28 research outputs found

    Crop Updates 2007 - Cereals

    Get PDF
    This session covers twenty six papers from different authors: CEREAL BREEDING 1. Strategies for aligning producer and market imperatives in cereal breeding in Western Australia, R. Loughman, R. Lance, I. Barclay, G. Crosbie, S. Harasymow, W. Lambe, C. Li, R. McLean, C. Moore, K. Stefanova, A. Tarr and R. Wilson, Department of Agriculture and Food 2. LongReach plant breeders wheat variety trials – 2006, Matu Peipi and Matt Whiting, LongReach Plant Breeders WHEAT AGRONOMY 3. Response of wheat varieties to sowing time in the northern agricultural region in 2006, Christine Zaicou, Department of Agriculture and Food 4. Response of wheat varieties to sowing time in the central agricultural region in 2006, Shahajahan Miyan, Department of Agriculture and Food 5. Response of wheat varieties to sowing time in the Great Southern and Lakes region, Brenda Shackleyand Ian Hartley, Department of Agriculture and Food 6. Response of wheat varieties to time of sowing time in Esperance region in 2006, Christine Zaicou, Ben Curtis and Ian Hartley, Department of Agriculture and Food 7. Performance of wheat varieties in National Variety Testing (NVT) WA: Year 2, Peter Burgess, Agritech Crop Research 8. Flowering dates of wheat varieties in Western Australia in 2006, Darshan Sharma, Brenda Shackley and Christine Zaicou, Department of Agriculture and Food 9. Prospects for perennial wheat: A feasibility study, Len J. Wade, Lindsay W. Bell, Felicity Byrne (nee Flugge) and Mike A. Ewing, School of Plant Biology and CRC for Plant-based Management of Dryland Salinity, The University of Western Australia BARLEY AGRONOMY 10. Barley agronomy highlights: Time of sowing x variety, Blakely Paynter and Andrea Hills, Department of Agriculture and Food 11. Barley agronomy highlights: Weeds and row spacing, Blakely Paynter and Andrea Hills, Department of Agriculture and Food 12. Barley agronomy highlights: Weeds and barley variety, Blakely Paynter and Andrea Hills, Department of Agriculture and Food OAT AGRONOMY 13. Agronomic performance of dwarf potential milling oat varieties in varied environments of WA, Raj Malik, Blakely Paynter and Kellie Winfield, Department of Agriculture and Food 14. Sourcing oat production information in 2007, Kellie Winfield, Department of Agriculture and Food HERBICIDE TOLERANCE 15. Response of new wheat varieties to herbicides, Harmohinder Dhammu, Department of Agriculture and Food 16. Herbicide tolerance of new barley varieties, Harmohinder Dhammu, Vince Lambert and Chris Roberts, Department of Agriculture and Food 17. Herbicide tolerance of new oat varieties, Harmohinder Dhammu, Vince Lambert and Chris Roberts, Department of Agriculture and Food NUTRITION 18. Nitrogen Decision Tools – choose your weapon, Jeremy Lemon, Department of Agriculture and Food DISEASES 19. Barley agronomy highlights: Canopy management, Andrea Hills and Blakely Paynter, Department of Agriculture and Food 20. Barley agronomy highlights: Leaf diseases and spots, Andrea Hills and Blakely Paynter, Department of Agriculture and Food 21. Fungicide applications for stripe rust management in adult plant resistant (APR) wheat varieties, Geoff Thomas, Rob Loughman, Ian Hartley and Andrew Taylor; Department of Agriculture and Food 22. Effect of seed treatment with Jockey on time of onset and disease severity of stripe rust in wheat, Manisha Shankar, John Majewski and Rob Loughman, Department of Agriculture and Food 23. Rotations for management of Cereal Cyst Nematode, Vivien Vanstone, Department of Agriculture and Food 24. Occurrence of Wheat Streak Mosaic Virus in Western Australian grainbelt during the 2006 growing season, Brenda Coutts, Monica Kehoe and Roger Jones, Department of Agriculture and Food 25. Development of a seed test for Wheat Streak Mosaic Virus in bulk samples of wheat, Geoffrey Dwyer, Belinda Welsh, Cuiping Wang and Roger Jones, Department of Agriculture and Food MARKETS 26. Developing the Australian barley value chain, Linda Price, Barley Australi

    Crop Updates 2003 - Cereals

    Get PDF
    This session covers twenty one papers from different authors: PLENARY 1. Recognising and responding to new market opportunities in the grains industry, Graham Crosbie, Manager, Grain Products Research, Crop Breeding, Plant Industries, Department of Agriculture 2. Stripe rust – where to now for the WA wheat industry? Robert Loughman1, Colin Wellings2 and Greg Shea11Department of Agriculture, 2University of Sydney Plant Breeding Institute, Cobbitty (on secondment from NSW Agriculture) 3. Benefits of a Grains Biosecurity Plan, Dr Simon McKirdy, Plant Health Australia, Mr Greg Shea, Department of Agriculture 4. Can we improve the drought tolerance of our crops? Neil C. Turner, CSIRO Plant Industry, Wembley 5. The silence of the lambing, Ross Kingwell, Department of Agriculture AGRONOMY AND VARIETIES 6. Maximising performance of wheat varieties, Brenda Shackley, Wal Anderson, Darshan Sharma, Mohammad Amjad, Steve Penny Jr, Melanie Kupsch, Anne Smith, Veronika Reck, Pam Burgess, Glenda Smith and Elizabeth Tierney, Department of Agriculture 7. Wheat variety performance in wet and dry, Peter Burgess 8. e-VarietyGuide for stripe rust – an updated version (1.02 – 2003), Moin Salam, Megan Collins, Art Diggle and Robert Loughman, Department of Agriculture 9. Baudin and Hamelin – new generation of malting barley developed in Western Australia, Blakely Paynter, Roslyn Jettner and Kevin Young, Department of Agriculture 10. Oaten hay production, Jocelyn Ball, Natasha Littlewood and Lucy Anderton, Department of Agriculture 11. Improving waterlogging tolerance in wheat and barley, Irene Waters and Tim Setter, Department of Agriculture 12. Broadscale variety comparisons featuring new wheat varieties, Jeff Russell, Department of Agriculture, Centre for Cropping Systems BIOTECHNOLOGY 13. Barley improvement in the Western Region – the intergration of biotechnologies, Reg Lance, Chengdao Li and Sue Broughton, Department of Agriculture 14. The Western Australian State Agricultural Biotechnology Centre – what we are and what we do, Michael Jones, WA State Agricultural Biotechnology Centre, Murdoch University 15. Protein and DNA methods for variety identification, Dr Grace Zawko, Saturn Biotech Limited 16. The Centre for High-throughput Agricultural Genetic Analysis (CHAGA), Keith Gregg, CHAGA, Murdoch University NUTRITION 17. Potassium – topdressed, drilled or banded? Stephen Loss, Patrick Gethin, Ryan Guthrie, Daniel Bell, Wesfarmers CSBP 18. Liquid phosphorus fertilisers in WA, Stephen Loss, Frank Ripper, Ryan Guthrie, Daniel Bell and Patrick Gethin, Wesfarmers CSBP 19. Wheat nutrition in the high rainfall cropping zone, Narelle Hill1and Laurence Carslake2, 1Department of Agriculture, 2Wesfarmers Landmark PESTS AND DISEASES 20. Managenent options for root lesion nematode in West Australian cropping systems, Vivien Vanstone, Sean Kelly and Helen Hunter, Department of Agriculture STORAGE 21. Aeration can profit your grain enterprise, Christopher R. Newman, Department of Agricultur

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    An examination of whether associations exist between maternal and neonatal 25OHD and infant size and adiposity at birth, 6–9 months and 2–2.5 years of age – a longitudinal observational study from the ROLO study

    No full text
    Background: Vitamin D status in pregnancy and offspring bone health effects are well established, yet limited knowledge exists on the effect of maternal vitamin D status on offspring size/adiposity. This study examines the association of early (13 weeks), late (28 weeks) pregnancy and neonatal (umbilical) 25-hydroxyvitamin D (25OHD) on offspring size/adiposity.Methods: This analysis included mother-infant pairs from the ROLO study at birth (n = 292), 6–9 months (n = 160) and 2–2.5 years (n = 287) postpartum.Results: Using Institute of Medicine 2011 Report criteria, 30% of women in early pregnancy and 38% in late pregnancy were at risk of vitamin D deficiency (25OHD < 30 nmol/L). Birthweight was negatively associated with early-pregnancy 25OHD (p = 0.004) and neonatal 25OHD (p < 0.001). Birth length was not associated with 25OHD. Neonatal measures of overall adiposity were negatively associated with neonatal 25OHD (p = 0.001, and p = <0.001 respectively). At 2–2.5 years there was a negative association between weight-for-age z-score and early-pregnancy 25OHD (p < 0.041).Conclusions: Maternal and neonatal 25OHD were negatively associated with offspring size/adiposity at birth and offspring weight-for-age at 2–2.5 years. Results may not reflect a general population replete in vitamin D, due to high prevalence of macrosomia and high risk of deficiency in this cohort. Improvement of pregnancy vitamin D status remains a public health concern.Trial registration: Current Controlled Trials ISRCTN54392969. 22/04/2009 retrospectively registered

    Maternal and fetal blood lipid concentrations during pregnancy differ by maternal body mass index: findings from the ROLO study

    Get PDF
    Abstract Background Pregnancy is a time of altered metabolic functioning and maternal blood lipid profiles change to accommodate the developing fetus. While these changes are physiologically necessary, blood lipids concentrations have been associated with adverse pregnancy outcomes such as gestational diabetes, pregnancy-induced hypertension and high birth weight. As blood lipids are not routinely measured during pregnancy, there is limited information on what is considered normal during pregnancy and in fetal blood. Methods Data from 327 mother-child pairs from the ROLO longitudinal birth cohort study were analysed. Fasting total cholesterol and triglycerides were measured in early and late pregnancy and fetal cord blood. Intervals were calculated using the 2.5th, 50th and 97.5th centile. Data was stratified based on maternal body mass index (BMI) measured during early pregnancy. Differences in blood lipids between BMI categories were explored using ANOVA and infant outcomes of macrosomia and large-for-gestational-age (LGA) were explored using independent student T-tests and binary logistic regression. Results All maternal blood lipid concentrations increased significantly from early to late pregnancy. In early pregnancy, women with a BMI  30 kg/m2) had higher concentrations than both women in the normal-weight and overweight category in early and late pregnancy (P < 0.001 and P = 0.03, respectively). In late pregnancy, triglyceride concentrations remained elevated in women in the obese category compared to women in the normal-weight category (P = 0.01). Triglyceride concentrations were also elevated in late pregnancy in mothers that then gave birth to infants with macrosomia and LGA (P = 0.01 and P = 0.03, respectively). Conclusion Blood lipid concentrations increase during pregnancy and differ by maternal BMI. These intervals could help to inform the development of references for blood lipid concentrations during pregnancy. Trial registration ROLO Study - ISRCTN54392969 . Date of registration: 22/04/2009
    corecore