38 research outputs found

    Mapping and characterization of structural variation in 17,795 human genomes

    Get PDF
    A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing

    IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes.

    Get PDF
    GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of disease associations are known to be driven by regulatory variants. To identify the putative causative genes that are perturbed by these variants, we generate a large transcriptome data set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and ∼970 on multiple genes. We identify regulatory modules that drive the disease association for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn disease (CD) cases and 5500 controls, and show with burden tests that they include likely causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to demonstrate the causality of individual genes using this approach

    Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility

    Get PDF
    Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.Large-scale sequence-based analyses identify novel risk variants and susceptibility genes for Crohn's disease, and implicate mesenchymal cell-mediated intestinal homeostasis in disease etiology.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    The IBD international genetics consortium provides further evidence for linkage to IBD4 and shows gene-environment interaction

    No full text
    BACKGROUND AND AIMS: The inflammatory bowel diseases (IBDs) Crohn's disease (CD) and ulcerative colitis are complex disorders with an important genetic determinant. One gene associated with CD has been identified: NOD2/CARD15. Two independent genome-wide scans found significant evidence (logarithm of odds [LOD] 3.6) and suggestive evidence (LOD 2.8) for linkage on locus 14q11-12, also known as the IBD4 locus. To further characterize this locus, we assessed gene-environment interaction (IBD4 x smoking) and phenotypic heterogeneity in a large cohort of IBD-affected sibling pairs as part of an ongoing international collaborative effort. PATIENTS AND METHODS: A total of 733 IBD families, comprising 892 affected sibling pairs, were genotyped for microsatellites D14S261, D14S283, D14S972, and D14S275, spanning the IBD4 locus. Information on gender, ethnicity, age at onset, smoking at diagnosis, extraintestinal manifestations, and disease location was available. RESULTS: A significant distortion in the mean allele sharing (MAS) between affected siblings was observed for CD patients only at each of the four markers (54.6%, 52.8%, 50.4%, and 53.3%, respectively). Maximum linkage for CD was observed at marker D14S261 (multipoint nonparametric linkage score 2.36; P </= 0.01; MAS 54.6%). MAS was higher in CD families in which all siblings or at least one sibling smoked compared with nonsmoking CD families (MAS, 58.90%, 57.50%, and 52.80%, respectively). CONCLUSIONS: The IBD International Genetics Consortium replicated the IBD4 locus on chromosome 14q for CD and also showed evidence for a gene-environment interaction at this locus. Further studies are needed to explore the mechanism by which smoking influences IBD4

    Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis.

    Get PDF
    Item does not contain fulltextOBJECTIVES: Genetic susceptibility is known to play a large part in the predisposition to the inflammatory bowel diseases (IBDs) known as Crohn's disease (CD) and ulcerative colitis (UC). The IL2/IL21 locus on 4q27 is known to be a common risk locus for inflammatory disease (shown in coeliac disease, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus and psoriasis), while the roles that interleukin 2 (IL2) and IL21 play in the immune response also make them attractive candidates for IBD. The objective of this study was to test for association between the IL2/IL21 locus and the IBDs. METHODS: The four single nucleotide polymorphisms (SNPs) in the IL2/IL21 locus most associated with coeliac disease were genotyped in 1590 subjects with IBD and 929 controls from The Netherlands, and then replicated in a North American cohort (2387 cases and 1266 controls) and an Italian cohort (805 cases and 421 controls), yielding a total of 4782 cases (3194 UC, 1588 CD) and 2616 controls. Allelic association testing and a pooled analysis using a Cochran-Mantel-Haenszel test were performed. RESULTS: All four SNPs were strongly associated with UC in all three cohorts and reached genome-wide significance in the pooled analysis (rs13151961 p = 1.35 x 10(-10), rs13119723 p = 8.60 x 10(-8), rs6840978 p = 3.0 7x 10(-8), rs6822844 p = 2.77 x 10(-9)). A moderate association with CD was also found in the pooled analysis (p value range 0.0016-9.86 x 10(-5)). CONCLUSIONS: A strong association for the IL2/IL21 locus with UC was found, which also confirms it as a general susceptibility locus for inflammatory disease
    corecore