 patients with complete genomic information (113 African American men and 113 non-African American men). A higher proportion of African American men with National Comprehensive Cancer Network-classified low-risk (18.2%) and favorable intermediate-risk (37.8%) PCa had a higher Decipher score than non-African American men. Self-identified African American men were twice more likely than non-African American men to experience GrR (relative risk [RR] = 2.23, 95% confidence interval [CI] = 1.02 to 4.90; P = .04). In an ancestry-determined race model, we consistently validated a higher risk of reclassification in African American men (RR = 5.26, 95% CI = 1.66 to 16.63; P = .004). Race-stratified analysis of GrR vs non-GrR tumors also revealed molecular differences in these tumor subtypes. CONCLUSIONS: Integration of genomic classifiers with clinically based risk classification can help identify the subset of African American men with localized PCa who harbor high genomic risk of early metastatic disease. It is vital to identify and appropriately risk stratify the subset of African American men with aggressive disease who may benefit from more targeted interventions

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link

    Homeodomain proteins: an update

    Get PDF

    A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy.

    No full text
    PURPOSE: To examine whether possession of genetic alterations in the ATM (ataxia telangiectasia) gene is associated with rectal bleeding in a dose-dependent and volume-dependent manner. METHODS AND MATERIALS: One hundred eight prostate cancer patients who underwent brachytherapy using either an (125)I implant, a (103)Pd implant, or the combination of external beam radiotherapy with a (103)Pd implant and had a minimum of 1 year follow-up were screened for DNA sequence variations in the 62 coding exons of the ATM gene using denaturing high-performance liquid chromatography. Rectal dose was reported as the volume (in cubic centimeters) of rectum receiving the brachytherapy prescription dose. The two-sided Fisher exact test was used to compare differences in proportions. RESULTS: A significant correlation between the presence of any ATM sequence alteration and Grade 1 to 2 proctitis was obtained when the radiation dose to rectal tissue was quantified. Rectal bleeding occurred in 4 of 13 patients (31%) with a variant versus 1 of 23 (4%) without a genetic alteration for patients who had CONCLUSIONS: The possession of genetic variants in the ATM gene is associated with the development of radiation-induced proctitis after prostate cancer radiotherapy for patients who receive the full prescription dose to either a low or a moderate volume of rectal tissue

    TGFB1 single nucleotide polymorphisms are associated with adverse quality of life in prostate cancer patients treated with radiotherapy.

    No full text
    PURPOSE: To investigate whether the presence of single nucleotide polymorphisms (SNPs) located within TGFB1 might be predictive for the development of adverse quality-of-life outcomes in prostate cancer patients treated with radiotherapy. METHODS AND MATERIALS: A total of 141 prostate cancer patients treated with radiotherapy were screened for SNPs in TGFB1 using DNA sequencing. Three quality-of-life outcomes were investigated: (1) prospective decline in erectile function, (2) urinary quality of life, and (3) rectal bleeding. Median follow-up was 51.3 months (range, 12-138 months; SD, 24.4 months). RESULTS: Those patients who possessed either the T/T genotype at position -509, the C/C genotype at position 869 (pro/pro, codon 10) or the G/C genotype at position 915 (arg/pro, codon 25) were significantly associated with the development of a decline in erectile function compared with those who did not have these genotypes: 56% (9 of 16) vs. 24% (11 of 45) (p = 0.02). In addition, patients with the -509 T/T genotype had a significantly increased risk of developing late rectal bleeding compared with those who had either the C/T or C/C genotype at this position: 55% (6 of 11) vs. 26% (34 of 130) (p = 0.05). CONCLUSIONS: Possession of certain TGFB1 genotypes is associated with the development of both erectile dysfunction and late rectal bleeding in patients treated with radiotherapy for prostate cancer. Therefore, identification of patients harboring these genotypes may represent a means to predict which men are most likely to suffer from poor quality-of-life outcomes after radiotherapy for prostate cancer
    corecore