75 research outputs found

    Isotopic substitution experiments in the hydrogenation of mandelonitrile over a carbon supported Pd catalyst: a nuclear magnetic resonance study

    Get PDF
    A mechanistic exploration of the liquid phase hydrogenation of the aromatic cyanohydrin mandelonitrile (C6H5CH(OH)CH2CN) over a carbon supported Pd catalyst to produce the primary amine, phenethylamine (C6H5CH2CH2NH2) is conducted. Prior examination showed the reaction to involve the production of the ketone intermediate 2-aminoacetophenone (C6H5C(O)CH2NH2), formed as a consequence of the presence of an acid catalysed tautomeric side reaction. The corresponding deuteration reaction, reported here and analysed by multinuclear NMR spectroscopy and mass spectrometry, is employed to further investigate accessible pathways. Examination of the resultant product distribution of the deuteration, and the location of deuterium incorporation establishes the role of a hydroxy-imine species as a key reaction intermediate. In addition, the acid catalysed tautomerism to the ketone is shown to be a reversible side reaction, but also a contributor to desired product formation. Moreover, an order for the three critical hydrogen consuming steps in phenethylamine formation is established. Hydrogenation of the nitrile functionality to afford the hydroxy-imine precedes hydrogenolysis of the hydroxyl group, with the final step being hydrogenation of the imine to form the target product, phenethylamine

    Hydrogenation of benzonitrile over supported Pd catalysts: kinetic and mechanistic insight

    Get PDF
    The liquid phase hydrogenation of benzonitrile over a 5wt% Pd/C catalyst using a stirred autoclave is investigated. The reaction conforms to a consecutive reaction sequence: firstly benzonitrile is hydrogenated to produce benzylamine, which subsequently undergoes a hydrogenolysis step to form toluene. Benzonitrile hydrogenation obeys first order kinetics with an activation energy of 27.6 kJ mol−1. In contrast, the benzylamine hydrogenolysis stage obeys zero order kinetics and exhibits an activation energy of 80.1 kJ mol−1. A 1wt% Pd/Al2O3 catalyst is additionally examined, which is also seen to support hydrogenolysis activity alongside the hydrogenation pathway. Gas phase transmission infrared spectroscopic measurements of the hydrogenation of benzonitrile and benzylamine over the 1wt% Pd/Al2O3 catalyst utilising hydrogen and deuterium are undertaken, which enable reaction schemes incorporating adsorption geometries of intermediate adsorption complexes to be proposed

    The hydrogenation of mandelonitrile over a Pd/C catalyst: towards a mechanistic understanding

    Get PDF
    A carbon supported Pd catalyst is used in the liquid phase hydrogenation of the aromatic cyanohydrin mandelonitrile (C6H5CH(OH)CH2CN) to afford the primary amine phenethylamine (C6H5CH2CH2NH2). Employing a batch reactor, the desired primary amine is produced in 87% selectivity at reaction completion. Detection of the by-product 2-amino-1-phenylethanol (C6H5CH(OH)CH2NH2) accounts for the remaining 13% and closes the mass balance. The reaction mechanism is investigated, with a role for both hydrogenation and hydrogenolysis processes established

    The production of tyramine via the selective hydrogenation of 4-hydroxybenzyl cyanide over a carbon-supported palladium catalyst

    Get PDF
    The selective production of primary amines is a problem that plagues heterogeneously catalysed nitrile hydrogenation reactions. Whilst the target amine tyramine (HOC6H4CH2CH2NH2) is biochemically available through the action of enzymes, synthetic routes to this species are not widely reported. Here, a heterogeneously catalysed method is proposed that utilises a Pd/C catalyst to effect the selective hydrogenation of 4-hydroxybenzyl cyanide within a three-phase reactor. The aforementioned selectivity issues are overcome by adjustment of various experimental parameters (hydrogen supply, agitation rate, temperature, use of an auxiliary agent) that result in improved catalytic performance, such that the desired tyramine salt (tyramine hydrogen sulphate) can be produced in quantitative yield. Accordingly, through consideration of the interconnectivity of hydrogenation and hydrogenolysis processes, a selective synthetic strategy is achieved with the findings suitable for extension to other substrates of this nature

    The application of attenuated total reflection infrared spectroscopy to investigate the liquid phase hydrogenation of benzaldehyde over an alumina-supported palladium catalyst

    Get PDF
    The hydrogenation of benzaldehyde in cyclohexane over a 5 wt% Pd/Al2O3 catalyst at 313 K is firstly investigated at ambient pressure in a stirred batch reactor. The formation of benzyl alcohol is a facile process and a small mass imbalance is indirectly attributed to the formation of benzene as a by-product. No hydrogenolysis reaction to form toluene is observed. Secondly, examination of this reaction system by attenuated total reflection infrared (ATR-IR) spectroscopy enables the chemistry at the liquid/solid interface to be probed. Specifically, the Îœ(C=O) modes of solvated and adsorbed benzaldehyde are evident at 1712 and 1691 cm−1 respectively, providing information on how the reagent is partitioning within the reaction medium. Spectral acquisition on initiation of hydrogenation then enables the benzaldehyde → benzyl alcohol transition to be tracked. The additional presence of a broad CO stretching band of chemisorbed carbon monoxide (1852–1929 cm−1) is attributed to the hydrogen-assisted decarbonylation pathway that forms the benzene by-product

    Dizinc Lactide Polymerization Catalysts: Hyper-Activity by Control of Ligand Conformation and Metallic Cooperativity

    Get PDF
    © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.Understanding how to moderate and improve catalytic activity is critical to improving degradable polymer production. Here, di- and monozinc catalysts, coordinated by bis(imino)diphenylamido ligands, show remarkable activities and allow determination of the factors controlling performance. In most cases, the dizinc catalysts significantly out-perform the monozinc analogs. Further, for the best dizinc catalyst, the ligand conformation controls activity: the catalyst with “folded” ligand conformation shows turnover frequency (TOF) values up to 60 000 h−1 (0.1 mol % loading, 298 K, [LA]=1 m), whilst that with a “planar” conformation is much slower, under similar conditions (TOF=30 h−1). Dizinc catalysts also perform very well under immortal conditions, showing improved control, and are able to tolerate loadings as low as 0.002 mol % whilst conserving high activity (TOF=12 500 h−1)

    Heterodinuclear titanium/zinc catalysis: synthesis, characterization and activity for CO2/epoxide copolymerization and cyclic ester polymerization

    Get PDF
    The preparation of heterodinuclear complexes, especially those comprising early-late transition metals coordinated by a simple or symmetrical ancillary ligand, represents a fundamental challenge and an opportunity to prepare catalysts benefitting from synergic properties. Here, two new mixed titanium(IV)-zinc(II) complexes, [LTi(OiPr)2ZnEt] and[LTi(OiPr)2ZnPh], both coordinated by a diphenolate tetra(amine) macrocyclic ligand (L), are prepared. The synthesis benefits from the discovery that reaction of the ligand with a single equivalent of titanium tetrakis(iso-propoxide) allows the efficient formation of a mono-Ti(IV) complex, [LTi(OiPr)2]. All new complexes are characterized by a combination of single crystal X-ray diffraction, multinuclear NMR spectroscopy and mass spectrometry techniques. The two heterobimetallic complexes, [LTi(OiPr)2ZnEt] and [LTi(OiPr)2ZnPh], feature trianionic coordination by the macrocyclic ligand and bridging alkoxide groups coordinate to both the different metal centres. The heterodinuclear catalysts are compared to the mono-titanium analogue, [LTi(OiPr)2], in various polymerization reactions. In the alternating copolymerizations of carbon dioxide and cyclohexene oxide, the mono-titanium complex is totally inactive whilst the heterodinuclear complexes show moderate activity (TOF = 3 h-1); it should be noted the activity is measured using just 1 bar pressure of carbon dioxide. In the ring opening polymerization of lactide and Δ-caprolactone, the mono-Ti(IV) complex is totally inactive whilst the heterodinuclear complexes show moderate-high activities, qualified by comparison to other known titanium polymerization catalysts (L-lactide, kobs = 11 x 10-4 s-1 at 70 °C, 1 M in [lactide]) and Δ-caprolactone (kobs = 5 x 10-4 s-1 at 70 °C, 0.9 M in [Δ-caprolactone])

    Methyl Complexes of the Transition Metals

    Get PDF
    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.Ministerio de Ciencia e InnovaciĂłn Projects CTQ2010–15833, CTQ2013-45011 - P and Consolider - Ingenio 2010 CSD2007 - 00006Junta de AndalucĂ­a FQM - 119, Projects P09 - FQM - 5117 and FQM - 2126EU 7th Framework Program, Marie SkƂodowska - Curie actions C OFUND – Agreement nÂș 26722

    Methyl Complexes of the Transition Metals

    Full text link
    • 

    corecore