87 research outputs found

    Nucleic acids and growth of \u3cem\u3eCalanus finmarchicus\u3c/em\u3e in the laboratory under different food and temperature conditions

    Get PDF
    We examined the effects of food concentration and temperature on nucleic acids and protein content of Calanus finmarchicus in order to evaluate the use of RNA as a growth rate index for this species. We measured RNA, DNA, and protein content of copepods reared from egg to adult stage in 5 combinations of food and temperature conditions (25 to 500 µg C l-1, 4 to 12°C). At 8°C, DNA, RNA and protein content and RNA:DNA differed among food treatments during Stages N6 through to adult female. Protein:DNA ratios and RNA:protein ratios were significantly different among food levels for only 3 of the 8 stages examined. At excess food, DNA, RNA, and protein content and RNA:DNA ratios were inversely related to temperature for most stages from C1 onward, but the effect of temperature was relatively small over the range of temperatures investigated. The RNA:DNA and protein:DNA ratios increased with developmental stage whereas the RNA:protein ratio and growth rates (measured in terms of protein, nitrogen, DNA, and carbon content) declined with increasing stage. Although the relationship of RNA:DNA to growth rates was stage-specific, the two were related when standardized for temperature and developmental stage. RNA:protein ratios were directly related to growth rates regardless of stage, and the slope of the relationship increased with increasing temperature in a nonlinear fashion. Our results emphasize the importance of temperature and developmental stage for the relationship of growth rates to RNA concentration and RNA:DNA ratios. We propose 2 ways to estimate in situ growth rates of C. finmarchicus from RNA:DNA or RNA:protein ratios and environmental temperatur

    Growth and development rates of the copepod \u3cem\u3eCalanus finmarchicus\u3c/em\u3e reared in the laboratory

    Get PDF
    Development rates, nitrogen- and carbon-specific growth rates, size, and condition were determined for the copepod Calanus finmarchicus reared at 3 temperatures (4, 8, and 12°C) at non-limiting food concentrations and 2 limiting food concentrations at 8°C in the laboratory. Development rates were equiproportional, but not isochronal. Naupliar stage durations were similar, except for non-feeding stages, which were of short duration, and the first feeding stage, which was prolonged, while copepodite stage durations increased with increasing stage of development. Under limiting food concentrations at 8°C, development rates were prolonged but similar relative patterns in stage durations were observed. Body size (length and weight) was inversely related to temperature and positively related to food concentration. Condition measurements were not affected by temperature, but were positively related to food concentration. Growth rates increased with increasing temperature and increased asymptotically with increasing food concentration. At high food concentrations, growth rates of naupliar stages were high (except for individuals molting from the final naupliar stage to the first copepodite stage, in which growth rates were depressed), while growth of copepodites decreased with increasing stage of development. Neither nitrogen nor carbon growth rates, the former a proxy for structural growth, were exponential over the entire life cycle, but rather sigmoidal. Carbon-specific growth rates were greater than nitrogen-specific growth rates, and this difference increased with increasing stage of development, reflecting an augmentation in lipid deposition in the older stages. However, nitrogen and carbon growth rates were more similar under food-limited conditions. Based on this study, we recommend that secondary production rates of Calanus finmarchicus and possibly other lipid-storing copepods not be estimated from egg production measurements alone, as has been suggested for other species of copepods, because growth, including structural growth, is not equivalent for all stages

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    Get PDF
    BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments

    Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel

    Get PDF
    A measurement of the production cross-section for top quark pairs (t[bar over t]) in pp collisions at √s = 7 TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in the single lepton topology by requiring an electron or muon, large missing transverse momentum and at least three jets. With a data sample of 35 pb[superscript −1], two different multivariate methods, one of which uses b-quark jet identification while the other does not, use kinematic variables to obtain cross-section measurements of σ[subscript t bar over t] = 187 ± 11 (stat.) [+18 over −17] (syst.) ± 6 (lumi.) pb and σ[subscript t bar over t] = 173 ± 17 (stat.) [+18 over −16] (syst.) ±6 (lumi.) pb respectively. The two measurements are in agreement with each other and with QCD calculations. The first measurement has a better a priori sensitivity and constitutes the main result of this Letter.European Organization for Nuclear ResearchUnited States. Dept. of EnergyNational Science Foundation (U.S.)Brookhaven National Laborator

    Measurement of the W boson polarization in top quark decays with the ATLAS detector

    Get PDF
    This paper presents measurements of the polarization of W bosons in top quark decays, derived from t (t) over bar events with missing transverse momentum, one charged lepton and at least four jets, or two charged leptons and at least two jets. Data from pp collisions at a centre-of-mass energy of 7 TeV were collected with the ATLAS experiment at the LHC and correspond to an integrated luminosity of 1.04 fb(-1). The measured fractions of longitudinally, left-and right-handed polarization are F-0 = 0.67 +/- 0.07, F-L = 0.32 +/- 0.04 and F-R = 0.01 +/- 0.05, in agreement with the Standard Model predictions. As the polarization of the W bosons in top quark decays is sensitive to the Wtb vertex Lorentz structure and couplings, the measurements were used to set limits on anomalous contributions to the Wtb couplings

    Measurement of the b-hadron production cross section using decays to D⁎+μ−X final states in pp collisions at √(s)=7 TeV with the ATLAS detector

    Get PDF
    The b-hadron production cross section is measured with the ATLAS detector in pp collisions at root s = 7 TeV, using 3.3 pb(-1) of integrated luminosity, collected during the 2010 LHC run. The b-hadrons are selected by partially reconstructing D*(+)mu X- final states. Differential cross sections are measured as functions of the transverse momentum and pseudorapidity. The measured production cross section for a b-hadron with p(T) > 9 GeV and vertical bar eta vertical bar < 2.5 is 32.7 +/- 0.8(stat.)(-6.8)(+4.5)(syst.) μb, higher than the next-to-leading-order QCD predictions but consistent within the experimental and theoretical uncertainties
    corecore