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IBD risk loci are enriched in multigenic regulatory
modules encompassing putative causative genes
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GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of

disease associations are known to be driven by regulatory variants. To identify the putative

causative genes that are perturbed by these variants, we generate a large transcriptome data

set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are

determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and

∼970 on multiple genes. We identify regulatory modules that drive the disease association

for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on

these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn

disease (CD) cases and 5500 controls, and show with burden tests that they include likely

causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to

demonstrate the causality of individual genes using this approach.
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Genome Wide Association Studies (GWAS) scan the entire
genome for statistical associations between common
variants and disease status in large case–control cohorts.

GWAS have identified tens to hundreds of risk loci for nearly all
studied common complex diseases of human1. The study of
Inflammatory Bowel Disease (IBD) has been particularly suc-
cessful, with more than 200 confirmed risk loci reported to
date2,3. As a result of the linkage disequilibrium (LD) patterns in
the human genome (limiting the mapping resolution of associa-
tion studies), GWAS-identified risk loci typically span ~250 kb,
encompassing an average of ~5 genes (numbers ranging from
zero (“gene deserts”) to more than 50) and hundreds of associated
variants. Contrary to widespread misconception, the causative
variants and genes remain unknown for the vast majority of
GWAS-identified risk loci. Yet, this remains a critical goal in
order to reap the full benefits of GWAS in identifying new drug
targets and developing effective predictive and diagnostic tools. It
is the main objective of post-GWAS studies.

Distinguishing the few causative variants (i.e., the variants that
are directly causing the gene perturbation) from the many neutral
variants that are only associated with the disease because they are
in LD with the former in the studied population, requires the use
of sophisticated fine-mapping methods applied to very large,
densely genotyped data sets4, ideally followed-up by functional
studies5. Using such approaches, 18 causative variants for IBD
were recently fine-mapped at single base pair resolution, and 51
additional ones at ≤10 base pair resolution4.

A minority of causative variants are coding, i.e., they alter the
amino-acid sequence of the encoded protein. In such cases, and
particularly if multiple such causative coding variants are found
in the same gene (i.e., in case of allelic heterogeneity), the cor-
responding causative gene is unambiguously identified. In the
case of IBD, causative genes have been identified for approxi-
mately ten risk loci on the basis of such “independently” (i.e., not
merely reflecting LD with other variants) associated coding var-
iants, including NOD2, ATG16L1, IL23R, CARD9, FUT2, and
TYK24,6–9.

For the majority of risk loci, the GWAS signals are not driven
by coding variants. They must therefore be driven by common
regulatory variants, i.e., variants that perturb the expression levels
of one (or more) target genes in one (or more) disease relevant
cell types4. Merely reflecting the proportionate sequence space
that is devoted to the different layers of gene regulation (tran-
scriptional, posttranscriptional, translational, posttranslational),
the majority of regulatory variants are likely to perturb compo-
nents of “gene switches” (promoters, enhancers, insulators),
hence affecting transcriptional output. Indeed, fine-mapped non-
coding variants are enriched in known transcription-factor
binding sites and epigenetic signatures marking gene switch
components4. Hence, the majority of common causative variants
underlying inherited predisposition to common complex diseases
must drive cis-eQTL (expression quantitative trait loci) affecting
the causative gene(s) in one or more disease relevant cell types.
The corresponding cis-eQTL are expected to operate prior to
disease onset, and—driven by common variants—detectable in
cohorts of healthy individuals of which most will never develop
the disease. The term cis-eQTL refers to the fact that the reg-
ulatory variants that drive them only affect the expression of
genes/alleles residing on the same DNA molecule, typically no
more than one megabase away. Causative variants, whether
coding or regulatory, may secondarily perturb the expression of
genes/alleles located on different DNA molecules, generating
trans-eQTL. Some of these trans-eQTL may participate in the
disease process.

cis-eQTL effects are known to be very common, affecting more
than 50% of genes10. Hence, finding that variants associated with

a disease are also associated with changes in expression levels of a
neighboring gene is not sufficient to incriminate the corre-
sponding genes as causative. Firstly, one has to show that the local
association signal for the disease and for the eQTL are driven by
the same causative variants. A variety of “colocalisation” methods
have been developed to that effect11–13. Secondly, regulatory
variants may affect elements that control the expression of mul-
tiple genes14, which may not all contribute to the development of
the disease, i.e., be causative. Thus, additional evidence is needed
to obtain formal proof of gene causality. In humans, the only
formal test of gene causality that is applicable is the family of
“burden” tests, i.e., the search for a differential burden of dis-
ruptive mutations in cases and controls, which is expected only
for causative genes15. Burden tests rely on the assumption that—
in addition to the common, mostly regulatory variants that drive
the GWAS signal—the causative gene will be affected by low
frequency and rare causative variants, including coding variants.
Thus, the burden test makes the assumption that allelic hetero-
geneity is common, which is supported by the pervasiveness of
allelic heterogeneity of Mendelian diseases in humans16. Burden
tests compare the distribution of rare coding variants between
cases and controls15. The signal-to-noise ratio of the burden test
can be increased by restricting the analysis to coding variants that
have a higher probability to disrupt protein function15. In the case
of IBD, burden tests have been used to prove the causality of
NOD2, IL23R, and CARD96,8,9. A distinct and very elegant
genetic test of gene causality is the reciprocal hemizygosity test,
and the related quantitative complementation assay17,18. How-
ever, with few exceptions19,20, it has only been applied in model
organisms in which gene knock-outs can be readily generated21.

In this paper, we describe the generation of a new and large
data set for eQTL analysis (350 healthy individuals) in nine cell
types that are potentially relevant for IBD. We identify and
characterize ~24,000 cis-eQTL. By comparing disease and eQTL
association patterns (EAP) using a newly developed statistic, we
identify 99 strong positional candidate genes in 63 GWAS-
identified risk loci. We resequence the 555 exons of 45 of these in
6600 cases and 5500 controls in an attempt to prove their caus-
ality by means of burden tests. The outcome of this study is
relevant to post-GWAS studies of all common complex disease in
humans.

Results
Clustering cis-eQTL into regulatory modules. We generated
transcriptome data for six circulating immune cell types (CD4+
T lymphocytes, CD8+ T lymphocytes, CD19+ B lymphocytes,
CD14+ monocytes, CD15+ granulocytes, platelets) as well as
ileal, colonic, and rectal biopsies (IL, TR, RE), collected from 323
healthy Europeans (141 men, 182 women, average age 56 years,
visiting the clinic as part of a national screening campaign for
colon cancer) using Illumina HT12 arrays (CEDAR data set;
Methods). IBD being defined as an inappropriate mucosal
immune response to a normal commensal gut flora22, these nine
cell types can all be considered to be potentially disease relevant.
Using standard methods based on linear regression and
two megabase windows centered on the position of the inter-
rogating probe (Methods), we identified significant cis-eQTL
(FDR < 0.05) for 8804 of 18,580 tested probes (corresponding to
7216 of 13,615 tested genes) in at least one tissue, amounting to a
total of 23,650 cis-eQTL effects (Supplementary Data 1). When a
gene shows a cis-eQTL in more than one tissue, the corre-
sponding “eQTL association patterns” (EAP) (i.e., the distribution
of association −log(p) values for all the variants in the region of
interest) are expected to be similar if determined by the same
regulatory variants, and dissimilar otherwise. Likewise, if several
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neighboring genes show cis-eQTL in the same or distinct tissues,
the corresponding EAP are expected to be similar if determined
by the same regulatory variants, and dissimilar otherwise (Fig. 1).
We devised the ϑ metric to measure the similarity between
association patterns (Methods). ϑ is a correlation measure for
paired −log(p) values (for the two eQTL that are being com-
pared) that ranges between −1 and +1. ϑ shrinks to zero if
Pearson’s correlation between paired −log(p) values does not
exceed a chosen threshold (i.e., if the EAP are not similar). ϑ
approaches +1 when the two EAP are similar and when variants
that increase expression in eQTL 1 consistently increase expres-
sion in eQTL 2. ϑ approaches −1 when the two EAP are similar
and when variants that increase expression in eQTL 1 con-
sistently decrease expression in eQTL 2. ϑ gives more weight to
variants with high −log(p) for at least one EAP (i.e., it gives more
weight to eQTL peaks). Based on the known distribution of ϑ
under H0 (i.e., eQTL determined by distinct variants in the same
region) and H1 (i.e., eQTL determined by the same variants), we
selected a threshold value |ϑ| > 0.60 to consider that two EAP
were determined by the same variant. This corresponds to a false
positive rate of 0.05, and a false negative rate of 0.23
(Supplementary Fig. 1). We then grouped EAP in “cis-acting
regulatory modules” (cRM) using |ϑ| and a single-link clustering
approach (i.e., an EAP needs to have |ϑ| > 0.60 with at least one
member of the cluster to be assigned to that cluster). Clusters
were visually examined and 29 single edges connecting otherwise
unlinked and yet tight clusters manually removed (Supplemen-
tary Fig. 2).

Using this approach, we clustered the 23,650 effects in 9720
distinct “cis-regulatory modules” (cRM), encompassing cis-eQTL
with similar EAP (Supplementary Data 2). Sixty-eight percent of
cRM were gene- and tissue-specific, 22% were gene-specific but
operating across multiple tissues (≤9 tissues, average 3.5), and
10% were multi-genic (≤11 genes, average 2.5) and nearly always
multi-tissue (Figs. 2 and 3, Supplementary Fig. 2). In this, cRM
are considered gene specific if the EAPs in the cluster concern
only one gene, and tissue specific if the EAP in the cluster concern
only one of the nine cell types. They are, respectively, multigenic
and multi-tissue otherwise. cRM operating across multiple tissues
tended to affect multiple genes (r= 0.47; p < 10−6). In such cRM,
the direction of the effects tended to be consistent across tissues
and genes (p < 10−6). Nevertheless, we observed at least 55 probes
with effect of opposite sign in distinct cell types (ϑ ≤−0.9), i.e.,
the corresponding regulatory variants increases transcript levels
in one cell type while decreasing them in another (Fig. 4 and
Supplementary Data 3). Individual tissues allowed for the
detection of 7–33% of all cRM, and contributed 3–14% unique
cRM (Supplementary Fig. 3). Sixty-nine percent of cRM were
only detected in one cell type. The rate of cRM sharing between
cell types reflects known ontogenic relations. Considering cRM
shared by only two cell types (i.e., what jointly differentiates these
two cell types from all other), revealed the close proximity of the
CD4–CD8, CD14–CD15, ileum–colon, and colon–rectum pairs.
Adding information of cRM shared by up to six cell types
grouped lymphoid (CD4, CD8, CD19), myeloid (CD14, CD15
but not platelets), and intestinal (ileum, colon and rectum) cells.
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Fig. 1 cis-Regulatory Module (cRM). A cis-eQTL affecting gene A in tissue 1 reveals itself by an “eQTL Association Pattern” (EAPA,1), i.e., the pattern of –log
(p) values for variants in the region. Multiple EAP can be observed in a given chromosome region, affecting one or more genes in one or more cell types.
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Adding cRM with up to nine cell types revealed a link between
ileum and blood cells, possibly reflecting the presence of blood
cells in the ileal biopsies (Fig. 5).

cRM matching IBD association signals are often multigenic. If
regulatory variants affect disease risk by perturbing gene
expression, the corresponding “disease association patterns”
(DAP) and EAP are expected to be similar, even if obtained in
distinct cohorts (yet with same ethnicity) (Fig. 6). We confronted
DAP and EAP using the ϑ statistic and threshold (|ϑ| > 0.60)
described above for 200 GWAS-identified IBD risk loci. DAP for
Crohn’s disease and ulcerative colitis were obtained from the
International IBD Genetics Consortium (IIBDGC)2,3, EAP from
the CEDAR data set.

The probability that two unrelated association signals in a
chromosome region of interest are similar (i.e., have high |ϑ|
value) is affected by the degree of LD in the region. If the LD is
high it is more likely that two association signals are similar by
chance. To account for this, we generated EAP- and locus-specific
distributions of |ϑ| by simulating eQTL explaining the same
variance as the studied eQTL, yet driven by 100 variants that were
randomly selected in the risk locus (matched for MAF), and
computing |ϑ| with the DAP for all of these. The resulting
empirical distribution of |ϑ| was used to compute the probability
to obtain a value of |ϑ| as high or higher than the observed one, by
chance alone (Methods).

Strong correlations between DAP and EAP (|ϑ| > 0.6, asso-
ciated with low empirical p values) were observed for at least 63
IBD risk loci, involving 99 genes (range per locus: 1–6) (Table 1,
Fig. 7, Supplementary Data 4). Increased disease risk was
associated equally frequently with increased as with decreased
expression (pCD= 0.48; pUC= 0.88). An open-access website has
been prepared to visualize correlated DAP–EAP within their
genomic context (http://cedar-web.giga.ulg.ac.be). Genes with
highest |ϑ| values (≥0.9) include known IBD causative genes (for
instance, ATG16L1, CARD9, and FUT2), known immune
regulators (for instance, IL18R1, IL6ST, and THEMIS), as well
as genes with as of yet poorly defined function in the context of
IBD (for instance, APEH, ANKRD55, CISD1, CPEB4, DOCK7,

ERAP2, GNA12, GPX1, GSDMB, ORMDL3, SKAP2, UBE2L3, and
ZMIZ1) (Supplementary Note 1).

The eQTL link with IBD has not been reported before for at
least 47 of the 99 reported genes (Table 1). eQTL links with IBD
have been previously reported for 111 additional genes, not
mentioned in Table 1. Our data support these links for 19 of
them, however, with |ϑ| ≤ 0.6 (Supplementary Data 5). We
applied SMR13 as alternative colocalisation method to our data.
Using a Bonferroni-corrected threshold of ≤2.5 × 10−5 for pSMR

and ≥0.05 for pHEIDI, SMR detected 35 of the 99 genes selected
with ϑ (Supplementary Data 4). Using the same thresholds, SMR
detected nine genes that were not selected by ϑ. Of these, three
(ADAM15, AHSA2, UBA7) had previously been reported by
others, while six (FAM189B, QRICH1, RBM6, TAP2, ADO,
LGALS9) were not. Of these six, three (RBM6, TAP2, ADO) were
characterized by 0.45 <|ϑ|<0.6 (Supplementary Data 5).

Using an early version of the CEDAR data set, significant
(albeit modest) enrichment of overlapping disease and eQTL
signals was reported for CD4, ileum, colon and rectum, focusing
on 76 of 97 studied IBD risk loci (MAF of disease variant >0.05)4.
By pre-correcting fluorescence intensities with 23 to 53 (depend-
ing on cell type) principal components to account for unidentified
confounders (Methods), we increased the number of significant
eQTL from 480 to 880 in the corresponding 97 regions (11,964 to
23,650 for the whole genome). We repeated the enrichment
analysis focusing on 63 of the same 97 IBD loci (CD risk loci;
MAF of disease variant >0.05), using three colocalisation methods
including ϑ (Methods). We observed a systematic excess overlap
in all analyzed cell types (2.5-fold on average). The enrichment
was very significant with the three methods in CD4 and CD8
(Supplementary Table 1).

The 400 analyzed DAP (200 CD and 200 UC) were found to
match 76 cRM (in 63 risk loci) with |ϑ| > 0.6 (Table 1), of which
25 are multigenic. Knowing that multigenic cRM represent 10%
of all cRM (967/9720), 25/76 (i.e., 33%) corresponds to a highly
significant three-fold enrichment (p < 10−9). To ensure that this
apparent enrichment was not due to the fact that multigenic cRM
have more chance to match DAP (as by definition multiple EAP
are tested for multigenic cRM), we repeated the enrichment
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Fig. 2 Single-gene/tissue versus multi-gene/tissue cRM. Using |ϑ| > 0.6, the 23,950 cis-eQTL (FDR≤ 0.05) detected in the nine analyzed cell types were
clustered in 9720 cis-Regulatory Modules (cRM). 68% of these were single-gene, single-tissue cRM (green), 22% were single-gene, multi-tissue cRM
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clarity. Thus, there are more cases of single-gene, multi-tissue cRM (blue; 2155) than multi-gene cRM (red; 967)
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analysis by randomly sampling only one representative EAP per
cRM in the 200 IBD risk loci. The frequency of multigenic cRM
amongst DAP-matching cRM averaged 0.22, and was never ≤0.10
(p ≤ 10−5) (Supplementary Fig. 4). In loci with high LD, EAP
driven by distinct regulatory variants (yet in high LD) may
erroneously be merged in the same cRM. To ensure that the
observed enrichment in multigenic cRM was not due to higher
levels of LD, we compared the LD-based recombination rate of
the 63 cRM-matching IBD risk loci with that of the rest of the
genome (https://github.com/joepickrell/1000-genomes-genetic-
maps). The genome-average recombination rate was 1.23
centimorgan per megabase (cM/Mb), while that of the 63 IBD
risk loci was 1.34 cM/Mb, i.e., less LD in the 63 cRM-matching
IBD risk loci than in the rest of the genome. We further
compared the average recombination rate in the 63 cRM-
matching IBD regions with that of sets of 63 loci centered on
randomly drawn cRM (from the list of 9720), matched for size
and chromosome number (as cM/Mb is affected by chromosome
size). The average recombination rate around all cRM was 1.43
cM/Mb, and this didn’t differ significantly from the 63 cRM-
matching IBD regions (p= 0.46) (Supplementary Fig. 5).
Therefore, the observed enrichment cannot be explained by a
higher LD in the 63 studied IBD risk loci. Taken together, EAP
that are strongly correlated with DAP (|ϑ| ≥ 0.60), map to
regulatory modules that are 2- to 3-fold enriched in multigenic
cRM when compared to the genome average and include
four of the top 10 (of 9720) cRM ranked by number of affected
genes.

DAP-matching cRM are enriched in causative genes for IBD.
For truly causative genes, the burden of rare disruptive variants is
expected to differ between cases and controls23. We therefore
performed targeted sequencing for the 555 coding exons (∼88 kb)
of 38 genes selected amongst those with strongest DAP–EAP

correlations, plus seven genes with suggestive DAP–EAP evidence
backed by literature (Table 1), in 6597 European CD cases and
5502 matched controls (ref.24 and Methods). Eighteen of these
were part of single-gene cRM and the only gene highlighted in the
corresponding locus. The remaining 27 corresponded to multi-
gene cRM mapping to 15 risk loci. We added the well-established
NOD2 and IL23R causative IBD genes as positive controls. We
identified a total of 174 loss-of-function (LoF) variants, 2567
missense variants (of which 991 predicted by SIFT25 to be
damaging and Polyphen-226 to be either possibly or probably
damaging), and 1434 synonymous variants (Fig. 8 and Supple-
mentary Data 6). 1781 of these were also reported in the Genome
Aggregation Database27 with nearly identical allelic frequencies
(Supplementary Fig. 6). We designed a gene-based burden test to
simultaneously evaluate hypothesis (i): all disruptive variants
enriched in cases (when ϑ < 0; risk variants) or all disruptive
variants enriched in controls (when ϑ > 0; protective variants),
and hypothesis (ii): some disruptive variants enriched in cases
and others in controls. Hypothesis (i) was tested with
CAST28, and hypothesis (ii) with SKAT29 (Methods). We
restricted the analysis to 1141 LoF and damaging missense var-
iants with minor allele frequency (MAF) ≤0.005 to ensure that
any new association signal would be independent of the signals
from common and low frequency variants having led to the initial
identification and fine-mapping of the corresponding loci4. For
NOD2 (p= 6.9 × 10−7) and IL23R (p= 1.8 × 10−4), LoF and
damaging variants were significantly enriched in respectively
cases and controls as expected. When considering the 45 newly
tested genes as a whole, we observed a significant (p= 6.9 × 10−4)
shift towards lower p values when compared to expectation, while
synonymous variants behaved as expected (p= 0.66) (Fig. 9 and
Supplementary Data 7). This strongly suggests that the sequenced
list includes causative genes. CARD9, TYK2, and FUT2 have
recently been shown to be causative genes based on disease-
associated low-frequency coding variants (MAF > 0.005)4. The
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shift towards lower p values remained significant without these
(p= 1.7 × 10−3), pointing towards novel causative genes amongst
the 42 remaining candidate genes.

Proving gene causality requires larger case–control cohorts.
Despite the significant shift towards lower p values when
considering the 45 genes jointly, none of these were indivi-
dually significant when accounting for multiple testing
(p � 0:05

2�45 � 0:0006) (Supplementary Data 7). Near identical
results were obtained when classifying variants using the Com-
bined Annotation Dependent Depletion (CADD) tool30 instead
of SIFT/PolyPhen-2 (Supplementary Data 7). We explored three
approaches to increase the power of the burden test. The first
built on the observation that cRM matching DAP are enriched in
multigenic modules. This suggests that part of IBD risk loci
harbor multiple co-regulated and hence functionally related

genes, of which several (rather than one, as generally assumed)
may be causally involved in disease predisposition. To test this
hypothesis, we designed a module- rather than gene-based bur-
den test (Methods). However, none of the 30 tested modules
reached the experiment-wide significance threshold
(p � 0:05

2�30 � 0:0008). Moreover, the shift towards lower p values
for the 30 modules was not more significant (p ¼ 2:3 ´ 10�3) than
for the gene-based test (Supplementary Fig. 7a and Supplemen-
tary Table 7). The second and third approaches derive from the
common assumption that the heritability of disease predisposi-
tion may be larger in familial and early-onset cases31. We devised
orthogonal tests for age-of-onset and familiality and combined
them with our burden tests (Methods). Neither approach would
improve the results (Supplementary Fig. 7b, c and Supplementary
Data 7).

Assuming that TYK2 and CARD9 are truly causative and their
effect sizes in our data unbiased, we estimated that a case–control
cohort ranging from ~50,000 (TYK2) to ~200,000 (CARD9)
individuals would have been needed to achieve experiment-wide
significance (testing 45 candidate genes), and from ~78,000
(TYK2) to >500,000 (CARD9) individuals to achieve genome-
wide significance (testing 20,000 genes) in the gene-based burden
test (Supplementary Fig. 8).

Discussion
We herein describe a novel dataset comprising array-based
transcriptome data for six circulating immune cell types and
intestinal biopsies at three locations collected on ∼300 healthy
European individuals. We use this “Correlated Expression and
Disease Association Research” data set (CEDAR) to identify
23,650 significant cis-eQTL, which fall into 9720 regulatory
modules of which at least ∼889 affect more than one gene in
more than one tissue. We provide strong evidence that 63 of 200
known IBD GWAS signals reflect the activity of common reg-
ulatory variants that preferentially drive multigenic modules. We
perform an exon-based burden test for 45 positional candidate
CD genes mapping to 33 modules, in 5500 CD cases and 6500
controls. By demonstrating a significant (p ¼ 6:9 ´ 10�4) upwards
shift of log(1/p) values for damaging when compared to synon-
ymous variants, we show that the sequenced genes include new
causative CD genes.

Individually, none of the sequenced genes (other than the
positive NOD2 and IL23R controls) exceed the experiment-wide
significance threshold, precluding us from definitively pinpoint-
ing any novel causative genes. However, we note IL18R1 amongst
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04365-8

6 NATURE COMMUNICATIONS |  (2018) 9:2427 | DOI: 10.1038/s41467-018-04365-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the top-ranking genes (see also Supplementary Note 1). IL18R1 is
the only gene in an otherwise relatively gene-poor region (also
encompassing IL1R1 and IL18RAP) characterized by robust cis-
eQTL in CD4 and CD8 that are strongly correlated with the DAP
for CD and UC (0.68 ≤ |ϑ| ≤ 0.93). Reduced transcript levels of
IL18R1 in these cell types is associated with increased risk for
IBD. Accordingly, rare (MAF ≤ 0.005) damaging variants were
cumulatively enriched in CD cases (CAST p= 0.05). The
cumulative allelic frequency of rare damaging variants was found
to be higher in familial CD cases (0.0027), when compared to
non-familial CD cases (0.0016; p= 0.09) and controls (0.0010;
p= 0.03). When ignoring carriers of deleterious NOD2 muta-
tions, average age-of-onset was reduced by ∼3 years (25.3 vs 28.2
years) for carriers of rare damaging IL18R1 variants but this
difference was not significant (p= 0.18).

While the identification of matching cRM for 63/200 DAP
points towards a number of strong candidate causative genes, it
leaves most risk loci without matching eQTL despite the analysis
of nine disease-relevant cell types. This finding is in agreement
with previous reports4,32. It suggests that cis-eQTL underlying
disease predisposition operate in cell types, cell states (for
instance, resting vs activated) or developmental stages that were
not explored in this and other studies. It calls for the enlarge-
ment and extension of eQTL studies to more diverse and
granular cellular panels10,33, possibly by including single-cell
sequencing or spatial transcriptomic approaches. By performing
eQTL studies in a cohort of healthy individuals, we have made
the reasonable assumption that the common regulatory variants
that are driving the majority of GWAS signals are acting
before disease onset, including in individuals that will never
develop the disease. An added advantage of studying a healthy
cohort, is that the corresponding dataset is “generic”, usable for
the study of perturbation of gene regulation for any common
complex disease. However, it is conceivable that some eQTL
underlying increased disease risk only manifest themselves once

the disease process is initiated, for instance as a result of a
modified inflammatory status. Thus, it may be useful to
perform eQTL studies with samples collected from affected
individuals to see in how far the eQTL landscape is affected by
disease status.

One of the most striking results of this work is the observation
that cRM that match DAP are ≥2-fold enriched in multi-genic
modules. We cannot fully exclude that this is due to ascertain-
ment bias. As multi-genic modules tend to also be multi-tissue,
multi-genic cRM matching a DAP in a non-explored disease-
relevant cell type have a higher probability to be detected in the
explored cell types than the equivalent monogenic (and hence
more likely cell type specific) cRM. The alternative explanation is
that cRM matching DAP are truly enriched in multi-genic cRM.
It is tempting to surmise that loci harboring clusters of co-
regulated, functionally related causative genes have a higher
probability to be detected in GWAS, reflecting a relatively larger
target space for causative mutations. We herein tested this
hypothesis by applying a module rather than gene-based test.
Although this did not appear to increase the power of the burden
test in this work, it remains a valuable approach to explore in
further studies. Supplementary Data 2 provides a list of >900
multigenic modules detected in this work that could be used in
this context.

Although we re-sequenced the ORF of 45 carefully selected
candidate genes in a total of 5500 CD cases and 6600 controls,
none of the tested genes exceeded the experiment-wide threshold
of significance. This is despite the fact that we used a one-sided,
eQTL-informed test to potentially increase power. Established
IBD causative genes used as positive control, NOD2 and IL23R,
were positive indicating that the experiment was properly con-
ducted. We were not able to improve the signal strength by
considering information about regulatory modules, familiality or
age-of-onset. We estimated that ≥10-fold larger sample sizes will
be needed to achieve adequate power if using the same approach.
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Table 1 IBD risk loci for which at least one cis-eQTL association pattern (EAP) was found to match the disease association
pattern (DAP)

Loc Chr Beg End cRM Nr Genes with correlated
DAP–EAP

Implicated cell types Best θ Best p Ref

CD UC CD UC

HD1 1 2.4 2.8 271 2 TNFRSF14 CD4 CD8 IL TR −0.74 −0.79 0.02 0.03 4,48

HD2 1 7.7 8.3 2900 1 PARK7 CD15 TR RE −0.8 −0.82 0.01 0.06 48

N_1_62 1 62.5 63.5 109 3 DOCK7 USP1 ATG4C CD4 CD8 CD19 CD14 CD15 −0.9 0 0.01 1.00 3

N_1_100 1 101.0 102.0 6008 1 SLC30A7 TR 0 −0.71 1.00 0.06
J_1_119 1 120.2 120.7 9459 1 NOTCH2 CD19 0.68 0 0.13 1.00
HD14 1 155.0 156.1 5 8 GBA CD4 −0.65 0 0.01 1.00

238 3 THBS3 GBA MUC1 CD14 CD15 TR 0 0.81 1.00 0.02
4513 1 THBS3 CD4 0 0.66 1.00 0.02

HD21 1 197.3 198.0 6071 1 DENND1B CD4 0.7 0.78 0.03 0.02
HD30 2 62.4 62.7 3716 1 B3GNT2 CD8 −0.63 0 0.01 1.00
HD35 2 102.8 103.3 1132 1 IL18R1 CD4 CD8 −0.93 −0.87 0.01 0.03 4

8912 1 (IL18RAP) CD8 −0.42 0 0.11 0.38 4

J_2_197 2 198.2 199.1 325 2 MARS2 PLCL1 CD4 CD14 −0.72 0 0.06 1.00 2,48

J_2_218 2 218.9 219.4 216 3 PNKD GPBAR1 CD14 TR RE 0.72 0.72 0.01 0.06 2,48

HD43 2 234.1 234.6 1177 1 ATG16L1 CD4 CD8 IL TR RE 0.94 0 0.05 1.00 2,49

N_3_45 3 46.0 47.0 2930 1 CCR2 CD19 0.77 0 0.02 1.00
1203 1 CCR2 CD4 −0.62 0 0.07 1.00
7768 1 CCR9 CD19 0 −0.67 1.00 0.06
6798 1 KLHL18 CD14 0 −0.68 1.00 0.03

HD50 3 48.4 51.4 8 7 USP4 CD19 0.64 0.63 0.06 0.07 2

217 3 GPX1 APEH IP6K1 CD19 CD14 TR RE 0.91 0.97 0.01 0.01 2,49

122 3 FAM212A CD19 0 0.61 1.00 0.05
J_3_52 3 52.8 53.3 3190 1 SFMBT1 TR RE 0 −0.88 1.00 0.01 50

J_4_73 4 74.6 75.1 1271 1 CXCL5 CD4 CD8 CD19 CD14 PLA 0 −0.84 1.00 0.01 2

HD60 5 40.0 40.7 (PTGER4) CD15 0 0 0.28 0.15 51

HD61 5 55.4 55.5 360 2 ANKRD55 IL6ST CD4 CD8 0.9 0 0.02 1.00 4

HD62 5 72.4 72.6 6625 1 FOXD1 IL −0.74 0 0.03 1.00 4

HD63 5 95.9 96.5 365 2 ERAP2 LNPEP CD4 CD8 CD19 CD14 CD15 PLA
IL TR RE

0.94 0.71 0.01 0.02 2,4,50

HD65 5 130.4 132.0 55 4 (SLC22A4) (SLC22A5) CD4 CD15 −0.55 0 0.06 0.07 4,52

HD66 5 141.4 141.7 2389 1 NDFIP1 CD8 PLA 0.87 0.88 0.04 0.01 2

HD67 5 149.0 151.0 – – (IRGM) – – – – – 53

HD71 5 173.2 173.6 1349 1 CPEB4 CD4 CD8 CD19 CD14 CD15 PLA
TR

−0.92 0 0.01 1.00 2,4

J_66_32 6 32.3 32.9 7853 1 HLA-DQA2 IL 0 −0.62 1.00 0.02
HD76 6 90.8 91.1 1404 1 BACH2 CD4 0.67 0 0.14 1.00
HD78 6 111.3 112.0 9603 1 SLC16A10 IL 0 −0.71 1.00 0.11
HD80 6 127.9 128.4 707 2 THEMIS PTPRK CD8 −0.92 0 0.01 1.00
HD83 6 167.3 167.6 1425 1 RNASET2 CD4 CD8 CD15 PLA −0.87 0 0.02 1.00 4

J_7_1 7 2.5 3.0 2729 1 GNA12 CD19 CD14 TR 0 −0.94 1.00 0.02 2

HD84 7 26.6 27.3 1441 1 SKAP2 CD4 CD8 CD19 0.97 0 0.01 1.00 4

HD85 7 28.1 28.3 6438 1 JAZF1 CD4 0.78 0 0.01 1.00 2

HD92 7 128.5 128.8 401 2 IRF5 TNPO3 CD15 IL 0 −0.64 1.00 0.02 2,48

7046 1 TSPAN33 CD19 −0.64 0 0.01 1.00
N_8_26 8 26.7 27.7 5869 1 PTK2B CD14 −0.69 0 0.01 1.00

5841 1 TRIM35 CD4 0 0.66 1.00 0.01
HD106 9 139.1 139.5 64 4 CARD9 INPP5E SEC16A

SDCCAG3
CD4 CD8 CD19 CD14 CD15 IL TR
RE

0.95 0.86 0.01 0.02 2,4,50

HD109 10 30.6 30.9 1603 1 MTPAP TR −0.62 0 0.11 1.00
HD112 10 59.8 60.2 1609 1 CISD1 CD4 CD8 CD19 CD14 CD15 TR

RE
0.94 0.83 0.04 0?

01

2,4,48

J_10_74 10 75.4 75.9 436 2 VCL CD4 CD8 CD19 CD14 RE 0 −0.79 1.00 0.04
4279 1 CAM2KG CD4 −0.67 0 0.04 1.00

HD114 10 81.0 81.2 5476 1 ZMIZ1 CD8 −0.91 −0.86 0.03 0.01
J_10_80 10 82.0 82.5 712 2 TSPAN14 TR −0.71 0 0.01 1.00

2216 1 TSPAN14 CD4 CD14 0.76 0 0.01 1.00 2

HD116 10 101.2 101.4 5439 1 SLC25A28 CD14 −0.61 0 0.22 1.00
J_11_57 11 58.1 58.6 7164 1 ZFP91 PLA −0.64 −0.75 0.02 0.07
J_11_59 11 61.3 61.8 1670 1 TMEM258 CD4 CD8 CD19 0.83 0 0.04 1.00
J_11_65 11 65.4 65.9 451 2 CTSW FIBP CD4 CD8 −0.73 0 0.01 1.00 2

HD122 11 114.2 114.6 268 3 REXO2 NXPE1 NXPE4 TR RE 0 −0.89 1.00 0.02 4,50

HD123 11 118.3 118.8 8200 1 TREH IL 0 0.7 1.00 0.05
HD142 14 88.2 88.7 8940 1 GPR65 CD14 0.8 0.79 0.01 0.01

6353 1 (GALC) CD14 −0.52 −0.23 0.06 0.06 4

J_15_40 15 41.3 41.8 9109 1 CHP1 IL 0.62 0 0.01 1.00
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Although challenging, these numbers are potentially within reach
of international consortia for several common diseases including
IBD.

It is conceivable that the organ-specificity of nearly all complex
diseases (such as the digestive tract for IBD), reflects tissue-
specific perturbation of broadly expressed causative genes that
may fulfill diverse functions in different organs. If this is true,
coding variants may not be the appropriate substrate to perform
burden tests, as these will affect the gene across all tissues. In such
instances, the disruptive variants of interest may be those per-
turbing tissue-specific gene switches. Also, it has recently been
proposed that the extreme polygenic nature of common
complex diseases may reflect the trans-effects of a large propor-
tion of regulatory variants active in a given cell type on a limited
number of core genes via perturbation of highly connected gene
networks34. Identifying rare regulatory variants is still challen-
ging, however, as tissue-specific gene switches remain poorly
cataloged, and the effect of variants on their function difficult to
predict. The corresponding sequence space may also be limited in
size, hence limiting power. Nevertheless, a reasonable start may
be to re-sequence the regions surrounding common regulatory
variants that have been fine-mapped at near single base pair
resolution4.

In conclusion, we hereby provide to the scientific community a
collection of ∼24,000 cis-eQTL in nine cell types that are highly
relevant for the study of inflammatory and immune-mediated
diseases, particularly of the intestinal tract. The CEDAR dataset
advantageously complements existing eQTL datasets including
GTEx10,33. We propose a paradigm to rationally organize cis-
eQTL effects in co-regulated clusters or regulatory modules. We
identify ~100 candidate causative genes in 63 out of 200 analyzed
risk loci, on the basis of correlated DAP and EAP. We have
developed a web-based browser to share the ensuing results with
the scientific community (http://cedar-web.giga.ulg.ac.be). The

CEDAR website will imminently be extended to accommodate
additional common complex disease for which GWAS data are
publicly available. We show that the corresponding candidate
genes are enriched in causative genes, however, that case–control
cohorts larger than those used in this study (12,000 individuals)
are required to formally demonstrate causality by means of pre-
sently available burden tests.

Methods
Sample collection in the CEDAR cohort. We collected peripheral blood as well as
intestinal biopsies (ileum, transverse colon, rectum) from 323 healthy Europeans
visiting the Academic Hospital of the University of Liège as part of a national
screening campaign for colon cancer. Participants included 182 women and 141
men, averaging 56 years of age (range: 19-86). Enrolled individuals were not suf-
fering any autoimmune or inflammatory disease and were not taking corticoster-
oids or non-steroid anti-inflammatory drugs (with the exception of low doses of
aspirin to prevent thrombosis). We recorded birth date, weight, height, smoking
history, declared ethnicity and hematological parameters (red blood cell count,
platelet count, differential white blood cell count) for each individual. The
experimental protocol was approved by the ethics committee of the University of
Liège Academic Hospital. Informed consent was obtained prior to donation in
agreement with the recommendations of the declaration of Helsinki for experi-
ments involving human subjects. We refer to this cohort as CEDAR for Correlated
Expression and Disease Association Research.

SNP genotyping and imputation. Total DNA was extracted from EDTA-collected
peripheral blood using the MagAttract DNA blood Midi M48 Kit on a QIAcube
robot (Qiagen). DNA concentrations were measured using the Quant-iT Picogreen
ds DNA Reagents (Invitrogen). Individuals were genotyped for >700 K SNPs using
Illumina’s Human OmniExpress BeadChips, an iScan system and the Genome
Studio software following the guidelines of the manufacturer. We eliminated var-
iants with call rate ≤0.95, deviating from Hardy–Weinberg equilibrium (p ≤ 10−4),
or which were monomorphic. We confirmed European ancestry of all individuals
by PCA using the HapMap population as reference. Using the real genotypes of
629,570 quality-controlled autosomal SNPs as anchors, we used the Sanger
Imputation Services with the UK10K+ 1000 Genomes Phase 3 Haplotype panels
(https://imputation.sanger.ac.uk)35–37 to impute genotypes at autosomal variants in
our population. We eliminated indels, SNPs with MAF ≤ 0.05, deviating from

Table 1 (continued)

Loc Chr Beg End cRM Nr Genes with correlated
DAP–EAP

Implicated cell types Best θ Best p Ref

CD UC CD UC

J_16_22 16 23.6 24.1 2672 1 PRKCB CD14 0 0.64 1.00 0.05 2

HD150 16 28.2 29.1 6 8 TUFM SBK1 APOBR SGF29
CLN3 SPNS1

CD4 CD8 CD19 CD14 CD15 IL TR
RE

0.81 0.86 0.05 0.03 4

HD151 16 30.4 31.4 2673 1 RNF40 CD15 −0.63 0 0.02 1.00
1886 1 ITGAL CD4 CD8 CD19 0 0.74 1.00 0.01 54

HD153 16 68.4 68.9 1894 1 ZFP90 CD4 CD8 CD19 CD14 TR 0 0.83 1.00 0.07 2,48

HD156 16 85.9 86.1 3328 1 IRF8 TR RE 0 0.72 1.00 0.01
HD159 17 37.3 38.3 37 5 GSDMB ORMDL3 PGAP3

(GSDMA)
CD4 CD8 CD19 CD14 IL TR RE −0.98 −0.92 0.02 0.01 2,4

HD161 17 40.3 41.0 836 2 STAT3 PLA 0.67 0 0.10 1.00
HD164 18 67.4 67.6 1988 1 CD226 CD4 CD8 PLA 0 −0.86 1.00 0.01 2

N_18_76 18 76.7 77.7 7292 1 PQLC1 PLA −0.68 0 0.01 1.00
HD166 19 10.3 10.7 9232 1 (TYK2) CD14 −0.44 −0.09 0.10 0.10
HD168 19 47.1 47.4 581 2 GNG8 CD4 0 −0.63 1.00 0.06
HD169 19 49.0 49.3 3128 1 FUT2 IL TR RE −0.95 0 0.01 1.00 4

J_20_31 20 31.1 31.6 593 2 COMMD7 CD14 0 0.61 1.00 0.01
J_20_32 20 33.6 34.1 7 8 UQCC1 CD19 −0.69 0 0.02 1.00 2

3369 1 MMP24-AS1 RE −0.63 −0.71 0.03 0.03
HD175 20 62.2 62.5 2322 1 LIME1 CD4 CD19 −0.86 0 0.01 1.00 2

HD176 21 16.6 16.9 9578 1 NRIP1 CD4 0 −0.69 1.00 0.02
HD180 22 21.7 22.1 2130 1 UBE2L3 CD4 CD8 CD19 CD14 CD15 IL TR

RE
0.97 0.92 0.01 0.07 2,4

N_22_41 22 41.4 42.4 2149 1 EP300 CD8 CD19 CD15 0 0.71 1.00 0.02

Given are (i) the name and chromosomal coordinates of the corresponding loci (Locus, Chr, Beg, End) (GRCh37/hg19 in Mb), (ii) the identifier and total number of genes in the matching cis-acting
regulatory module (cRM, Nr), (iii) the genes and tissues involved in matching DAP–EAP (|ϑ| > 0.6) (bold when |ϑ| ≥ 0.9), (iv) the best ϑ-values and corresponding empirical p values obtained for CD and
UC, respectively, and (vi) references reporting a link between one or more of the same genes and IBD on the basis of eQTL information. Genes that were resequenced are shown in italics. Genes that
were resequenced despite |ϑ|≤ 0.6 are bracketed, and the supporting references provided in “Ref”. The higher number of matching DAP–EAP in this study when compared to Huang et al.4 are primarily
due to the fact that (i) we herein study 200 IBD risk loci (vs 97), and (ii) we increase the number of detected cis-eQTL approximately two-fold by correcting for hidden confounders using PCs
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Hardy-Weinberg equilibrium (p ≤ 10−3), and with low imputation quality
(INFO ≤ 0.4), leaving 6,019,462 high quality SNPs for eQTL analysis.

Transcriptome analysis. Blood samples were kept on ice and treated within 1 h
after collection as follows. EDTA-collected blood was layered on Ficoll-Paque
PLUS (GE Healthcare) to isolate peripheral blood mononuclear cells by density
gradient centrifugation. CD4+ T lymphocytes, CD8+ T lymphocytes, CD19+ B
lymphocytes, CD14+ monocytes, and CD15+ granulocytes were isolated by posi-
tive selection using the MACS technology (Miltenyi Biotec). To isolate platelets,
blood collected on acid-citrate-dextrose (ACD) anticoagulant was centrifuged at
150 g for 10min. The platelet rich plasma (PRP) was collected, diluted twofold in
ACD buffer and centrifuged at 800 × g for 10 min. The platelet pellet was resus-
pended in MACS buffer (Miltenyi Biotec) and platelets purified by negative selec-
tion using CD45 microbeads (Miltenyi Biotec). Intestinal biopsies were flash frozen
in liquid nitrogen immediately after collection and kept at −80 °C until RNA
extraction. Total RNA was extracted from the purified leucocyte populations and
intestinal biopsies using the AllPrep Micro Kit and a QIAcube robot (Qiagen). For
platelets, total RNA was extracted manually with the RNeasy Mini Kit (Qiagen).
Whole genome expression data were generated using HT-12 Expression Beadchips
following the instructions of the manufacturer (Illumina). Technical outliers were
removed using controls recommended by Illumina and the Lumi package38. We
kept 29,464/47,323 autosomal probes (corresponding to 19,731 genes) mapped by
Re-Annotator39 to a single gene body with ≤2 mismatches and not spanning known
variants with MAF>0.05. Within cell types, we only considered probes (i.e., “usable”
probes) with detection p value ≤0.05 in ≥25% of the samples. Fluorescence inten-
sities were Log2 transformed and Robust Spline Normalized (RSN) with Lumi38.
Normalized expression data were corrected for sex, age, smoking status and Sentrix
Id using ComBat from the SVA R library40. We further corrected the ensuing
residuals within tissue for the number of Principal Components (PC) that max-
imized the number of cis-eQTL with p ≤ 10−6 41. Supplementary Table 2 sum-
marizes the number of usable samples, probes and PC for each tissue type.

cis-eQTL analysis. cis-eQTL analyses were conducted with PLINK and using the
expression levels precorrected for fixed effects and PC as described above (http://
pngu.mgh.harvard.edu/purcell/plink/)42. Analyses were conducted under an

additive model, i.e., assuming that the average expression level of heterozygotes
is at the midpoint between alternate homozygotes. To identify cis-eQTL we
tested all SNPs in a 2 Mb window centered around the probe (if “usable”).
P values for individual SNPs were corrected for the multiple testing within the
window by permutation (10,000 permutations). For each probe–tissue combi-
nation we kept the best (corrected) p value. Within each individual cell type, the
ensuing list of corrected p values was used to compute the corresponding false
discovery rates (FDR or q value). Supplementary Table 3 reports the number of
cis-eQTL found in the nine analyzed cell types for different FDR thresholds (see
also Supplementary Fig. 9).

Comparing EAP with ϑ to identify cis-regulatory modules. If the transcript
levels of a given gene are influenced by the same regulatory variants (one or
several) in two tissues, the corresponding EAP (i.e., the −log(p) values of
association for the SNPs surrounding the gene) are expected to be similar.
Likewise, if the transcript levels of different genes are influenced by the same
regulatory variants in the same or in different tissues, the corresponding EAP are
expected to be similar (cf. main text, Fig. 1). We devised a metric, ϑ, to quantify
the similarity between EAP. If two EAP are similar, one can expect the corre-
sponding –log(p) values to be positively correlated. One particularly wants the
EAP peaks, i.e., the highest –log(p) values, to coincide in order to be convinced
that the corresponding cis-eQTL are driven by the same regulatory variants. To
quantify the similarity between EAP while emphasizing the peaks, we developed
a weighted correlation. Imagine two vectors X and Y of –log(p) values for n
SNPs surrounding the gene(s) of interest. Using the same nomenclature as in
Fig. 1a, X could correspond to gene A in tissue 1, and Y to gene A in tissue 2, or
X could correspond to gene A in tissue 1, and Y to gene B in tissue 2. We only
consider for analysis, SNPs within 1 Mb of either gene (probe) and for which xi
and/or yi is superior to 1.3 (i.e., p value <0.05) hence informative for at least one
of the two cis-eQTL. Indeed, the majority of variants with –log(p) <1.3 (p > 0.05)
for both EAP are by definition not associated with either trait. There is therefore
no reason to expect that they could contribute useful information to the cor-
relation metric: their ranking in terms of –log(p) values becomes more and more
random as the –log(p) decreases. We define the weight to be given to each SNP
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in the correlation as:

wi ¼ MAX
xi

xMAX
;

yi
yMAX

� �� �p

The larger p, the more weight is given to the top SNPs. In this work, p was set at
one.

The weighted correlation between the two EAP, rw, is then computed as:

rw ¼ 1Pn
i¼1 wi

Xn
i¼1

wi
xi � xw
σwx

� �
yi � yw
σwy

 !

in which

xw ¼
Pn

i¼1 wi ´ xiPn
i¼1 wi

yw ¼
Pn

i¼1 wi ´ yiPn
i¼1 wi

σwx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wi ´ xi � xwð Þ2Pn
i¼1 wi

s

σwy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wi ´ yi � ywð Þ2Pn
i¼1 wi

s

The larger rw, the larger the similarity between the EAP, particularly for their
respective peak SNPs.

rw ignores an important source of information. If two EAP are driven by the
same regulatory variant, there should be consistency in the signs of the effects
across SNPs in the region. We will refer to the effect of the “reference” allele of SNP
i on the expression levels for the first and second cis-eQTL as βXi and βYi . If the
reference allele of the regulatory variant increases expression for both cis-eQTL, the
βXi and βYi 's for a SNPs in LD with the regulatory variant are expected to have the
same sign (positive or negative depending on the sign of D for the considered
SNP). If the reference allele of the regulatory variant increases expression for one
cis-eQTL and decreases expression for the other, the βXi and βYi 's for a SNPs in LD
with the regulatory variant are expected to have opposite sign. We used this notion
to develop a weighted and signed measure of correlation, rws. The approach was the
same as for rw, except that the values of yi were multiplied by −1 if the signs of βXi

and βYi were opposite. rws is expected to be positive if the regulatory variant affects
the expression of both cis-eQTL in the same direction and negative otherwise.

We finally combined rw and rws in a single score referred to as ϑ, as follows:

ϑ ¼ rws
1þ e�kðrw�TÞ

ϑ penalizes rws as a function of the value of rw. The aim is to avoid considering EAP
pairs with strong but negative rw (which is often the case when the two EAP are
driven by very distinct variants). The link function is a sigmoid-shaped logistic
function with k as steepness parameter and T as sigmoid mid-point. In this work,
we used a value of k of 30, and a value of T of 0.3 (Supplementary Fig. 10).

We first evaluated the distribution of ϑ for pairs of EAP driven by the same
regulatory variants by studying 4,693 significant cis-eQTL (FDR < 0.05). For these,
we repeatedly (100x) split our CEDAR population in two halves, performed the cis-
eQTL analysis separately on both halves and computed ϑ for the ensuing EAP
pairs. Supplementary Fig. 1 is showing the obtained results.

We then evaluated the distribution of ϑ for pairs of EAP driven by distinct
regulatory variants in the same chromosomal region as follows. We considered
1207 significant cis-eQTL (mapping to the 200 IBD risk loci described above). For
each one of these, we generated a set of 100 “matching” cis-eQTL effects in silico,
sequentially considering 100 randomly selected SNPs (from the same locus) as
causal. The in silico cis-eQTL were designed such that they would explain the same
fraction of expression variance as the corresponding real cis-eQTL detected with
PLINK (cfr. above). When performing cis-eQTL analysis under an additive model,
PLINK estimates β0 (i.e., the intercept), and β1 (i.e., the slope of the regression),
including for the top SNP. Assume that the expression level of the studied gene, Z,
for individual i is zi. Assume that the sample comprises nT individuals in total, of
which n11 are of genotype “11”, n12 of genotype “12”, and n22 of genotype “22”, for
the top cis-eQTL SNP. The total expression variance for gene Z equals:

σ2T ¼
PnT

i¼1 zi � zTð Þ2
nT � 1

The variance in expression level due to the cis-eQTL equals:

σ2eQTL ¼ n11 β0 � zT
� �2þn12 β0 þ β1 � zT

� �2þn22 β0 þ 2β1 � zT
� �2

nT

The heritability of expression due to the cis-eQTL, i.e., the fraction of the
expression variance that is due to the cis-eQTL is therefore:

h2eQTL ¼ σ2eQTL
σ2T

To simulate cis-eQTL explaining the same h2eQTL as the real eQTL in the
CEDAR dataset, we sequentially considered all SNPs in the region. Each one of
these SNPs would be characterized by n11 individuals of genotype “11”, n12 of
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Fig. 8 Variants detected by sequencing the coding exons of 45 candidate genes. Variants are sorted in LoF (loss-of-function, i.e., stop gain, frame-shift,
splice site), Damaging MS (missense variants considered as damaging by SIFT5 and damaging or possibly damaging by Polyphen-26), Benign MS (other
missense variants), and Synonymous. Blue: variants with MAF < 0.005, Red: variants with MAF≥ 0.005
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genotype “12”, and n22 of genotype “22”, for a total of nT genotyped individuals.
We would arbitrarily set z11, z12; and z22 at −1, 0, and +1. As a consequence, the
variance due to this cis-eQTL equals:

σ2eQTL ¼ n11 �1� zTð Þ2þn12 0� zTð Þ2þn22 1� zTð Þ2
nT

in which zT ¼ n22 � n11ð Þ=nT.
Knowing σ2eQTL and h2eQTL, and knowing that

h2eQTL ¼ σ2eQTL
σ2eQTL þ σ2RES

the residual variance σ2RES can be computed as

σ2RES ¼ σ2eQTL
1

h2eQTL
� 1

 !

Individual expression data for the corresponding cis-eQTL (for all individuals of
the CEDAR data set) were hence sampled from the normal distribution

zi � N zxx; σ
2
RES

� �

where zxx is −1, 0, or +1 depending on the genotype of the individual (11, 12, or
22). We then performed cis-eQTL on the corresponding data set using PLINK,
generating an in silico EAP. Real and in silico EAP were then compared using ϑ.
Supplementary Fig. 1 shows the corresponding distribution of ϑ values for EAP
driven by distinct regulatory variants.

The corresponding distributions of ϑ under H1 and H0 (Supplementary Fig. 1)
show that ϑ discriminates very effectively between H1 and H0 especially for the
most significant cis-eQTL. We chose a threshold of |ϑ| > 0.6 to cluster EAP in cis-
acting regulatory elements or cRM (Fig. 2). In the experiment described above, this
would yield a false positive rate of 0.05, and a false negative rate of 0.23. Clusters
were visually examined as show in Supplementary Fig. 2. Twenty-nine edges
connecting otherwise unlinked and yet tight clusters were manually removed.

Testing for an excess sharing of cRM between cell types. Assume that cell type
1 is part of n1T cRM, including n11 private cRM, n12 cRM shared with cell type 2,
n13 cRM shared with cell type 3, …, and n19 cRM shared with cell type 9. Note thatP9

i¼1 n1i � n1T , because cRM may include more than two cell types. Assume that
n1S ¼

P9
i≠1 n1i is the sum of pair-wise sharing events for cell type 1. We computed,

for each cell type i≠1, the probability to observe ≥n1i sharing events with cell type 1

assuming that the expected number (under the hypothesis of random assortment)
is

n1S ´
niTP9
j≠1 njT

Pair-wise sharing events between tissue 1 and the eight other tissues were
generated in silico under this model of random assortment (5000 simulations). The
p value for n1i was computed as the proportion of simulations that would yield
values that would be as large or larger than n1i. The same approach was used for
the nine cell types. Thus, two p values of enrichment are obtained for each pair of
cell types i and j, one using i as reference cell type, and the other using j as reference
cell type. As can be seen from Fig. 5, the corresponding pairs of p values were
always perfectly consistent.

We performed eight distinct analyses. In the first analysis, we only considered
cRM involving no more than two tissues (i.e., unique for specific pairs of cell types).
In subsequent analyses, we progressively included cRM with no more than three,
four, …, and nine cell types.

Comparing EAP and DAP using ϑ. The approach used to cluster EAP in cRM was
also used to assign DAP for Inflammatory Bowel Disease (IBD) to EAP-defined
cRM. We studied 200 IBD risk loci identified in recent GWAS meta-analyses2,3.
The limits of the corresponding risk loci were as defined in the corresponding
publications. We measured the similarity between DAP and EAP using the ϑmetric
for all cis-eQTL mapping to the corresponding intervals (i.e., for all cis-eQTL for
which the top SNP mapped within the interval). To compute the correlations
between DAP and EAP we used all SNPs mapping to the disease interval with –log
(p) value ≥1.3 either for DAP, EAP or both.

In addition to computing ϑ as described in section 5, we computed an empirical
p value for ϑ using the approach (based on in silico generated cis-eQTL) described
above to generate the locus-specific distribution of ϑ values for EAP driven by
distinct regulatory variants. From this distribution, one can deduce the probability
that a randomly generated EAP (explaining as much variance as the real tested
EAP) and the DAP would by chance have a |ϑ| value that is as high or higher than
the real EAP. The corresponding empirical p value accounts for the local LD
structure between SNPs.

Evaluating the enrichment of DAP–EAP matching. To evaluate whether DAP
matched EAP more often than expected by chance alone, we analyzed 97 IBD risk
loci interrogated by the Immunochip, (i) in order to allow for convenient com-
parison with Huang et al.4, and (ii) because we needed extensively QC genotypes
for the IIBDGC data to perform the enrichment analysis with the ϑ-based method
(see hereafter). Within these 97 IBD risk loci, we focused on 63 regions affecting
CD4, encompassing at least one significant eQTL, and for which the lead CD-
associated SNP had MAF > 0.05. Indeed, eQTL analyses in the CEDAR dataset
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were restricted to SNPs with MAF > 0.05 (see above). We used three methods to
evaluate whether the observed number of DAP–EAP matches were higher than
expected by chance alone: naïve, frequentist and ϑ-based. Analyses were performed
separately for the nine cell types.

In the “naïve” approach, DAP and EAP were assumed to match if the
corresponding lead SNPs were in LD with r2 � 0:8. This would yield nN � 63 risk
loci for which the DAP would match at least one EAP. To measure the statistical
significance of nN , we sampled a SNP (MAF > 0.05) at random in each of the 63
risk loci, and counted the number of loci with at least one matching EAP. This
“simulation” was repeated 1,000 times. The significance of nN was measured as the
proportion of simulations that would yield � nN matches.

The frequentist approach used the method described by Nica et al.11. DAP and
EAP were assumed to match if fitting the disease-associated lead SNP in the eQTL
analysis caused a larger drop in �logðpÞ than 95% of the SNPs with MAF > 0.05 in
the analyzed risk locus. This would yield nF � 63 risk loci for which the DAP
would match at least one EAP. To measure the statistical significance of nF, we
sampled a SNP (MAF > 0.05) at random in each of the 63 risk loci, and counted the
number of loci with at least one matching EAP. This “simulation” was repeated
1000 times. The significance of nF was measured as the proportion of simulations
that would yield ≥nF matches.

Finally, we used our ϑ-based approach in which DAP and EAP were assumed to
match if |ϑ| > 0.6. This would yield nϑ ≤ 63 risk loci for which the DAP would
match at least one EAP. To measure the statistical significance of nϑ we sampled a
SNP (MAF > 0.05) at random in each of the 63 risk loci, and generated a DAP
assuming that the corresponding SNPs were causal as follows.

Assume a cohort with n1 cases and n2 controls (for instance, the IIBDGC
cohort). Assume a SNP with an allelic frequency of p in the cases+ controls, an
allelic frequency of pþ dð Þ in cases and pþ δð Þ in controls.

One can easily show that:

δ ¼ �d
n1
n2

ð1Þ

The odds ratio (OR) for that SNP equals:

OR ¼ ðpþ dÞð1� p� δÞ
ðpþ δÞð1� p� dÞ

The ratio between the between-cohort (i.e., cases and controls) variance versus
within-cohort variance (corresponding to an F test) can be shown to equal:

F ¼
d2 1þ n1

n2

� �

1þ n2
n1

� �
p� p2ð Þ � d2 1þ n1

n2

� �

If we fix F based on the real top SNP in the IIBDGC data in a given GWAS
identified risk loci, we can determine d (and hence δ using Equation 1) for the
randomly selected SNP (that will become an “in silico causative variant”) with
allelic frequency in (cases+ controls) of p (different from the real top SNP), by
solving

d ¼
�β ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 4αγ

q
2α

where

α ¼ 1þ n1
n2

� �
ð1þ FÞ

β ¼ 0

γ ¼ � p� p2
� �

1þ n2
n1

� �
F

Once we know ðpþ dÞ (i.e., the frequency of the SNP in cases), and hence
ðpþ δÞ (i.e., the frequency of the SNP in controls), we can use Hardy–Weinberg to
determine the frequency of the three genotypes in cases (pIBDAA ; pIBDAB ; pIBDBB ) and
controls (pCTRAA ; pCTRAB ; pCTRBB ). We then create an in silico case–control cohort by
sampling (with replacement) n1 ´ p

IBD
AA AA cases, n1 ´ p

IBD
AB AB cases, …, and

n2 ´ pCTRBB BB controls from the individuals of the IIBDGC (without discriminating
real case and control status). Association analysis of the corresponding data set in
the chromosome region of interest generates DAP with max � log pð Þ value similar
to the real DAP. This “simulation” was repeated 1000 times. The significance of nϑ
was measured as the proportion of simulations that would yield ≥nϑ matches.

Targeted exon resequencing in CD cases and controls. Genes for which EAP
match the DAP tightly (high |ϑ| values) are strong candidate causal genes for the
studied disease. In the case of IBD, we identified ~100 such genes (Table 1).
Ultimate proof of causality can be obtained by demonstrating a differential burden
of rare disruptive variants in cases and controls. Burden tests preferably focus on
coding gene segments, in which disruptive variants are most effectively recognized.
Analyses are restricted to rare variants to ensure independence from the GWAS
signals.

To perform burden tests, we collected DNA samples from 7323 Crohn Disease
(CD) cases and 6342 controls of European descent in France (cases: 1899—ctrls:
1731), the Netherlands (2002–1923) and, Belgium (3422–2688). The study
protocols were approved by the institutional review board at each center involved
with recruitment. Informed consent and permission to share the data were
obtained from all subjects, in compliance with the guidelines specified by the
recruiting center’s institutional review board.

During the course of this project, we selected 45 genes with high |ϑ| values for
resequencing (Table 1). We designed primers to amplify all corresponding coding
exons plus exon-intron boundaries corresponding to all transcripts reported in the
CCDS release 1543 (Supplementary Data 8). Following Momozawa et al.24, the
primers were merged in five pools to perform a first round of PCR amplification
(25 cycles). We then added 8-bp barcodes and common adapters (for sequencing)
to all PCR products by performing a second round of PCR amplification (4 cycles)
using primers targeting shared 5′ overhangs introduced during the first PCR. The
ensuing libraries were purified, quality controlled and sequenced (2 × 150-bp
paired-end reads) on a HiSeq 2500 (Illumina) instrument. Sequence reads were
sorted by individual using the barcodes, aligned to the human reference sequence
(hg19) with the Burrows–Wheeler Aligner (ver. 0.7.12)44, and further processed
using Genome Analysis Toolkit (GATK, ver. 3.2-2)45. We only considered
individuals for further analyses if ≥95% of the target regions was covered by
≥20 sequence reads. Average sequence depth across individuals and target regions
was 1060. We called variants for each individual separately using the
UnifiedGenotyper and HaplotypeCaller of GATK, as well as VCMM (ver. 1.0.2)46,
and listed all variants detected by either method. Genotypes for all individuals were
determined for each variant based on the ratio of reference and alternative alleles
amongst sequence reads as determined by Samtools47. Individuals were labeled
homozygote reference, heterozygote, or homozygote derived when the alternative
allele frequency was between 0 and 0.15, between 0.25 and 0.75, and between 0.85
and 1, respectively. If the alternative allele frequency was outside these ranges or a
variant position was covered with <20 sequencing reads, the genotype was
considered missing. We excluded variants with call rates <95% or variants that
were not in Hardy-Weinberg equilibrium (P < 1 × 10−6). We excluded 281
individuals with ≥2 minor alleles at 23 variants selected to have a MAF ≤ 0.01 in
non-Finnish Europeans and ≥0.10 in Africans or East-Asians in the Exome
Aggregation Consortium27.

In the end, we used 6597 cases and 5502 controls for further analyses, while
98.5% of the target regions on average was covered with 20 or more sequence reads.

Gene-based burden test. We first used SIFT25 and Polyphen-226 to sort the 4175
variants identified by sequencing in four categories: (i) loss-of-function (LoF) or
severe, corresponding to stop gain, stop loss, frameshift and splice-site variants, (ii)
damaging, corresponding to missense variants predicted by SIFT to be damaging
and Polyphen-2 to be possibly or probably damaging, (iii) benign, corresponding to
the other missense variants, and (iv) synonymous. We performed the burden test
using the LoF plus damaging variants, and used the synonymous variants as
controls. We only considered variants with MAF (computed for the entire data set,
i.e., cases plus controls) ≤0.005. We indeed showed in a previous fine-mapping
study that all reported independent effects were driven by variants with MAF
≥0.014. By doing so we ensure that the signals of the burden test are independent of
previously reported association signals. Thus, 174 LoF, 991 damaging, and
1434 synonymous were ultimately used to perform burden tests.

Burden tests come in two main flavors. In the first, one assumes that disruptive
variants will be enriched in either cases (i.e., disruptive variants increase risk) or in
controls (i.e., disruptive variance decrease risk). In the second, one assumes that—
for a given gene—some disruptive variants will be enriched in cases, while other
may be enriched in controls (Supplementary Fig. 11). The first was implemented
using CAST28. To increase power, we exploited the DAP–EAP information to
perform one-sided (rather than two-sided) tests. When ϑ < 0, we tested for an
enrichment of disruptive variants in cases; when ϑ > 0, for an enrichment of
disruptive variants in controls. P values were computed by phenotype permutation,
i.e., shuffling case–control status. When applying this test on a gene-by-gene basis
using synonymous variants (MAF > 0.005), the distribution of p values (QQ-plot)
indicated that the CAST test was conservative (λGC ¼ 0:51) (Supplementary
Fig. 12). The second kind of burden test was implemented with SKAT29. It is
noteworthy that SKAT ignores information from singletons (Supplementary
Fig. 11). Just as for CAST, p values were computed by phenotype permutation, i.e.,
shuffling case–control status. When applying this test on a gene-by-gene basis
using synonymous variants (MAF < 0.005), the distribution of p values (QQ-plot)
indicated that the SKAT test is too permissive (λGC ¼ 1:73) (Supplementary
Fig. 12). Consequently, gene-based p values obtained with SKAT were
systematically GC corrected using this value of λGC. We performed the two kinds of

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04365-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2427 | DOI: 10.1038/s41467-018-04365-8 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


analyses for each gene, as one doesn’t a priori know what hypothesis will match the
reality best for a given gene.

We also extracted information from the distribution of p values (or −log(p)
values) across the 45 analyzed genes. Even if individual genes do not yield –log(p)
values that exceed the significance threshold (accounting for the number of
analyzed genes and tests performed), the distribution of −log(p) values may
significantly depart from expectations, indicating that the analyzed genes include at
least some causative genes. This was done by taking for each gene, the best p value
(whether obtained with CAST or SKAT) and then rank the genes by corresponding
−log(p) value. The same was done for 105 phenotype permutations, allowing us to
examine the distribution of −log(p) values for given ranks and compute the
corresponding medians and limits of the 95% confidence band, as well as to
compute the probability that �2

P45
i¼1 lnðpiÞ (Fisher’s equation to combine p

values) equals or exceeds the observed. Our results show that there is a significant
departure from expectation when analyzing the damaging variants (p= 6.9 × 10−4)
but not when analyzing the synonymous variants (p= 0.66) supporting the
presence of genuine causative genes amongst the analyzed list.

cRM-based burden test. The enrichment of multi-genic cRM in IBD risk loci
suggests that risk loci may have more than one causative gene belonging to the
same cRM. To capitalize on this hypothesis, we developed a cRM-based burden
test. Gene-specific p values were combined within cRM using Fisher’s method. For
each gene, we considered the best p value whether obtained with CAST or SKAT.
Statistical significance was evaluated by phenotype permutation exactly as descri-
bed for the gene-based burden test. By doing so we observed a departure from
expectation when using the damaging variants (p= 2.3 × 10−3), but not when
using the synonymous variants (p= 0.72).

Orthogonal tests for age-of-onset and familiality. It is commonly assumed that
the heritability for common complex diseases is higher in familial and early onset
cases31. To extract the corresponding information from our data in a manner that
would be orthogonal to the gene- and module-based tests described above (i.e., the
information about age-of-onset and familiality would be independent of these
burden tests), we devised the following approach.

For age-of-onset, we summed the age-of-onset of the nC cases carrying rare
disruptive variants for the gene of interest. We then computed the probability that
the sum of the age-of-onset of nC randomly chosen cases was as different from the
mean of age-of-onset as the observed one, yielding a gene-specific two-sided pSKAT
value. In addition, we used the eQTL information to generate gene-specific one-
sided pCAST values, corresponding to the probability that the sum of the age-of-
onset of nC randomly chosen cases was as low or lower than the observed one (for
genes for which decrease in expression level as associated with increased risk), or to
the probability that the sum of the age-of-onset of nC randomly chosen cases was as
high or higher than the observed one (for genes for which increase in expression
level as associated with increased risk). These age-of-onset p values were then
combined with the corresponding p values from the burden test (CAST with CAST,
SKAT with SKAT) using Fisher’s method.

For familiality, we determined what fraction of the nC cases carrying rare
disruptive variants for the gene of interest were familial (affected first degree
relative). We then computed the probability that the fraction of familial cases
amongst nC randomly chosen cases was as different from the overall proportion of
familial cases, yielding a gene-specific two-sided pSKAT value. In addition, we used
the eQTL information to generate gene-specific one-sided pCAST values,
corresponding to the probability that the fraction of familial cases amongst nC
randomly chosen cases was as high or higher than the observed one (for genes for
which decrease in expression level as associated with increased risk), or to the
probability that the sum of the age-of-onset of nC randomly chosen was as low or
lower than the observed one (for genes for which increase in expression level as
associated with increased risk). These familial p values were then combined with
the corresponding p values from the burden test (CAST with CAST, SKAT with
SKAT) using Fisher’s method.

Data availability. The complete CEDAR eQTL dataset can be downloaded from
the Array Express website (https://www.ebi.ac.uk/arrayexpress/), accession num-
bers E-MTAB-6666 (genotypes) and E-MTAB-6667 (expression data). The data,
preprocessed as described in Methods, can be downloaded from the CEDAR
website (http://cedar-web.giga.ulg.ac.be).
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