Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel ${ }^{\text {dT }}$

ATLAS Collaboration*

ARTICLE INFO

Article history:

Received 9 January 2012
Received in revised form 16 March 2012
Accepted 29 March 2012
Available online 2 April 2012
Editor: H. Weerts

Keywords:

High-energy collider experiment
Cross-section
Top physics

Abstract

A measurement of the production cross-section for top quark pairs ($t \bar{t}$) in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in the single lepton topology by requiring an electron or muon, large missing transverse momentum and at least three jets. With a data sample of $35 \mathrm{pb}^{-1}$, two different multivariate methods, one of which uses b-quark jet identification while the other does not, use kinematic variables to obtain crosssection measurements of $\sigma_{t \bar{t}}=187 \pm 11$ (stat.) ${ }_{-17}^{+18}$ (syst.) ± 6 (lumi.) pb and $\sigma_{t \bar{t}}=173 \pm 17$ (stat.) $)_{-16}^{+18}$ (syst.) \pm 6 (lumi.) pb respectively. The two measurements are in agreement with each other and with QCD calculations. The first measurement has a better a priori sensitivity and constitutes the main result of this Letter.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Measurements of the production and decay properties of top quarks are of central importance to the Large Hadron Collider (LHC) physics programme. Uncertainties on the theoretical predictions for the top quark pair production cross-section are now less than 10%, and comparisons with experimental measurements allow a precision test of the predictions of Quantum Chromodynamics. Furthermore, top quark pair production is an important background in many searches for physics beyond the Standard Model (SM). New physics may also give rise to additional $t \bar{t}$ production mechanisms or modifications of the top quark decay channels, which can affect the measured $t \bar{t}$ cross-section.

In the SM the $t \bar{t}$ production cross-section in $p p$ collisions is calculated to be $165_{-16}^{+11} \mathrm{pb}[1-3]$ at a centre-of-mass energy $\sqrt{s}=$ 7 TeV , assuming a top quark mass of 172.5 GeV . Top quarks are predicted to decay to a W-boson and a b-quark $(t \rightarrow W b)$ nearly 100% of the time. Events with a $t \bar{t}$ pair can be classified as 'single lepton', 'dilepton', or 'all hadronic' according to the decays of the two W-bosons: each can decay into quark-antiquark pairs ($W \rightarrow q_{1} \bar{q}_{2}$) or a lepton-neutrino pair ($W \rightarrow \ell \nu$). Events in the single lepton channel, when the lepton is an electron or a muon, are characterised by an isolated, prompt, energetic lepton, jets, and missing transverse momentum from the neutrino. At the Tevatron the $t \bar{t}$ cross-sections at $\sqrt{s}=1.8 \mathrm{TeV}$ and at $\sqrt{s}=1.96 \mathrm{TeV}$ have been measured by CDF [4,5] and DØ [6,7] in most channels. ATLAS

[^0]and CMS have measured the $t \bar{t}$ cross-section at $\sqrt{s}=7 \mathrm{TeV}$ at the LHC [8-11].

This Letter describes measurements of the $t \bar{t}$ cross-section in the single lepton plus jets channel with $35 \mathrm{pb}^{-1}$ of data recorded by ATLAS in 2010. Taking advantage of the increased data sample, the measurement techniques developed in Ref. [8] were extended to employ kinematic likelihood discriminants to separate signal from background and measure the cross-section. Two multivariate methods, one that includes b-quark jet identification (b-tagging) and one which does not, use several variables each to discriminate $t \bar{t}$ events from the background. The two analyses are sensitive to different sources of systematic uncertainty. For instance, the analysis without b-tagging is more sensitive to the multijet background, whereas the analysis with b-tagging is sensitive to the background from W-boson production in association with b - and c-quarks. The clearer separation of signal and background leads to a smaller statistical uncertainty for the analysis with b-tagging. Another significant difference between the two measurements is that the analysis with b-tagging uses a profile likelihood that implements an in situ fit of the dominant systematic uncertainties, which improves its performance considerably.

2. The ATLAS detector

The ATLAS detector [12] consists of an inner tracking system (inner detector, or ID) surrounded by a thin superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters and a muon spectrometer (MS). The ID consists of silicon pixel and microstrip detectors, surrounded by a transition radiation tracker. The electromagnetic calorimeter is
a lead/liquid-argon (LAr) detector. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as active media, and with either steel, copper, or tungsten as the absorber material. The MS includes three large superconducting toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters, and a system of three stations of chambers for the trigger and for track measurements.

A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz . This is followed by two software-based trigger levels, level-2 and the event filter, which together reduce the event rate to about 200 Hz which is recorded for analysis.

The nominal $p p$ interaction point at the centre of the detector is defined as the origin of a right-handed coordinate system. The positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis pointing upwards, while the z-axis is along the beam direction. The azimuthal angle ϕ is measured around the beam axis and the polar angle θ is the angle from the z-axis. The pseudorapidity is defined as $\eta=-\ln \tan (\theta / 2)$.

3. Simulated event samples

Monte Carlo (MC) simulation was used for various aspects of the analysis. The simulation consists of an event generator interfaced to a parton shower and hadronisation model, the results of which are passed through a full simulation of the ATLAS detector and trigger system $[13,14]$. MC simulation was used when datadriven techniques were not available or to evaluate relatively small backgrounds and certain sources of systematic uncertainty.

For the calculation of the acceptance of the $t \bar{t}$ signal the next-to-leading order (NLO) generator MC@NLO v3.41 [15] was used with the top quark mass set to 172.5 GeV and with the NLO parton density function (PDF) set CTEQ66 [16].
W - and Z-boson production in association with jets was simulated with Alpgen v2.13, which implements the exact leading order (LO) matrix elements for final states with up to six partons and uses the 'MLM' matching procedure to remove the overlaps between samples with n and $n+1$ final state partons [17]. The LO PDF set CTEQ6L1 [16] was used to generate $W+$ jets and $Z+$ jets events with up to five partons. Diboson, $W W, W Z$ and $Z Z$ events were generated with Herwig $[18,19]$. Like the diboson production, single-top is also a relatively small background and is simulated using MC@NLO, invoking the 'diagram removal scheme’ [20] to remove overlaps between single-top and $t \bar{t}$ final states.

Unless otherwise noted, all events were hadronised with HERwig, using Jimmy [21] for the underlying event model. Details of the generator and underlying event tunes used are given in Ref. [22].

3.1. Systematic uncertainties on signal and background modelling

The use of simulated $t \bar{t}$ samples to calculate the signal acceptance gives rise to various sources of systematic uncertainty. These arise from the choice of the event generator and PDF set, and from the modelling of initial and final state radiation (ISR and FSR). The uncertainties due to the choice of generator and parton shower model were evaluated by comparing the results obtained with MC@NLO to those of Powheg [23], with events hadronised with either Herwig or Pythia [24]. The uncertainty due to the modelling of ISR/FSR was evaluated using the AcERMC generator [25] interfaced to PYTHIA and by varying the parameters controlling the ISR/FSR emission by a factor of two up and down. The variation ranges used are comparable to those in [26] for ISR and [27] for

FSR. Finally, the uncertainty in the PDF set used to generate $t \bar{t}$ samples was evaluated using a range of current PDF sets with the procedure described in Refs. [28-30].

The production of the $W+$ jets background based on MC simulation has uncertainties on the total cross-section, on the contribution of events with jets from heavy-flavour (b, c) quarks, and on the shape of kinematic distributions. The predictions of the total cross-section have uncertainties of order 50\% [31], increasing with jet multiplicity. Total $W+$ jets cross-section predictions were not used in the cross-section measurement as this background was extracted from the fit to the data (see Section 7), but were used in the MC simulation shown in Figs. 1 to 4. A combination of the fitting method described in [32] and a counting method described here, both relying upon final states with one and two jets, was used to estimate the heavy flavour fractions in $W+$ jets events. Since these bins are dominated by $W+$ jet events, the total $W+$ jet contribution to these events can be obtained, both with and without requiring at least one b-tagged jet. These four numbers are then used to constrain the following four event types which make up the $W+$ jets sample: $W+b \bar{b}, W+c \bar{c}, W+c$ and $W+$ light flavours. Additionally it was assumed that the k-factors for $W+b \bar{b}$ and $W+c \bar{c}$ are equal. MC simulation with Alpgen was used to estimate the b-tagging efficiencies for each sub-sample as well as to extrapolate from the one-jet to the two-jet bin. The dominant uncertainties in this method arise from jet energy scale and b tagging uncertainties. As a result of this study, it was found that the $W+b \bar{b}$ and $W+c \bar{c}$ sub-samples of events in the Alpgen MC simulation were to be rescaled by 1.30 ± 0.65, whereas $W+c$ events were rescaled by 1.0 ± 0.4. An additional 25% relative uncertainty per jet bin was assigned to these flavour fractions when applied to the signal region based upon studies with Alpgen MC simulation.

The uncertainty on the shape of $W+$ jets kinematic distributions was assessed by changing the factorisation and renormalisation scales by a factor of two up and down; and by varying the minimum p_{T} of the final state quarks and gluons from 10 to 25 GeV , with 15 GeV being the default.

For the smaller backgrounds arising from $Z+$ jets, single-top and diboson production, only the overall normalisation uncertainties were considered, taken to be 30% for $Z+$ jets production, 10% for single-top production, determined from comparisons of MCFM [33] and MC@NLO predictions, and 5\% for diboson production, determined from MCFM studies of scale and PDF uncertainties.

4. Object selection

Single lepton $t \bar{t}$ events are characterised by the presence of an electron or muon, jets, and missing transverse momentum, which is an indicator of undetected neutrinos, in the final state. The events used in this analysis were triggered by single lepton triggers. The electron trigger required a level-1 electromagnetic cluster in the calorimeter with transverse momentum $E_{T}>10 \mathrm{GeV}$. A more refined cluster selection was applied in the level-2 trigger, and a match between the electromagnetic cluster and an ID track was required in the event filter. The muon trigger required a track with transverse momentum $p_{T}>10 \mathrm{GeV}$ in the muon trigger chambers at level-1, matched to a muon of $p_{T}>13 \mathrm{GeV}$ reconstructed in the precision chambers and combined with an ID track at the event filter.

The same object definition used for the previous $t \bar{t}$ crosssection measurement [8] was used in this analysis, except for more stringent electron selection criteria and ID track quality requirements for muons. Electron candidates were defined as electromagnetic clusters consistent with the energy deposition of an electron in the calorimeters and with an associated well-measured track.

Fig. 1. Input variables to the likelihood discriminants in the exclusive three-jet bin for the muon channel: lepton η (top), $\exp (-8 \times \mathcal{A})$ (second from top), lepton charge (third from top) and $\exp \left(-4 \times H_{\mathrm{T}, 3 p}\right)$ (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. The two top distributions are used in the untagged and the tagged analyses, the third distribution in the untagged analysis, and the bottom distribution in the tagged analysis.

Fig. 2. Input variables to the likelihood discriminants in the inclusive four-jet bin for the electron channel: lepton η (top), $\exp (-8 \times \mathcal{A})$ (middle) and lepton charge (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. These distributions are used in the untagged analysis.

They were required to satisfy $p_{T}>20 \mathrm{GeV}$ and $\left|\eta_{\text {cluster }}\right|<2.47$, where $\eta_{\text {cluster }}$ is the pseudorapidity of the cluster associated with the candidate. Candidates in the barrel to endcap calorimeter transition region $1.37<\left|\eta_{\text {cluster }}\right|<1.52$ were excluded. Muon candidate tracks were reconstructed from track segments in the different layers of the muon chambers. These segments were combined starting from the outermost layer, with a procedure that takes material effects into account, and matched with tracks found in the inner detector. The final candidates were refitted using the complete track information from both detector systems and required to satisfy $p_{T}>20 \mathrm{GeV}$ and $|\eta|<2.5$.

To further reduce background from leptons produced in heavyflavour or in-flight hadron decays the selected leptons were required to be 'isolated'. For electrons the transverse momentum, E_{T}, deposited in the calorimeter cells inside an isolation cone of

Fig. 3. Input variables to the likelihood discriminants in the exclusive four-jet bin for the muon channel: lepton η (top), $\exp (-8 \times \mathcal{A})$ (second from top), $\exp \left(-4 \times H_{\mathrm{T}, 3 p}\right)$ (third from top) and \bar{w}_{JP} (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. These distributions are used in the tagged analysis.

Fig. 4. Input variables to the likelihood discriminants in the inclusive five-jet bin for the electron channel: lepton η (top), $\exp (-8 \times \mathcal{A})$ (second from top), $\exp (-4 \times$ $H_{\mathrm{T}, 3 p}$) (third from top) and \bar{w}_{JP} (bottom). All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. These distributions are used in the tagged analysis.
size $\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}=0.2$ around the electron position was corrected to take into account the leakage of the electron energy into this cone. The remaining E_{T} was required to be less than 4 GeV . Muons were required to have a distance ΔR greater than 0.4 from any jet with $p_{T}>20 \mathrm{GeV}$, which suppresses muons from heavy-flavour decays inside jets. Furthermore, the calorimeter transverse momentum in a cone of size $\Delta R=0.3$ around the muon direction was required to be less than 4 GeV , and the sum of track transverse momenta, other than the muon track, in a cone of size $\Delta R=0.3$ was required to be less than 4 GeV .

Pure samples of prompt muons and electrons were obtained from Z-boson events in the data and were used to correct the lepton trigger, and the reconstruction and selection efficiencies in MC simulation to match those in the data. The corrections were found to be small.

Jets were reconstructed [34] with the anti- k_{t} algorithm [35, 36] with radius parameter 0.4 from clusters of adjacent calorimeter cells. If the closest object to an electron candidate (before the above electron isolation requirement) was a jet within a distance $\Delta R<0.2$, the jet was removed. The jet energy scale (JES) and its uncertainty were derived by combining information from testbeam data, LHC collision data and simulation. The JES uncertainty was found to vary from 2% to 7% as a function of jet p_{T} and η [37].

Jets arising from the hadronisation of b-quarks were identified using an algorithm (JetProb) [38] which relies upon the transverse impact parameter d_{0} of each track in the jet: this is the distance of closest approach in the transverse $x-y$ plane of a track to the primary vertex. It is signed with respect to the jet direction: the sign is positive if the track crosses the jet axis in front of the primary vertex, negative otherwise. The signed impact parameter significance, $d_{0} / \sigma_{d_{0}}$, of each selected track is compared to a resolution function for prompt tracks, to assess the probability that the track originates from the primary vertex. Here, $\sigma_{d_{0}}$ is the uncertainty on d_{0}. The individual track probabilities are then combined into a global probability that the jet originates from the primary vertex. The simulated data were smeared to reproduce the resolution found in collision data.

The b-tagging efficiencies and mistag rates were calibrated with data for a wide range of b-tagging efficiency requirements. The efficiency was measured in a sample of jets containing muons, making use of the transverse momentum of the muon relative to the jet axis. The mistag rates were measured on an inclusive jet sample with two methods, one using the invariant mass spectrum of tracks associated to reconstructed secondary vertices to separate light- and heavy-flavour jets, and the other based on the fraction of secondary vertices in data with negative decay-length significance. The results of these measurements were applied in the form of p_{T}-dependent scale factors to correct the b-tagging performance in simulation to match the data. For a b-tagging efficiency around 50%, the scale factor was found to be approximately 0.9 in all bins of jet p_{T}, and the relative b-tagging efficiency uncertainty was found to range from 5% to 14% depending on the jet p_{T} [38]. The mistag rate and mistag scale factors are approximately 1% and 1.1 , respectively, in the jet p_{T} region of interest, $20<p_{T}<100 \mathrm{GeV}$. The analysis including b-tagging used the probabilities returned by the JetProb algorithm as a discriminating variable, as explained in Section 7.

The reconstruction of the missing transverse momentum $E_{T}^{\text {miss }}$ [39] was based upon the vector sum of the transverse momenta of the reconstructed objects (electrons, muons, jets) as well as the transverse energy deposited in calorimeter cells not associated with these objects. The electrons, muons and jets were used in the $E_{T}^{\text {miss }}$ calculation consistently with the definitions and uncertainties stated above.

Table 1

Number of observed events in the data in the electron and muon channels after the selection cuts as a function of the jet multiplicity. The expected signal and background contributions are also given. All simulated processes are normalised to theoretical SM predictions, except the multijet background which uses the normalisation presented in Section 6. The quoted uncertainties include statistical, systematic and theoretical components, except for the multijet background. All numbers correspond to an integrated luminosity of $35 \mathrm{pb}^{-1}$.

Electron channel	3 jets	4 jets	$\geqslant 5$ jets
$t \bar{t}$	117 ± 16	109 ± 15	76 ± 19
$W+$ jets	524 ± 225	124 ± 77	35 ± 23
Multijet	64 ± 32	12 ± 6	8 ± 4
Single top	21 ± 5	7 ± 3	3 ± 2
$Z+$ jets	60 ± 28	21 ± 15	8 ± 6
Diboson	9 ± 3	1.9 ± 1.5	0.4 ± 0.8
Predicted	795 ± 236	275 ± 84	130 ± 35
Observed	755	261	123
Muon channel	3 jets	4 jets	$\geqslant 5$ jets
$t \bar{t}$	165 ± 22	156 ± 18	108 ± 27
$W+$ jets	976 ± 414	222 ± 139	58 ± 38
Multijet	79 ± 24	18 ± 6	11 ± 3
Single top	31 ± 7	10 ± 4	4 ± 2
$Z+$ jets	58 ± 26	14 ± 10	5 ± 4
Diboson	16 ± 4	3 ± 2	0.6 ± 0.8
Predicted			
Observed	1325 ± 422	423 ± 143	186 ± 51

5. Event selection

Events that passed the trigger selection were required to contain exactly one reconstructed lepton with $p_{T}>20 \mathrm{GeV}$, matching the corresponding event filter object. Selected events were required to have at least one reconstructed primary vertex with at least five tracks. Events were discarded if any jet with $p_{T}>20 \mathrm{GeV}$ was identified to be due to calorimeter noise or activity out of time with respect to the LHC beam crossings. The $E_{T}^{\text {miss }}$ was required to be greater than $35(20) \mathrm{GeV}$ in the electron (muon) channel and the transverse mass constructed from the lepton and $E_{T}^{\text {miss }}$ transverse momentum vectors was required to be greater than 25 GeV ($60 \mathrm{GeV}-E_{T}^{\text {miss }}$) in the electron (muon) channel. The muon requirement is referred to as the 'triangular cut'. The requirements were stronger in the electron channel to suppress the larger multijet background. Finally, events were required to have three or more jets with $p_{T}>25 \mathrm{GeV}$ and $|\eta|<2.5$. The selected events were then classified by the number of jets fulfilling these requirements and by the lepton flavour. Table 1 shows the number of selected events in the data in the electron and muon channels, together with the SM expectations for the signal and the different backgrounds. All predictions were obtained from MC simulation except the multijet background estimate which was obtained from data as described in the next section.

6. Background evaluation

The main backgrounds to $t \bar{t}$ signal events in the single lepton plus jets channel arise from W-boson production in association with jets, in which the W decays leptonically, and from multijet production. Smaller backgrounds arise from $Z+$ jets, diboson and single-top production. These smaller backgrounds have been estimated from MC simulation and normalised to the latest theoretical predictions, as discussed in Section 3.

The $W+$ jets background is difficult to predict from theory, particularly in the high jet-multiplicity bins. A data-driven crosscheck following methods similar to those described in Ref. [8] was therefore performed. The results obtained with data were found to agree with the MC predictions within the uncertainties. Both
analyses presented here rely on the assumption that the MC simulation correctly describes the kinematic properties of the $W+$ jets events, whereas the normalisation of the $W+$ jets cross-section was fitted from the data, as described in Section 7. In the analysis using b-tagging the theoretical uncertainty on the normalisation was used as a constraint in the fit, whereas in the other analysis it was allowed to vary freely.

The multijet background was measured with a data-driven approach. In the muon channel, the background from multijet events is dominated by 'non-prompt' muons arising from the decay of heavy-flavour hadrons, in contrast to the $t \bar{t}$ signal where muons arise from the 'prompt' decays of W-bosons. The multijet background can be estimated by defining two samples of muons, 'loose' and 'tight'. The tight sample is the one defined in the event selection described above, whilst the loose sample satisfies the same criteria except the muon isolation requirements. Since the reconstructed muons from background are associated with jets, they tend to be much less isolated than the leptons in $t \bar{t}$ decays. Any sample of muons is composed of prompt and non-prompt muons and it is assumed that the tight muon sample is a subsample of the loose sample:
$N^{\text {loose }}=N_{\text {prompt }}^{\text {loose }}+N_{\text {non-prompt }}^{\text {loose }}$,
$N^{\text {tight }}=\epsilon_{\text {prompt }} N_{\text {prompt }}^{\text {loose }}+\epsilon_{\text {non-prompt }} N_{\text {non-prompt }}^{\text {loose }}$,
where $N_{\text {non-prompt }}^{\text {loose }}$ is the number of loose, non-prompt muons (with the other N_{y}^{x},s defined similarly) and $\epsilon_{\text {prompt }}$ ($\epsilon_{\text {non-prompt }}$) represents the probability for a prompt (non-prompt) muon that satisfies the loose criteria to also satisfy the tight ones. The probability $\epsilon_{\text {prompt }}$ was measured from the data using highpurity samples dominated by Z-bosons decaying into muons. The probability $\epsilon_{\text {non-prompt }}$ for a non-isolated lepton to pass the isolation cuts was measured by defining control samples dominated by multijet events. Two different control samples were defined to have at least one jet plus a muon (i) with high impact parameter significance or (ii) with low transverse mass of the muon- $E_{T}^{\text {miss }}$ system plus reversed triangular cut. These control samples gave consistent results. Contamination of the multijet control samples by muons from W and Z events was determined from MC simulation. The results of these studies are $\epsilon_{\text {non-prompt }}$ and $\epsilon_{\text {prompt }}$ as a function of the muon η, from which the multijet background expectations can be obtained as a function of any variable. A 30% systematic uncertainty was assigned to this estimate based on the observation that the method gives agreement to within 30% across the different jet multiplicities.

In the electron channel, the multijet background also includes photons inside jets undergoing conversions into electron-positron pairs and jets with high electromagnetic fractions. A different method was used, based on a binned likelihood fit of the $E_{T}^{\text {miss }}$ distribution in the region $E_{T}^{\text {miss }}<35 \mathrm{GeV}$. The data was fitted to the sum of four templates: multijet, $t \bar{t}, W+$ jets and $Z+$ jets. The templates for the latter three processes were obtained from MC simulation whereas the multijet template was obtained from the data in a control region defined by the full event selection criteria except that the electron candidate fails one or more of the identification cuts. The multijet background was obtained by extrapolating the fraction of multijet events from the fit at low $E_{T}^{\text {miss }}$ to the signal region at high $E_{T}^{\text {miss }}$. Several choices of electron identification cuts were considered and the largest relative uncertainty among these (50\%) was used as a conservative estimate of the systematic uncertainty of this background evaluation.

7. Cross-section extraction

The $t \bar{t}$ production cross-section was extracted by exploiting the kinematical properties of $t \bar{t}$ events compared to those from the dominant background ($W+$ jets) by means of likelihood discriminants (D) constructed from several variables. Templates of the distributions D for signal and all background samples were created using the TMVA package [40]. The variables were selected for their good discriminating power, small correlation with each other, and low sensitivity to potentially large uncertainties such as jet energy calibration. The variables are:

- The pseudorapidity η of the lepton, since leptons produced in $t \bar{t}$ events are more central than those in $W+$ jet events.
- The aplanarity \mathcal{A}, defined as $3 / 2$ times the smallest eigenvalue of the momentum tensor $M_{i j}=\sum_{k=1}^{N_{\text {objects }}} p_{i k} p_{j k} / \sum_{k=1}^{N_{\text {objects }}} p_{k}^{2}$, where $p_{i k}$ is the i-th momentum component of the k-th object and p_{k} is the modulus of its momentum. The lepton and the four leading jets are the objects included in the sum. To increase the separation power of the aplanarity distribution, the transformed variable $\exp (-8 \times \mathcal{A})$ was used. This variable exploits the fact that $t \bar{t}$ events are more isotropic than $W+$ jets events.
- The charge of the lepton $q_{\text {lepton }}$, which uses the fact that a sample of $t \bar{t}$ events should contain the same number of positively and negatively charged leptons, while $W+$ jet events produce an excess of positively charged leptons in $p p$ collisions.
- $H_{T, 3 p}$, defined as the sum of the transverse energies of the third and fourth leading jets normalised to the sum of the absolute values of the longitudinal momenta of the four leading jets, the lepton and the neutrino, $H_{\mathrm{T}, 3 p}=\sum_{i=3}^{4}\left|p_{\mathrm{T}, i}^{\mathrm{jet}}\right| /$ $\sum_{j=1}^{N_{\text {objects }}}\left|p_{z, j}\right|$, where p_{T} is the transverse momentum and p_{z} the longitudinal momentum. The longitudinal momentum of the neutrino was obtained using the quadratic W mass constraint and taking the solution with the smaller neutrino p_{z} value. To increase the separation power of the $H_{\mathrm{T}, 3 p}$ distribution, the transformed variable $\exp \left(-4 \times H_{\mathrm{T}, 3 p}\right)$ was used.
- The average \bar{w}_{JP} of $w_{\mathrm{JP}}=-\log _{10} P_{l}$ for the two jets with lowest P_{l} in the event. P_{l} is the probability for a jet to be a light jet from the JetProb b-tagging algorithm. These correspond to the jets that have the highest probability to be heavy-flavour jets.

Two complementary analyses were performed, one which relied upon the use of b-tagging information (i.e. the variable $\bar{w}_{\text {JP }}$) and one which did not. We refer to the analyses as 'tagged' and 'untagged', respectively. The untagged analysis employed the first three variables, whereas the tagged analysis did not consider the lepton charge but used $H_{T, 3 p}$ and \bar{w}_{JP}. \bar{w}_{JP} was not included in the three-jet bin. Figs. 1 to 4 show the distributions of the discriminating variables for the selected data superimposed on the signal and background SM predictions for the different jet multiplicities.

The $t \bar{t}$ cross-section was extracted by means of a likelihood fit of the signal and background discriminant distributions to those of the data. The fit yields the fractions of $t \bar{t}$ signal and backgrounds in the data sample. The fit was performed simultaneously to four samples (three-jet exclusive and four-jet inclusive, electron and muon) in the untagged analysis and six samples (threejet exclusive, four-jet exclusive and five-jet inclusive, electron and muon) in the tagged analysis, as these were the combinations that provided maximum sensitivity. The discriminants were built separately for each jet multiplicity and lepton flavour subsample, and
the different channels were combined in the likelihood fit by multiplying the individual likelihood functions.

The normalisation of the $t \bar{t}$ signal templates is the parameter of interest in the fit and was allowed to vary freely in both analyses. The $t \bar{t}$ cross-section was assumed to be common to all channels and the number of $t \bar{t}$ events in each subsample returned by the fit was related to the $t \bar{t}$ cross-section by the expression $\sigma_{t \bar{t}}=N_{\mathrm{sig}} /\left(\int \mathcal{L} d t \times \epsilon_{\mathrm{sig}}\right)$, where N_{sig} is the number of $t \bar{t}$ events, $\int \mathcal{L} d t$ is the integrated luminosity and $\epsilon_{\text {sig }}$ is the product of the signal acceptance, selection efficiency and branching ratio, obtained from $t \bar{t}$ simulation. The normalisation of the backgrounds was treated differently in the two analyses. In the untagged analysis the multijet and small backgrounds (single-top, diboson and $Z+$ jets production) were fixed in the fit to their expected contributions, whereas the $W+$ jets background was allowed to vary freely in each channel. In the tagged analysis all backgrounds were allowed to vary within the uncertainties of their assumed crosssections, described in Sections 3 and 6. These uncertainties were used as Gaussian constraints on the cross-section normalisation. The robustness of this fitting approach was checked with ensemble tests. The central value and uncertainties returned by the fit were shown to be unbiased for a wide range of input crosssections.

8. Systematic uncertainties

The evaluation of the systematic uncertainties was performed differently in the two analyses. The untagged analysis performed pseudo-experiments (PEs) with simulated samples which included the various sources of uncertainty. For example, for the JES uncertainty, PEs were performed with jet energies scaled up and down according to their uncertainties and the impact on the crosssection was evaluated. The tagged analysis, on the other hand, accounted for most of the changes in the normalisation and shape of the templates due to systematic uncertainties by adding 'nuisance' terms to the fit [41]. Templates of the samples with one standard deviation 'up' and 'down' variations of the systematic uncertainty source under study were generated in addition to the nominal templates. The fit interpolated between these templates with a continuous parameter by means of a Gaussian constraint. Before the fit, the constraint was such that the mean value was zero and the width was one; a fitted width less than one means that the data were able to constrain that particular source of uncertainty. The effects due to the modelling of the $W+$ jets and multijet background shapes, initial and final state radiation, parton density function of the $t \bar{t}$ signal, NLO generator, hadronisation and template statistics cannot be fully described by a simple linear parameter controlling the template interpolation. As a consequence, they were not treated as nuisance terms but obtained by performing PEs with modified simulated samples, as was done in the untagged analysis.

The nuisance parameters of the systematic uncertainties were all fitted together taking into account the correlations among them in the minimisation process. As a consequence, the uncertainties on the fitted quantities obtained from the fit include both the statistical and the total systematic components. Therefore, to obtain an estimation of the individual contributions to the total uncertainty in the tagged analysis, each individual systematic uncertainty was obtained as the difference in quadrature between the total uncertainty and the uncertainty obtained after having fixed the corresponding nuisance parameter to its fitted value. The central values of the nuisance parameters after the fit agreed with their input values. The fit was cross-checked using PEs where the starting value of the nuisance parameters was different than the nominal value. The result was found to be unbiased. In addi-

Table 2
Statistical and systematic uncertainties on the measured $t \bar{t}$ cross-section in the untagged and tagged analyses. Multijet and small backgrounds normalisation uncertainties are already included in the statistical uncertainty (a / i) in the tagged analysis. $W+$ jets heavy-flavour content and b-tagging calibration do not apply (n / a) to the untagged analysis. The luminosity uncertainty is not included in the table.

Method	Untagged		Tagged	
Statistical Error (\%)	+10.1	-10.1	+5.8	-5.7
Object selection (\%)				
JES and jet energy resolution	+4.1	-5.4	+3.9	-2.9
Lepton reconstruction, identification and trigger	+1.7	-1.6	+2.1	-1.8
Background modelling (\%)				
Multijet shape	+3.5	-3.5	$+0.8$	-0.8
Multijet normalisation	+1.1	-1.2		
Small backgrounds norm.	+0.6	-0.6		
$W+$ jets shape	+3.9	-3.9	+1.0	-1.0
$W+$ jets heavy-flavour content	n / a		+2.7	-2.4
b-tagging calibration	n / a		+4.1	-3.8
$t \bar{t}$ signal modelling (\%)				
ISR/FSR	+6.3	-2.1	+5.2	-5.2
NLO generator	+3.3	-3.3	+4.2	-4.2
Hadronisation	+2.1	-2.1	+0.4	-0.4
PDF	+1.8	-1.8	+1.5	-1.5
Others (\%)				
Simulation of pile-up	+1.2	-1.2		
Template statistics	+1.3	-1.3	+1.1	-1.1
Systematic Error (\%)	+10.5	-9.4	+9.7	-9.0

tion, large variations of the kinematic dependence of the nuisance parameters (e.g. the JES as a function of the jet p_{T}) were considered and resulted in a negligible impact on the result of the fit.

The systematic uncertainties on the cross-section for both methods are summarised in Table 2. The dominant effects in the untagged analysis were JES, multijet and $W+$ jets backgrounds shape and ISR/FSR. The latter was also important in the tagged analysis, together with the uncertainty related to the signal MC generator. In addition, this analysis was sensitive to effects related to b-tagging, specifically the determination of the heavy-flavour content of the $W+$ jets background and the calibration of the b-tagging algorithm itself. The luminosity uncertainty was 3.4% [42,43].

Several cross-checks of the cross-section measurements were performed. These included the results of the likelihoods applied to individual lepton channels and $t \bar{t}$ cross-section measurements done with simpler and complementary approaches, including cut-and-count methods and fits to kinematic variables such as the reconstructed top mass. These cross-checks gave consistent results within the uncertainties.

9. Results and conclusions

The results of the likelihood fits applied to the data are shown in Figs. 5 and 6, where the distributions of the discriminants in data are overlaid on the fitted discriminant distributions of the signal and backgrounds. The final measured cross-section results are: $\sigma_{t \bar{t}}=173 \pm 17$ (stat.) ${ }_{-16}^{+18}$ (syst.) ± 6 (lumi.) $\mathrm{pb}=173_{-24}^{+25} \mathrm{pb}$ in the untagged analysis and $\sigma_{t \bar{t}}=187 \pm 11$ (stat.) $)_{-17}^{+18}$ (syst.) ± 6 (lumi.) $\mathrm{pb}=$ $187_{-21}^{+22} \mathrm{pb}$ in the tagged analysis. The two measurements are in agreement with each other. The latter has a better a priori sensitivity and thus constitutes the main result of this Letter. It is the most precise $t \bar{t}$ cross-section measurement at the LHC published to date and is in good agreement with the SM prediction calculated at NLO plus next-to-leading-log order $165_{-16}^{+11} \mathrm{pb}$ [1-3].

Fig. 5. Untagged analysis: (Top) The distribution of the likelihood discriminant for data superimposed on expectations for signal and backgrounds, scaled to the results of the fit. The left bins correspond to the muon channel and the right bins to the electron channel. (Bottom) The ratio of data to fit result.

Fig. 6. Tagged analysis: (Top) The distribution of the likelihood discriminant for data superimposed on expectations for signal and backgrounds, scaled to the results of the fit. The left bins correspond to the muon channel and the right bins to the electron channel. (Bottom) The ratio of data to fit result.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,

Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] S. Moch, P. Uwer, Phys. Rev. D 78 (2008) 034003.
[2] U. Langenfeld, S. Moch, P. Uwer, in: Proc. XVII Int. Workshop on Deep-Inelastic Scattering and Related Topics, arXiv:hep-ph/0907.2527.
[3] M. Beneke, et al., Phys. Lett. B 690 (2010) 483; Predictions in this paper are calculated with HATHOR [44] with $m_{\text {top }}=172.5 \mathrm{GeV}$, CTEQ66 [16], where PDF and scale uncertainties were added linearly.
[4] T. Affolder, et al., CDF Collaboration, Phys. Rev. D 64 (2001) 032002; T. Affolder, et al., Phys. Rev. D 67 (2003) 119901 (Erratum).
[5] T. Aaltonen, et al., CDF Collaboration, Phys. Rev. Let. 105 (2010) 012001.
[6] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. D 67 (2003) 012004.
[7] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. D 84 (2011) 012008.
[8] The ATLAS Collaboration, Eur. Phys J. C 71 (2011) 1577.
[9] The ATLAS Collaboration, Phys. Lett. B 707 (2012) 478.
[10] The CMS Collaboration, JHEP 1107 (2011) 049.
[11] The CMS Collaboration, Phys. Rev. D 84 (2011) 092004.
[12] The ATLAS Collaboration, JINST 3 (2008) S08003.
[13] The ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
[14] S. Agostinelli, et al., Nucl. Inst. Meth. in Phys. Res. A 50 (2003) 250.
[15] S. Frixione, P. Nason, B.R. Webber, JHEP 0308 (2003) 007.
[16] J. Pumplin, et al., JHEP 0207 (2002) 012.
[17] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307 (2003) 001.
[18] G. Corcella, et al., JHEP 0101 (2001) 010.
[19] G. Corcella, et al., arXiv:hep-ph/0210213.
[20] S. Frixione, et al., JHEP 0807 (2008) 029.
[21] J.M. Butterworth, et al., Z. Phys. C 72 (1996) 637.
[22] The ATLAS Collaboration, ATLAS-PHYS-PUB-2010-014, https://cdsweb.cern.ch/ record/1303025.
[23] P. Nason, JHEP 0411 (2004) 40.
[24] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026.
[25] B.P. Kersevan, E. Richter-Was, arXiv:hep-ph/0405247.
[26] P. Skands, Phys. Rev. D 82 (2010) 074018.
[27] P. Skands, arXiv:hep-ph/1005.3457v4.
[28] M. Botje, et al., arXiv:hep-ph/1101.0538.
[29] R.D. Ball, et al., Nucl. Phys. B 838 (2010) 136.
[30] A.D. Martin, et al., Eur. Phys. J. C 63 (2009) 189.
[31] M.L. Mangano, CERN-PH-TH-2008-019, arXiv:hep-ph/0802.0026.
[32] The ATLAS Collaboration, Phys. Lett. B 707 (2012) 418.
[33] J.M. Campbell, R.K. Ellis, Phys. Rev. D 62 (2000) 114012.
[34] The ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1512.
[35] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063.
[36] M. Cacciari, G.P. Salam, Phys. Lett. B 641 (2006) 57.
[37] The ATLAS Collaboration, CERN-PH-EP-2011-191, Eur. Phys. J. C, submitted for publication, arXiv:hep-ex/1112.6426v1.
[38] The ATLAS Collaboration, ATLAS-CONF-2011-089, http://cdsweb.cern.ch/record/ 1356198.
[39] The ATLAS Collaboration, Eur Phys. J. C 72 (2012) 1844.
[40] A. Hoecker, et al., PoS ACAT 40 (2007), v4.1.0.
[41] N. Reid, D.A.S. Fraser, in: L. Lyons, R.P. Mount, R. Reitmeyer (Eds.), Proceedings of PHYSTAT 2003, SLAC, Stanford, 2003, p. 265.
[42] The ATLAS Collaboration, Eur. Phys. J. 71 (2011) 1630.
[43] The ATLAS Collaboration, ATLAS-CONF-2011-011, http://cdsweb.cern.ch/record/ 1334563.
[44] M. Aliev, et al., Comput. Phys. Commun. 182 (2011) 1034.

ATLAS Collaboration

G. Aad 48, B. Abbott ${ }^{110}$, J. Abdallah ${ }^{11}$, A.A. Abdelalim ${ }^{49}$, A. Abdesselam ${ }^{117}$, O. Abdinov ${ }^{10}$, B. Abi ${ }^{111}$, M. Abolins ${ }^{87}$, H. Abramowicz ${ }^{152}$, H. Abreu ${ }^{114}$, E. Acerbi ${ }^{88 a, 88 b}$, B.S. Acharya ${ }^{163 a, 163 b}$, D.L. Adams ${ }^{24}$, T.N. Addy ${ }^{56}$, J. Adelman ${ }^{174}$, M. Aderholz ${ }^{98}$, S. Adomeit ${ }^{97}$, P. Adragna ${ }^{74}$, T. Adye ${ }^{128}$, S. Aefsky ${ }^{22}$, J.A. Aguilar-Saavedra ${ }^{123 \mathrm{~b}, a}$, M. Aharrouche ${ }^{80}$, S.P. Ahlen ${ }^{21}$, F. Ahles ${ }^{48}$, A. Ahmad ${ }^{147}$, M. Ahsan ${ }^{40}$, G. Aielli ${ }^{132 a, 132 b}$, T. Akdogan ${ }^{18 a}$, T.P.A. Åkesson ${ }^{78}$, G. Akimoto ${ }^{154}$, A.V. Akimov ${ }^{93}$, A. Akiyama ${ }^{66}$, M.S. Alam ${ }^{1}$, M.A. Alam ${ }^{75}$, J. Albert ${ }^{168}$, S. Albrand ${ }^{55}$, M. Aleksa ${ }^{29}$, I.N. Aleksandrov ${ }^{64}$, F. Alessandria ${ }^{88 a}$, C. Alexa ${ }^{25 a}$, G. Alexander ${ }^{152}$, G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{9}$, M. Alhroob ${ }^{20}$, M. Aliev ${ }^{15}$, G. Alimonti ${ }^{88 \mathrm{a}}$, J. Alison ${ }^{119}$, M. Aliyev ${ }^{10}$, P.P. Allport ${ }^{72}$, S.E. Allwood-Spiers ${ }^{53}$, J. Almond ${ }^{81}$, A. Aloisio ${ }^{101 \mathrm{a}, 101 \mathrm{~b}}$, R. Alon ${ }^{170}$, A. Alonso ${ }^{78}$, B. Alvarez Gonzalez ${ }^{87}$, M.G. Alviggi ${ }^{101 \mathrm{a}, 101 \mathrm{~b}}$, K. Amako ${ }^{65}$, P. Amaral ${ }^{29}$, C. Amelung ${ }^{22}$, V.V. Ammosov ${ }^{127}$, A. Amorim ${ }^{123 a, b}$, G. Amorós ${ }^{166}$, N. Amram ${ }^{152}$, C. Anastopoulos ${ }^{29}$, L.S. Ancu ${ }^{16}$, N. Andari ${ }^{114}$, T. Andeen ${ }^{34}$, C.F. Anders ${ }^{20}$, G. Anders ${ }^{58 \mathrm{a}}$, K.J. Anderson ${ }^{30}$, A. Andreazza ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, V. Andrei ${ }^{58 \mathrm{a}}$, M.-L. Andrieux ${ }^{55}$, X.S. Anduaga ${ }^{69}$, A. Angerami ${ }^{34}$, F. Anghinolfi ${ }^{29}$, N. Anjos ${ }^{123 a}$, A. Annovi ${ }^{47}$, A. Antonaki ${ }^{8}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{95}$, J. Antos ${ }^{143 b}$, F. Anulli ${ }^{131 \mathrm{a}}$, S. Aoun ${ }^{82}$, L. Aperio Bella ${ }^{4}$, R. Apolle ${ }^{117, c}$, G. Arabidze ${ }^{87}$, I. Aracena ${ }^{142}$, Y. Arai ${ }^{65}$, A.T.H. Arce ${ }^{44}$, J.P. Archambault ${ }^{28}$, S. Arfaoui ${ }^{92}$, J.-F. Arguin ${ }^{14}$, E. Arik ${ }^{18 a, *,}$, M. Arik ${ }^{18 a}$, A.J. Armbruster ${ }^{86}$, O. Arnaez ${ }^{80}$, C. Arnault ${ }^{114}$, A. Artamonov ${ }^{94}$, G. Artoni ${ }^{131 a, 131 \mathrm{~b}}$, D. Arutinov ${ }^{20}$, S. Asai ${ }^{154}$, R. Asfandiyarov ${ }^{171}$, S. Ask ${ }^{27}$, B. Åsman ${ }^{145 a, 145 b}$, L. Asquith ${ }^{5}$, K. Assamagan ${ }^{24}$, A. Astbury ${ }^{168}$, A. Astvatsatourov ${ }^{52}$, G. Atoian ${ }^{174}$, B. Aubert ${ }^{4}$, E. Auge ${ }^{114}$, K. Augsten ${ }^{126}$, M. Aurousseau ${ }^{144 a}$, G. Avolio ${ }^{162}$, R. Avramidou ${ }^{9}$, D. Axen ${ }^{167}$, C. Ay^{54}, G. Azuelos ${ }^{92, d}$, Y. Azuma ${ }^{154}$, M.A. Baak ${ }^{29}$, G. Baccaglioni ${ }^{88 \mathrm{a}}$, C. Bacci ${ }^{\text {133a, 133b }}$, A.M. Bach ${ }^{14}$, H. Bachacou ${ }^{135}$, K. Bachas ${ }^{29}$, G. Bachy ${ }^{29}$, M. Backes ${ }^{49}$, M. Backhaus ${ }^{20}$, E. Badescu ${ }^{25 a}$, P. Bagnaia ${ }^{131}{ }^{\prime}$ a, 131 b, S. Bahinipati ${ }^{2}$, Y. Bai ${ }^{32{ }^{2} \text { a }}$, D.C. Bailey ${ }^{157}$, T. Bain ${ }^{157}$, J.T. Baines ${ }^{128}$, O.K. Baker ${ }^{174}{ }^{\prime}$, M.D. Baker ${ }^{24}$, S. Baker ${ }^{76}$, E. Banas ${ }^{38}$, P. Banerjee ${ }^{92}$, Sw. Banerjee ${ }^{171}$, D. Banfi ${ }^{29}$, A. Bangert ${ }^{149}$, V. Bansal ${ }^{168}$, H.S. Bansil ${ }^{17}$, L. Barak ${ }^{170}$, S.P. Baranov ${ }^{93}$, A. Barashkou ${ }^{64}$, A. Barbaro Galtieri ${ }^{14}$, T. Barber ${ }^{48}$, E.L. Barberio ${ }^{85}$, D. Barberis ${ }^{50 a, 50 \mathrm{~b}}$, M. Barbero ${ }^{20}$, D.Y. Bardin ${ }^{64}$, T. Barillari ${ }^{98}$,
 G. Barone ${ }^{49}$, A.J. Barr ${ }^{117}$, F. Barreiro ${ }^{79}$, J. Barreiro Guimarães da Costa ${ }^{57}$, P. Barrillon ${ }^{114}$, R. Bartoldus ${ }^{142}$, A.E. Barton ${ }^{70}$, V. Bartsch ${ }^{148}$, R.L. Bates ${ }^{53}$, L. Batkova ${ }^{143 a}$, J.R. Batley ${ }^{27}$, A. Battaglia ${ }^{16}$, M. Battistin ${ }^{29}$, G. Battistoni ${ }^{\text {'8a, }}$, F. Bauer ${ }^{135}$, H.S. Bawa ${ }^{142, e^{\prime}}$, B. Beare ${ }^{157}$ ', T. Beau ${ }^{77}$, P.H. Beauchemin ${ }^{160}$, R. Beccherle ${ }^{150 a}$, P. Bechtle ${ }^{20}$, H.P. Beck ${ }^{16}$, S. Becker ${ }^{97}$, M. Beckingham ${ }^{137}$, K.H. Becks ${ }^{173}$, A.J. Beddall ${ }^{18 \mathrm{c}}$, A. Beddall ${ }^{18 \mathrm{c}}$, S. Bedikian ${ }^{174}$, V.A. Bednyakov ${ }^{64}$, C.P. Bee ${ }^{82}$, M. Begel ${ }^{24}$, S. Behar Harpaz ${ }^{151}$, P.K. Behera ${ }^{62}$, M. Beimforde ${ }^{98}$, C. Belanger-Champagne ${ }^{84}$, P.J. Bell ${ }^{49}$, W.H. Bell ${ }^{49}$, G. Bella ${ }^{152}$, L. Bellagamba ${ }^{19 a}$, F. Bellina ${ }^{29}$, M. Bellomo ${ }^{29}$, A. Belloni ${ }^{57}$, O. Beloborodova ${ }^{106, f}$, K. Belotskiy ${ }^{95}$, O. Beltramello ${ }^{29}$, S. Ben Ami ${ }^{151}$, O. Benary ${ }^{152}$, D. Benchekroun ${ }^{134 a}$, C. Benchouk ${ }^{82}$, M. Bendel ${ }^{80}$, N. Benekos ${ }^{164}$, Y. Benhammou ${ }^{152}$, J.A. Benitez Garcia ${ }^{158 \mathrm{~b}}$, D.P. Benjamin ${ }^{44}$, M. Benoit ${ }^{114}$, J.R. Bensinger ${ }^{22}$, K. Benslama ${ }^{129}$, S. Bentvelsen ${ }^{104}$, D. Berge ${ }^{29}$, E. Bergeaas Kuutmann ${ }^{41}$, N. Berger ${ }^{4}$, F. Berghaus ${ }^{168}$, E. Berglund ${ }^{49}$, J. Beringer ${ }^{14}$, P. Bernat ${ }^{76}$, R. Bernhard ${ }^{48}$, C. Bernius ${ }^{24}$, T. Berry ${ }^{75}$, A. Bertin ${ }^{19 a, 19 b}$, F. Bertinelli ${ }^{29}$, F. Bertolucci ${ }^{\text {121a, } 121 \mathrm{~b}}$, M.I. Besana ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, N. Besson ${ }^{135}$, S. Bethke ${ }^{98}$, W. Bhimji ${ }^{45}$, R.M. Bianchi ${ }^{29}$, M. Bianco ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$, O. Biebel ${ }^{97}$, S.P. Bieniek ${ }^{76}$, K. Bierwagen ${ }^{54}$, J. Biesiada ${ }^{14}$, M. Biglietti ${ }^{133 a}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{19 a, 19 b}$, S. Binet ${ }^{114}$, A. Bingul ${ }^{18 \mathrm{c}}{ }^{29}$, C. Bini ${ }^{131 a, 131 \mathrm{~b}}$, C. Biscarat ${ }^{176}$, U. Bitenc ${ }^{48}$, K.M. Black ${ }^{21}$, R.E. Blair ${ }^{5}$, J.-B. Blanchard ${ }^{114}$, G. Blanchot ${ }^{29}$, T. Blazek ${ }^{143 a}$, C. Blocker ${ }^{22}$, J. Blocki ${ }^{38}$, A. Blondel ${ }^{49}$, W. Blum ${ }^{80}$, U. Blumenschein ${ }^{54}$, G.J. Bobbink ${ }^{104}$, V.B. Bobrovnikov ${ }^{106}$, S.S. Bocchetta ${ }^{78}$, A. Bocci ${ }^{44}$, C.R. Boddy ${ }^{117}$, M. Boehler ${ }^{41}$, J. Boek ${ }^{173}$, N. Boelaert ${ }^{35}$, S. Böser ${ }^{76}$, J.A. Bogaerts ${ }^{29}$, A. Bogdanchikov ${ }^{106}$, A. Bogouch ${ }^{89, *}$, C. Bohm ${ }^{145 \mathrm{a}}$, V. Boisvert ${ }^{75}$, T. Bold ${ }^{37}$, V. Boldea ${ }^{25 a}$, N.M. Bolnet ${ }^{135}$, M. Bona ${ }^{74}$, V.G. Bondarenko ${ }^{95}$, M. Bondioli ${ }^{162}$, M. Boonekamp ${ }^{135}$, G. Boorman ${ }^{75}$, C.N. Booth ${ }^{138}$, S. Bordoni ${ }^{7 \prime}$, C. Borer ${ }^{16}$, A. Borisov ${ }^{127}$, G. Borissov ${ }^{70}$, I. Borjanovic ${ }^{12 a}$, S. Borroni ${ }^{86}$, K. Bos ${ }^{104}$, D. Boscherini ${ }^{19 a}$, M. Bosman ${ }^{11}$, H. Boterenbrood ${ }^{104}$, D. Botterill ${ }^{128}$, J. Bouchami ${ }^{92}$, J. Boudreau ${ }^{122}$, E.V. Bouhova-Thacker ${ }^{70}$, C. Bourdarios ${ }^{114}$, N. Bousson ${ }^{82}$, A. Boveia ${ }^{30}$, J. Boyd ${ }^{29}$, I.R. Boyko ${ }^{64}$, N.I. Bozhko ${ }^{127}$, I. Bozovic-Jelisavcic ${ }^{12 \mathrm{~b}}$, J. Bracinik ${ }^{17}$, A. Braem ${ }^{29}$, P. Branchini ${ }^{133 a}$, G.W. Brandenburg ${ }^{57}$, A. Brandt ${ }^{7}$, G. Brandt ${ }^{15}$, O. Brandt ${ }^{54}$, U. Bratzler ${ }^{155}$, B. Brau ${ }^{83}$, J.E. Brau ${ }^{113}$, H.M. Braun ${ }^{173}$, B. Brelier ${ }^{157}$, J. Bremer ${ }^{29}$, R. Brenner ${ }^{165}$, S. Bressler ${ }^{170}$, D. Breton ${ }^{114}$, D. Britton ${ }^{53}$, F.M. Brochu ${ }^{27}$, I. Brock ${ }^{20}$, R. Brock ${ }^{87}$, T.J. Brodbeck ${ }^{70}$, E. Brodet ${ }^{152}$, F. Broggi ${ }^{88 a}$, C. Bromberg ${ }^{87}$,
G. Brooijmans ${ }^{34}$, W.K. Brooks ${ }^{31 b}$, G. Brown ${ }^{81}$, H. Brown ${ }^{7}$, P.A. Bruckman de Renstrom ${ }^{38}$, D. Bruncko ${ }^{143 \mathrm{~b}}$, R. Bruneliere ${ }^{48}$, S. Brunet ${ }^{60}$, A. Bruni ${ }^{19 a}$, G. Bruni ${ }^{19 a}$, M. Bruschi ${ }^{19 a}$, T. Buanes ${ }^{13}$, F. Bucci ${ }^{49}$, J. Buchanan ${ }^{117}$, N.J. Buchanan ${ }^{2}$, P. Buchholz ${ }^{140}$, R.M. Buckingham ${ }^{117}$, A.G. Buckley ${ }^{45}$, S.I. Buda ${ }^{25 a}$, I.A. Budagov ${ }^{64}$, B. Budick ${ }^{107}$, V. Büscher ${ }^{80}$, L. Bugge ${ }^{116}$, D. Buira-Clark ${ }^{117}$, O. Bulekov ${ }^{95}$, M. Bunse ${ }^{42}$, T. Buran ${ }^{116}$, H. Burckhart ${ }^{29}$, S. Burdin ${ }^{72}$, T. Burgess ${ }^{13}$, S. Burke ${ }^{128}$, E. Busato ${ }^{33}$, P. Bussey ${ }^{53}$, C.P. Buszello ${ }^{165}$, F. Butin ${ }^{29}$, B. Butler ${ }^{142}$, J.M. Butler ${ }^{21}$, C.M. Buttar ${ }^{53}$, J.M. Butterworth ${ }^{76}$, W. Buttinger ${ }^{27}$, S. Cabrera Urbán ${ }^{166}$, D. Caforio ${ }^{19 a, 19 b}$, O. Cakir ${ }^{3 a}$, P. Calafiura ${ }^{14}$, G. Calderini ${ }^{77}$, P. Calfayan ${ }^{97}$, R. Calkins ${ }^{105}$, L.P. Caloba ${ }^{23 a}$, R. Caloi ${ }^{131}{ }^{1,131 b}$, D. Calvet ${ }^{33}$, S. Calvet ${ }^{33}$, R. Camacho Toro ${ }^{33}$, P. Camarri ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, M. Cambiaghi ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, D. Cameron ${ }^{116}$, L.M. Caminada ${ }^{14}$, S. Campana ${ }^{29}$, M. Campanelli ${ }^{76}$, V. Canale ${ }^{101 \mathrm{a}, 101 \mathrm{~b}}$, F. Canelli ${ }^{30, g}$, A. Canepa ${ }^{158 \mathrm{a}}$, J. Cantero ${ }^{79}$, L. Capasso ${ }^{1011 \mathrm{a}, 101 \mathrm{~b}}$, M.D.M. Capeans Garrido ${ }^{29}$, I. Caprini ${ }^{25 a}$, M. Caprini ${ }^{25 a}$, D. Capriotti ${ }^{98}$, M. Capua ${ }^{36 a, 36 \mathrm{~b}}$, R. Caputo ${ }^{147}$, C. Caramarcu ${ }^{24}$, R. Cardarelli ${ }^{132 \mathrm{a}}$, T. Carli ${ }^{29}$, G. Carlino ${ }^{101 \mathrm{a}}$, L. Carminati ${ }^{88 \mathrm{a}, 88 \mathrm{~b}}$, B. Caron ${ }^{84}$, S. Caron ${ }^{48}$, G.D. Carrillo Montoya ${ }^{171}$, A.A. Carter ${ }^{74}$, J.R. Carter ${ }^{27}$, J. Carvalho ${ }^{123 a, h}$, D. Casadei ${ }^{107}$, M.P. Casado ${ }^{11}$, M. Cascella ${ }^{121 a, 121 b}$, C. Caso ${ }^{50 a, 50 b, *}$, A.M. Castaneda Hernandez ${ }^{171}$, E. Castaneda-Miranda ${ }^{171}$, V. Castillo Gimenez ${ }^{166}$, N.F. Castro ${ }^{123 a}$, G. Cataldi ${ }^{71 a}$, F. Cataneo ${ }^{29}$, A. Catinaccio ${ }^{29}$, J.R. Catmore ${ }^{29}$, A. Cattai ${ }^{29}$, G. Cattani ${ }^{132 a, 132 b}$, S. Caughron ${ }^{87}$, D. Cauz ${ }^{163 a, 163 c}$, P. Cavalleri ${ }^{77}$, D. Cavalli ${ }^{88 a}$, M. Cavalli-Sforza ${ }^{11}$, V. Cavasinni ${ }^{121 a, 121 b}$, F. Ceradini ${ }^{133 a, 133 b}$, A.S. Cerqueira ${ }^{23 b}$, A. Cerri ${ }^{29}$, L. Cerrito 74, F. Cerutti ${ }^{47}$, S.A. Cetin ${ }^{18 \mathrm{~b}}$, F. Cevenini ${ }^{101 \mathrm{a}, 101 \mathrm{~b}}$, A. Chafaq ${ }^{134 \mathrm{a}}$, D. Chakraborty ${ }^{105}$, K. Chan ${ }^{2}$, B. Chapleau ${ }^{84}$, J.D. Chapman ${ }^{27}$, J.W. Chapman ${ }^{86}$, E. Chareyre ${ }^{77}$, D.G. Charlton ${ }^{17}$, V. Chavda ${ }^{81}$, C.A. Chavez Barajas ${ }^{29}$, S. Cheatham ${ }^{84}$, S. Chekanov ${ }^{5}$, S.V. Chekulaev ${ }^{158 a}$, G.A. Chelkov ${ }^{64}$, M.A. Chelstowska ${ }^{103}$, C. Chen ${ }^{63}$, H. Chen ${ }^{24}$, S. Chen ${ }^{32 \mathrm{C}}$, T. Chen ${ }^{32 \mathrm{C}}$, X. Chen ${ }^{171}$, S. Cheng ${ }^{32 \mathrm{a}}$, A. Cheplakov ${ }^{64}$, V.F. Chepurnov ${ }^{64}$, R. Cherkaoui El Moursli ${ }^{134 e}$, V. Chernyatin ${ }^{24}$, E. Cheu ${ }^{6}$, S.L. Cheung ${ }^{157}$, L. Chevalier ${ }^{135}$, G. Chiefari ${ }^{101 a, 101 \mathrm{~b}}$, L. Chikovani ${ }^{513}$, J.T. Childers ${ }^{58 \mathrm{a}}$, A. Chilingarov ${ }^{70}$, G. Chiodini ${ }^{71 a}$, M.V. Chizhov ${ }^{64}$, G. Choudalakis ${ }^{30}$, S. Chouridou ${ }^{136}$, I.A. Christidi ${ }^{76}$, A. Christov ${ }^{48}$, D. Chromek-Burckhart ${ }^{29}$, M.L. Chu ${ }^{150}$, J. Chudoba ${ }^{124}$, G. Ciapetti ${ }^{131 a, 131 b}$, K. Ciba ${ }^{37}$, A.K. Ciftci ${ }^{3 a}$, R. Ciftci ${ }^{3 a}$, D. Cinca ${ }^{33}$, V. Cindro ${ }^{73}$, M.D. Ciobotaru ${ }^{162}$, C. Ciocca ${ }^{19 a}$, A. Ciocio ${ }^{14}$, M. Cirilli ${ }^{86}$, M. Citterio ${ }^{88 a}$, M. Ciubancan ${ }^{25 a}$, A. Clark ${ }^{49}$, P.J. Clark ${ }^{45}$, W. Cleland ${ }^{122}$, J.C. Clemens ${ }^{82}$, B. Clement ${ }^{55}$, C. Clement ${ }^{145 a, 145 b}$, R.W. Clifft ${ }^{128}$, Y. Coadou ${ }^{82}$, M. Cobal 163a, 163c , A. Coccaro ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J. Cochran ${ }^{63}$, P. Coe ${ }^{117}$, J.G. Cogan ${ }^{142}$, J. Coggeshall ${ }^{164}$, E. Cogneras ${ }^{176}$, C.D. Cojocaru ${ }^{28}$, J. Colas ${ }^{4}$, A.P. Colijn ${ }^{104}$, N.J. Collins ${ }^{17}$, C. Collins-Tooth ${ }^{53}$, J. Collot ${ }^{55}$, G. Colon ${ }^{83}$, P. Conde Muiño ${ }^{123 a}$, E. Coniavitis ${ }^{117}$, M.C. Conidi ${ }^{11}$, M. Consonni ${ }^{103}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{25 a}$, C. Conta ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, F. Conventi ${ }^{101 \mathrm{a}, \mathrm{i}}$, J. Cook ${ }^{29}$, M. Cooke ${ }^{14}$, B.D. Cooper ${ }^{76}$, A.M. Cooper-Sarkar ${ }^{117}$, K. Copic ${ }^{14}$, T. Cornelissen ${ }^{173}$, M. Corradi ${ }^{19 \mathrm{a}}$, F. Corriveau ${ }^{84, j}$, A. Cortes-Gonzalez ${ }^{164}$, G. Cortiana ${ }^{98}$, G. Costa ${ }^{88 a}$, M.J. Costa ${ }^{166}$, D. Costanzo ${ }^{138}$, T. Costin ${ }^{30}$, D. Côté ${ }^{29}$, R. Coura Torres ${ }^{23 a}$, L. Courneyea ${ }^{168}$, G. Cowan ${ }^{75}$, C. Cowden ${ }^{27}$, B.E. Cox ${ }^{81}$, K. Cranmer ${ }^{107}$, F. Crescioli ${ }^{121 a, 121 b}$, M. Cristinziani ${ }^{20}$, G. Crosetti ${ }^{36 a, 36 b}$, R. Crupi ${ }^{71 a}, 71 \mathrm{~b}$, S. Crépé-Renaudin ${ }^{55}$, C.-M. Cuciuc ${ }^{25 a}$, C. Cuenca Almenar ${ }^{174}$, T. Cuhadar Donszelmann ${ }^{138}$, M. Curatolo ${ }^{47}$, C.J. Curtis ${ }^{17}$, P. Cwetanski ${ }^{60}$, H. Czirr ${ }^{140}$, Z. Czyczula ${ }^{174}$, S. D’Auria ${ }^{53}$, M. D’Onofrio ${ }^{72}$, A. D’Orazio ${ }^{131}{ }^{1}, 131 \mathrm{~b}$, P.V.M. Da Silva ${ }^{23 a}$, C. Da Via ${ }^{81}$, W. Dabrowski ${ }^{37}$, T. Dai ${ }^{86}$, C. Dallapiccola ${ }^{83}$, M. Dam ${ }^{35}$, M. Dameri ${ }^{50 a, 50 \mathrm{~b}}$, D.S. Damiani ${ }^{136}$, H.O. Danielsson ${ }^{29}$, D. Dannheim ${ }^{98}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{50 \prime a}$, G.L. Darlea ${ }^{25 b}$, C. Daum ${ }^{104}$, W. Davey ${ }^{20}$, T. Davidek ${ }^{125}$, N. Davidson ${ }^{85}$, R. Davidson ${ }^{70}$, E. Davies ${ }^{117, c}$, M. Davies ${ }^{92}$, A.R. Davison ${ }^{76}$, Y. Davygora ${ }^{\text {58a, }}$, E. Dawe ${ }^{141}$, I. Dawson ${ }^{138}$, J.W. Dawson ${ }^{5, *}$, R.K. Daya-Ishmukhametova ${ }^{39}$, K. De ${ }^{7}$, R. de Asmundis ${ }^{101 a}$, S. De Castro ${ }^{19}{ }^{19,19 b}$,
P.E. De Castro Faria Salgado ${ }^{24}$, S. De Cecco ${ }^{77}$, J. de Graat ${ }^{97}$, N. De Groot ${ }^{103}$, P. de Jong ${ }^{104}$, C. De La Taille ${ }^{114}$, H. De la Torre ${ }^{79}$, B. De Lotto ${ }^{163 a, 163 c}$, L. de Mora ${ }^{70}$, L. De Nooij ${ }^{104}$, D. De Pedis ${ }^{131 a}$, A. De Salvo ${ }^{131 a}$, U. De Sanctis ${ }^{163 a, 163 c}$, A. De Santo ${ }^{148}$, J.B. De Vivie De Regie ${ }^{114}$, S. Dean ${ }^{76}$, R. Debbe ${ }^{\text {24 }}$, C. Debenedetti ${ }^{45}$, D.V. Dedovich ${ }^{64}$, J. Degenhardt ${ }^{119}$, M. Dehchar ${ }^{117}$, C. Del Papa ${ }^{163 a, 163 c}$, J. Del Peso ${ }^{79}$, T. Del Prete ${ }^{121 a, 121 b}$, T. Delemontex ${ }^{55}$, M. Deliyergiyev ${ }^{73}$, A. Dell'Acqua ${ }^{29}$, L. Dell'Asta ${ }^{21}$, M. Della Pietra ${ }^{101 a, i}$, D. della Volpe ${ }^{101 a, 101 \mathrm{~b}}$, M. Delmastro ${ }^{29}$, N. Delruelle ${ }^{29}$, P.A. Delsart ${ }^{55}$, C. Deluca ${ }^{147}$, S. Demers ${ }^{174}$, M. Demichev ${ }^{64}$, B. Demirkoz ${ }^{11, k}$, J. Deng ${ }^{162}$, S.P. Denisov ${ }^{127}$, D. Derendarz ${ }^{38}$, J.E. Derkaoui ${ }^{134 \mathrm{~d}}$, F. Derue ${ }^{77}$, P. Dervan ${ }^{72}$, K. Desch ${ }^{20}$, E. Devetak ${ }^{147}$, P.O. Deviveiros ${ }^{157}$, A. Dewhurst ${ }^{128}$, B. DeWilde ${ }^{147}$, S. Dhaliwal ${ }^{157}$, R. Dhullipudi ${ }^{24, I}$, A. Di Ciaccio ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, L. Di Ciaccio ${ }^{4}$, A. Di Girolamo ${ }^{\text {29 }}$, B. Di Girolamo ${ }^{29}$, S. Di Luise ${ }^{\text {133a, }}$, ${ }^{133 \mathrm{~b}}$, A. Di Mattia ${ }^{171}$, B. Di Micco ${ }^{29}$, R. Di Nardo ${ }^{47}$,
A. Di Simone ${ }^{132 a, 132 b}$, R. Di Sipio ${ }^{19 a, 19 b}$, M.A. Diaz ${ }^{31 a}$, F. Diblen ${ }^{18 c}$, E.B. Diehl ${ }^{86}$, J. Dietrich ${ }^{41}$, T.A. Dietzsch ${ }^{58 a}$, S. Diglio ${ }^{85}$, K. Dindar Yagci ${ }^{39}$, J. Dingfelder ${ }^{20}$, C. Dionisi ${ }^{131 a}$, 131b , P. Dita ${ }^{25 a}$, S. Dita ${ }^{25 a}$, F. Dittus ${ }^{29}$, F. Djama ${ }^{82}$, T. Djobava ${ }^{51 b}$, M.A.B. do Vale ${ }^{23 c}$, A. Do Valle Wemans ${ }^{123 a}$, T.K.O. Doan ${ }^{4}$, M. Dobbs ${ }^{84}$, R. Dobinson ${ }^{29, *}$, D. Dobos ${ }^{29}$, E. Dobson ${ }^{29, m}$, J. Dodd ${ }^{34}$, C. Doglioni ${ }^{111}$, T. Doherty ${ }^{53}$, Y. Doi ${ }^{65, *}$, J. Dolejsi ${ }^{125}$, I. Dolenc ${ }^{73}$, Z. Dolezal ${ }^{125}$, B.A. Dolgoshein ${ }^{95}$,*, T. Dohmae ${ }^{154}$, M. Donadelli ${ }^{23 \mathrm{~d}}$, M. Donega ${ }^{119}$, J. Donini ${ }^{55}$, J. Dopke ${ }^{29}$, A. Doria ${ }^{101 \mathrm{a}}$, A. Dos Anjos ${ }^{171}$, M. Dosil ${ }^{11}$, A. Dotti ${ }^{121 a, 121 b}$, M.T. Dova ${ }^{69}$, J.D. Dowell ${ }^{17}$, A.D. Doxiadis ${ }^{104}$, A.T. Doyle ${ }^{53}$, Z. Drasal ${ }^{125}$, J. Drees ${ }^{173}$, N. Dressnandt ${ }^{119}$, H. Drevermann ${ }^{29}$, C. Driouichi ${ }^{35}$, M. Dris ${ }^{9}$, J. Dubbert ${ }^{98}$, S. Dube ${ }^{14}$, E. Duchovni ${ }^{170}$, G. Duckeck ${ }^{97}$, A. Dudarev ${ }^{29}$, F. Dudziak ${ }^{63}$, M. Dührssen ${ }^{29}$, I.P. Duerdoth ${ }^{81}$, L. Duflot ${ }^{114}$, M.-A. Dufour ${ }^{84}$, M. Dunford ${ }^{29}$, H. Duran Yildiz ${ }^{3 a}$, R. Duxfield ${ }^{138}$, M. Dwuznik ${ }^{37}$, F. Dydak ${ }^{29}$, M. Düren ${ }^{52}$, W.L. Ebenstein ${ }^{44}$, J. Ebke ${ }^{97}$, S. Eckweiler ${ }^{80}$, K. Edmonds ${ }^{80}$, C.A. Edwards ${ }^{75}$, N.C. Edwards ${ }^{53}$, W. Ehrenfeld ${ }^{41}$, T. Ehrich ${ }^{98}$, T. Eifert ${ }^{29}$, G. Eigen ${ }^{13}$, K. Einsweiler ${ }^{14}$, E. Eisenhandler ${ }^{74}$, T. Ekelof ${ }^{165}$, M. El Kacimi ${ }^{134 c}$, M. Ellert ${ }^{165}$, S. Elles ${ }^{4}$, F. Ellinghaus ${ }^{80}$, K. Ellis ${ }^{74}$, N. Ellis ${ }^{29}$, J. Elmsheuser ${ }^{97}$, M. Elsing ${ }^{29}$, D. Emeliyanov ${ }^{128}$, R. Engelmann ${ }^{147}$, A. Engl ${ }^{97}$, B. Epp ${ }^{61}$, A. Eppig ${ }^{86}$, J. Erdmann ${ }^{54}$, A. Ereditato ${ }^{16}$, D. Eriksson ${ }^{145 a}$, J. Ernst ${ }^{1}$, M. Ernst ${ }^{24}$, J. Ernwein ${ }^{135}$, D. Errede ${ }^{164}$, S. Errede ${ }^{164}$, E. Ertel ${ }^{80}$, M. Escalier ${ }^{114}$, C. Escobar ${ }^{122}$, X. Espinal Curull ${ }^{11}$, B. Esposito ${ }^{47}$, F. Etienne ${ }^{82}$, A.I. Etienvre ${ }^{135}$, E. Etzion ${ }^{152}$, D. Evangelakou ${ }^{54}$, H. Evans ${ }^{60}$, L. Fabbri ${ }^{19 a}$, 19b, C. Fabre ${ }^{29}$, R.M. Fakhrutdinov ${ }^{127}$, S. Falciano ${ }^{131 \mathrm{a}}$, Y. Fang ${ }^{171}$, M. Fanti ${ }^{88 a}$, 88b , A. Farbin ${ }^{7}$, A. Farilla ${ }^{133 a}$, J. Farley ${ }^{147}$, T. Farooque ${ }^{157}$, S.M. Farrington ${ }^{117}$, P. Farthouat ${ }^{29}$, P. Fassnacht ${ }^{29}$, D. Fassouliotis ${ }^{8}$, B. Fatholahzadeh ${ }^{157}$, A. Favareto ${ }^{88 a, 88 \mathrm{~b}}$, L. Fayard ${ }^{114}$, S. Fazio ${ }^{36 \mathrm{a}{ }^{3}, 36 \mathrm{~b}}$, R. Febbraro ${ }^{33}$, P. Federic ${ }^{143 \mathrm{a}}$, O.L. Fedin ${ }^{120}$, W. Fedorko ${ }^{87}$, M. Fehling-Kaschek ${ }^{48}$, L. Feligioni ${ }^{82}$, D. Fellmann ${ }^{5}$, C. Feng ${ }^{32 \mathrm{~d}}$, E.J. Feng ${ }^{30}$, A.B. Fenyuk ${ }^{127}$, J. Ferencei ${ }^{143 \mathrm{~b}}$, J. Ferland ${ }^{92}$, W. Fernando ${ }^{108}$, S. Ferrag ${ }^{53}$, J. Ferrando ${ }^{53}$, V. Ferrara ${ }^{41}$, A. Ferrari ${ }^{165}$, P. Ferrari ${ }^{104}$, R. Ferrari ${ }^{118 \mathrm{a}}$, A. Ferrer ${ }^{166}$, M.L. Ferrer ${ }^{47}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{86}$, A. Ferretto Parodi ${ }^{50 a, 50 b}$, M. Fiascaris ${ }^{30}$, F. Fiedler ${ }^{80}$, A. Filipčič ${ }^{73}$, A. Filippas ${ }^{9}$, F. Filthaut ${ }^{103}$, M. Fincke-Keeler ${ }^{168}$, M.C.N. Fiolhais ${ }^{123 a}{ }^{\prime}, h$, L. Fiorini ${ }^{166}$, A. Firan ${ }^{39}$, G. Fischer ${ }^{41}$, P. Fischer ${ }^{20}$, M.J. Fisher ${ }^{108}$, M. Flechl ${ }^{48}$, I. Fleck ${ }^{140}$, J. Fleckner ${ }^{80}$, P. Fleischmann ${ }^{172}$, S. Fleischmann ${ }^{173}$, T. Flick ${ }^{173}$, L.R. Flores Castillo ${ }^{171}$, M.J. Flowerdew' ${ }^{98}$, M. Fokitis ${ }^{9}$, T. Fonseca Martin ${ }^{16}$, J. Fopma ${ }^{117}$, D.A. Forbush ${ }^{137}$, A. Formica ${ }^{135}$, A. Forti ${ }^{81}$, D. Fortin ${ }^{158 a}$, J.M. Foster ${ }^{81}$, D. Fournier ${ }^{114}$, A. Foussat ${ }^{29}$, A.J. Fowler ${ }^{44}$, K. Fowler ${ }^{136}$, H. Fox ${ }^{70}$, P. Francavilla ${ }^{121 a}$ a, 121b , S. Franchino ${ }^{118 a, 118 b}$, D. Francis ${ }^{29}$, T. Frank ${ }^{170}$, M. Franklin ${ }^{57}$, S. Franz ${ }^{29}$, M. Fraternali ${ }^{118 a, 118 \mathrm{~b}}$, S. Fratina ${ }^{119}$, S.T. French ${ }^{27}$, F. Friedrich ${ }^{43}$, R. Froeschl ${ }^{29}$, D. Froidevaux ${ }^{29}$, J.A. Frost ${ }^{27}$, C. Fukunaga ${ }^{155}$, E. Fullana Torregrosa ${ }^{29}$, J. Fuster ${ }^{166}$, C. Gabaldon ${ }^{29}$, O. Gabizon ${ }^{170}$, T. Gadfort ${ }^{24}$, S. Gadomski ${ }^{49}$, G. Gagliardi ${ }^{50 \mathrm{a}, 50 \mathrm{D}}$, P. Gagnon ${ }^{60}$, C. Galea ${ }^{97}$, E.J. Gallas ${ }^{117}$, V. Gallo ${ }^{16}$, B.J. Gallop ${ }^{128}$, P. Gallus ${ }^{124}$, K.K. Gan ${ }^{108}$, Y.S. Gao ${ }^{142, e}$, V.A. Gapienko ${ }^{127}$, A. Gaponenko ${ }^{14}$, F. Garberson ${ }^{174}$, M. Garcia-Sciveres ${ }^{14}$, C. García ${ }^{166}$, J.E. García Navarro ${ }^{49}$, R.W. Gardner ${ }^{30}$, N. Garelli ${ }^{29}$, H. Garitaonandia ${ }^{104}$, V. Garonne ${ }^{29}$, J. Garvey ${ }^{17}$, C. Gatti ${ }^{47}$, G. Gaudio ${ }^{118 \mathrm{a}}$, O. Gaumer ${ }^{49}$, B. Gaur ${ }^{140}$, L. Gauthier ${ }^{135}$, I.L. Gavrilenko ${ }^{93}$, C. Gay ${ }^{167}$, G. Gaycken ${ }^{20}$, J.-C. Gayde ${ }^{29}$, E.N. Gazis ${ }^{9}$, P. Ge $^{32 \mathrm{~d}}$, C.N.P. Gee ${ }^{128}$, D.A.A. Geerts ${ }^{104}$, Ch. Geich-Gimbel ${ }^{20}$, K. Gellerstedt ${ }^{145 a, 145 b}$, C. Gemme ${ }^{50 \mathrm{a}}$, A. Gemmell ${ }^{53}$, M.H. Genest ${ }^{97}$, S. Gentile ${ }^{131 a, 131 b}$, M. George ${ }^{54}$, S. George ${ }^{75}$, P. Gerlach ${ }^{173}$, A. Gershon ${ }^{152}$, C. Geweniger ${ }^{58 \mathrm{a}}$, H. Ghazlane ${ }^{134 b^{\prime}}$, N. Ghodbane ${ }^{33}$, B. Giacobbe ${ }^{19 \mathrm{a}}$, S. Giagu ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, V. Giakoumopoulou ${ }^{8}$, V. Giangiobbe ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$, F. Gianotti ${ }^{29}$, B. Gibbard ${ }^{24}$, A. Gibson ${ }^{157}$, S.M. Gibson ${ }^{29}$, L.M. Gilbert ${ }^{117}$, V. Gilewsky ${ }^{90}$, D. Gillberg ${ }^{28}$, A.R. Gillman ${ }^{128}$, D.M. Gingrich ${ }^{2, d}$, J. Ginzburg ${ }^{152}$, N. Giokaris ${ }^{8}$, M.P. Giordani ${ }^{163 \mathrm{C}}$, R. Giordano ${ }^{\text {101a, } 101 b}$, F.M. Giorgi ${ }^{15}$, P. Giovannini ${ }^{98}$, P.F. Giraud ${ }^{135}$, D. Giugni ${ }^{88 a}$, M. Giunta ${ }^{92}$, P. Giusti ${ }^{19 a}$, B.K. Gjelsten ${ }^{116}$, L.K. Gladilin ${ }^{96}$, C. Glasman ${ }^{79}$, J. Glatzer ${ }^{48}{ }^{\prime}$, A. Glazov ${ }^{41}$, K.W. Glitza ${ }^{173}$, G.L. Glonti ${ }^{\text {'64 }}$, J. Godfrey ${ }^{141}$, J. Godlewski ${ }^{29}$, M. Goebel ${ }^{41}$, T. Göpfert ${ }^{43}$, C. Goeringer ${ }^{80}$, C. Gössling ${ }^{42}$, T. Göttfert ${ }^{98}$, S. Goldfarb ${ }^{86}$, T. Golling ${ }^{174}$, S.N. Golovnia ${ }^{127}$, A. Gomes ${ }^{123 a, b}$, L.S. Gomez Fajardo ${ }^{41}$, R. Gonçalo ${ }^{75}$, J. Goncalves Pinto Firmino Da Costa ${ }^{41}$, L. Gonella ${ }^{20}$, A. Gonidec ${ }^{29}$, S. Gonzalez ${ }^{171}$, S. González de la Hoz ${ }^{166}$, G. Gonzalez Parra ${ }^{11}$, M.L. Gonzalez Silva ${ }^{26}$, S. Gonzalez-Sevilla ${ }^{49}$, J.J. Goodson ${ }^{147}$, L. Goossens ${ }^{29}$, P.A. Gorbounov ${ }^{94}$, H.A. Gordon ${ }^{24}$, I. Gorelov ${ }^{102}$, G. Gorfine ${ }^{173}$, B. Gorini ${ }^{29}$, E. Gorini ${ }^{71 a}, 71$ b , A. Gorišek ${ }^{73}$, E. Gornicki ${ }^{38}$, S.A. Gorokhov ${ }^{127}$, V.N. Goryachev ${ }^{127}$, B. Gosdzik ${ }^{41}$, M. Gosselink ${ }^{104}$, M.I. Gostkin ${ }^{64}$, I. Gough Eschrich ${ }^{162}$, M. Gouighri ${ }^{134 a}$, D. Goujdami ${ }^{134}$, M.P. Goulette ${ }^{49}$, A.G. Goussiou ${ }^{137}$, C. Goy ${ }^{4}$, S. Gozpinar ${ }^{22}$, I. Grabowska-Bold ${ }^{37}$, P. Grafström ${ }^{29}$, K.-J. Grahn ${ }^{41}$, F. Grancagnolo ${ }^{71 \mathrm{a}}$, S. Grancagnolo ${ }^{15}$, V. Grassi ${ }^{147}$, V. Gratchev ${ }^{120}$, N. Grau ${ }^{34}$, H.M. Gray ${ }^{29}$, J.A. Gray ${ }^{147}$, E. Graziani ${ }^{133 a}$, O.G. Grebenyuk ${ }^{120}$, T. Greenshaw ${ }^{72}$,
Z.D. Greenwood ${ }^{24, l}$, K. Gregersen ${ }^{35}$, I.M. Gregor ${ }^{41}$, P. Grenier ${ }^{142}$, J. Griffiths ${ }^{137}$, N. Grigalashvili ${ }^{64}$, A.A. Grillo ${ }^{136}$, S. Grinstein ${ }^{11}$, Y.V. Grishkevich ${ }^{96}$, J.-F. Grivaz ${ }^{114}$, M. Groh ${ }^{98}$, E. Gross ${ }^{170}$, J. Grosse-Knetter ${ }^{54}$, J. Groth-Jensen ${ }^{170}$, K. Grybel ${ }^{140}$, V.J. Guarino ${ }^{5}$, D. Guest ${ }^{174}$, C. Guicheney ${ }^{33}$, A. Guida ${ }^{71 a, 71 b}$, S. Guindon ${ }^{54}$, H. Guler ${ }^{84, n}$, J. Gunther ${ }^{124}$, B. Guo ${ }^{157}$, J. Guo ${ }^{34}$, A. Gupta ${ }^{30}$, Y. Gusakov ${ }^{64}$, V.N. Gushchin ${ }^{127}$, A. Gutierrez ${ }^{92}$, P. Gutierrez ${ }^{110}$, N. Guttman ${ }^{152}$, O. Gutzwiller ${ }^{171}$, C. Guyot ${ }^{135}$, C. Gwenlan ${ }^{117}$, C.B. Gwilliam ${ }^{72}$, A. Haas ${ }^{142}$, S. Haas ${ }^{29}$, C. Haber ${ }^{14}$, H.K. Hadavand ${ }^{39}$, D.R. Hadley ${ }^{17}$, P. Haefner ${ }^{98}$, F. Hahn ${ }^{29}$, S. Haider ${ }^{29}$, Z. Hajduk ${ }^{38}$, H. Hakobyan ${ }^{175}$, J. Haller ${ }^{54}$, K. Hamacher ${ }^{173}$, P. Hamal ${ }^{112}$, M. Hamer ${ }^{54}$, A. Hamilton ${ }^{49}$, S. Hamilton ${ }^{160}$, H. Han ${ }^{32 \mathrm{a}}$, L. Han ${ }^{32 \mathrm{~b}}$, K. Hanagaki ${ }^{1155}$, K. Hanawa ${ }^{159}$, M. Hance ${ }^{14}$, C. Handel ${ }^{80}$, P. Hanke ${ }^{58 a}$, J.R. Hansen ${ }^{35}$, J.B. Hansen ${ }^{35}$, J.D. Hansen ${ }^{35}$, P.H. Hansen ${ }^{35}$, P. Hansson ${ }^{142}$, K. Hara ${ }^{159}$, G.A. Hare ${ }^{136}$, T. Harenberg ${ }^{173}$, S. Harkusha ${ }^{89}$, D. Harper ${ }^{86}$, R.D. Harrington ${ }^{45}$, O.M. Harris ${ }^{137}$, K. Harrison ${ }^{17}$, J. Hartert ${ }^{48}$, F. Hartjes ${ }^{104}$, T. Haruyama ${ }^{65}$, A. Harvey ${ }^{56}$, S. Hasegawa ${ }^{100}$, Y. Hasegawa ${ }^{139}$, S. Hassani ${ }^{135}$, M. Hatch ${ }^{29}$, D. Hauff ${ }^{98}$, S. Haug ${ }^{16}$, M. Hauschild ${ }^{29}$, R. Hauser ${ }^{87}$, M. Havranek ${ }^{20}$, B.M. Hawes ${ }^{117}$, C.M. Hawkes ${ }^{17}$, R.J. Hawkings ${ }^{29}$, D. Hawkins ${ }^{162}$, T. Hayakawa ${ }^{66}$, T. Hayashi ${ }^{159}$, D. Hayden ${ }^{75}$, H.S. Hayward ${ }^{72}$, S.J. Haywood ${ }^{128}$, E. Hazen ${ }^{21}$, M. He $^{32 d}$, S.J. Head ${ }^{17}$, V. Hedberg ${ }^{78}$, L. Heelan ${ }^{7}$, S. Heim ${ }^{87}$, B. Heinemann ${ }^{14}$, S. Heisterkamp ${ }^{35}$, L. Helary ${ }^{4}$, M. Heller ${ }^{29}$, S. Hellman ${ }^{145 a, 145 \mathrm{~b}}$, D. Hellmich ${ }^{20}$, C. Helsens ${ }^{11}$, T. Hemperek ${ }^{20}$, R.C.W. Henderson ${ }^{70}$, M. Henke ${ }^{58 a}$, A. Henrichs ${ }^{54}$, A.M. Henriques Correia ${ }^{29}$, S. Henrot-Versille ${ }^{114}$, F. Henry-Couannier ${ }^{82}$, C. Hensel ${ }^{54}$, T. Hen $ß^{173}$, C.M. Hernandez ${ }^{7}$, Y. Hernández Jiménez ${ }^{166}$, R. Herrberg ${ }^{15}$, A.D. Hershenhorn ${ }^{5151}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{97}$, L. Hervas ${ }^{29}$, N.P. Hessey ${ }^{104}$, E. Higón-Rodriguez ${ }^{166}$, D. Hill ${ }^{5, *}$, J.C. Hill ${ }^{27}$, N. Hill ${ }^{5}$, K.H. Hiller ${ }^{41}$, S. Hillert ${ }^{20}$, S.J. Hillier ${ }^{17}$, I. Hinchliffe ${ }^{14}$, E. Hines ${ }^{119}$, M. Hirose ${ }^{115}$, F. Hirsch ${ }^{42}$, D. Hirschbuehl ${ }^{173}$, J. Hobbs ${ }^{147}$, N. Hod ${ }^{152}$, M.C. Hodgkinson ${ }^{138}$, P. Hodgson ${ }^{138}$, A. Hoecker ${ }^{29}$, M.R. Hoeferkamp ${ }^{102}$, J. Hoffman ${ }^{39}$, D. Hoffmann ${ }^{82}$, M. Hohlfeld ${ }^{80}$, M. Holder ${ }^{140}$, S.O. Holmgren ${ }^{145 a}$, T. Holy ${ }^{126}$, J.L. Holzbauer ${ }^{87}$, Y. Homma ${ }^{66}$, T.M. Hong ${ }^{119}$, L. Hooft van Huysduynen ${ }^{107}$, T. Horazdovsky ${ }^{126}$, C. Horn ${ }^{142}$, S. Horner ${ }^{48}$, K. Horton ${ }^{117}$, J.-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{150}$, M.A. Houlden ${ }^{72}$, A. Hoummada ${ }^{134 a}$, J. Howarth ${ }^{81}$, D.F. Howell ${ }^{117}$, I. Hristova ${ }^{15}$, J. Hrivnac ${ }^{114}$, I. Hruska ${ }^{124}$, T. Hryn'ova ${ }^{4}$, P.J. Hsu ${ }^{80}$, S.-C. Hsu ${ }^{14}$, G.S. Huang ${ }^{110}$, Z. Hubacek ${ }^{126}$, F. Hubaut ${ }^{82}$, F. Huegging ${ }^{20}$, T.B. Huffman ${ }^{117}$, E.W. Hughes ${ }^{34}$, G. Hughes ${ }^{70}$, R.E. Hughes-Jones ${ }^{81}$, M. Huhtinen ${ }^{29}$, P. Hurst ${ }^{57}$, M. Hurwitz ${ }^{14}$, U. Husemann ${ }^{41}$, N. Huseynov ${ }^{64,0}$, J. Huston ${ }^{87}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$, G. Iakovidis ${ }^{9}$, M. Ibbotson ${ }^{81}$, I. Ibragimov ${ }^{140}$, R. Ichimiya ${ }^{66}$, L. Iconomidou-Fayard ${ }^{114}$, J. Idarraga ${ }^{114}$, P. Iengo ${ }^{101 a}$, O. Igonkina ${ }^{104}$, Y. Ikegami ${ }^{65}$, M. Ikeno ${ }^{65}$, Y. Ilchenko ${ }^{39}$, D. Iliadis ${ }^{153}$, D. Imbault ${ }^{77}$, M. Imori ${ }^{154}$, T. Ince ${ }^{20}$, J. Inigo-Golfin ${ }^{29}$, P. Ioannou ${ }^{8}$, M. Iodice ${ }^{133 a}$, A. Irles Quiles ${ }^{166}$, C. Isaksson ${ }^{165}$, A. Ishikawa ${ }^{66}$, M. Ishino ${ }^{67}$, R. Ishmukhametov ${ }^{39}$, C. Issever ${ }^{117}$, S. Istin ${ }^{18 \text { 'a }}$, A.V. Ivashin ${ }^{127}$, W. Iwanski ${ }^{38}$, H. Iwasaki ${ }^{65}$, J.M. Izen ${ }^{40}$, V. Izzo ${ }^{101 a}$, B. Jackson ${ }^{119}$, J.N. Jackson ${ }^{72}$, P. Jackson ${ }^{142}$, M.R. Jaekel ${ }^{29}$, V. Jain ${ }^{60}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{35}$, J. Jakubek ${ }^{126}$, D.K. Jana ${ }^{110}$, E. Jankowski ${ }^{157}$, E. Jansen ${ }^{76}$, A. Jantsch ${ }^{98}$, M. Janus ${ }^{20}$, G. Jarlskog ${ }^{78}$, L. Jeanty ${ }^{57}$, K. Jelen ${ }^{37}$, I. Jen-La Plante ${ }^{30}$, P. Jenni ${ }^{29}$, A. Jeremie ${ }^{4}$, P. Jež ${ }^{35}$, S. Jézéquel ${ }^{4}$, M.K. Jha ${ }^{19 \mathrm{a}}$, H. Ji ${ }^{171}$, W. Ji ${ }^{80}$, J. Jia ${ }^{147}$, Y. Jiang ${ }^{32 \mathrm{~b}}$, M. Jimenez Belenguer ${ }^{41}$, G. Jin ${ }^{\text {32b }}$, S. Jin ${ }^{32 \mathrm{a}}$, O. Jinnouchi ${ }^{156}$, M.D. Joergensen ${ }^{35}$, D. Joffe ${ }^{39}$, L.G. Johansen ${ }^{13}$, M. Johansen ${ }^{145 a, 145 b}$, K.E. Johansson ${ }^{145 a}$, P. Johansson ${ }^{138}$, S. Johnert ${ }^{41}$, K.A. Johns ${ }^{6}$, K. Jon-And ${ }^{145 \mathrm{a}, 145 \mathrm{~b}}$, G. Jones ${ }^{81}$, R.W.L. Jones ${ }^{70}$, T.W. Jones ${ }^{76}$, T.J. Jones ${ }^{72}$, O. Jonsson ${ }^{29}$, C. Joram ${ }^{29}$, P.M. Jorge ${ }^{123 a}$, J. Joseph ${ }^{14}$, T. Jovin ${ }^{12 b}$, X. Ju ${ }^{129}$, C.A. Jung ${ }^{42}$, V. Juranek ${ }^{124}$, P. Jussel ${ }^{61}$, A. Juste Rozas ${ }^{11}$, V.V. Kabachenko ${ }^{127}$, S. Kabana ${ }^{16}$, M. Kaci ${ }^{166}$, A. Kaczmarska ${ }^{38}$, P. Kadlecik ${ }^{35}$, M. Kado ${ }^{114}$, H. Kagan ${ }^{108}$, M. Kagan ${ }^{57}$, S. Kaiser ${ }^{98}$, E. Kajomovitz ${ }^{151}$, S. Kalinin ${ }^{173}$, L.V. Kalinovskaya ${ }^{64}$, S. Kama ${ }^{39}$, N. Kanaya ${ }^{154}$, M. Kaneda ${ }^{29}$, T. Kanno ${ }^{156}$, V.A. Kantserov ${ }^{95}$, J. Kanzaki ${ }^{65}$, B. Kaplan ${ }^{174}$, A. Kapliy ${ }^{30}$, J. Kaplon ${ }^{29}$, D. Kar ${ }^{43}$, M. Karagounis ${ }^{20}$, M. Karagoz ${ }^{117}$, M. Karnevskiy ${ }^{41}$, K. Karr ${ }^{5}$, V. Kartvelishvili ${ }^{70}$, A.N. Karyukhin ${ }^{127}$, L. Kashif ${ }^{171}$, G. Kasieczka ${ }^{58 \mathrm{~b}}$, R.D. Kass ${ }^{108}$, A. Kastanas ${ }^{13}$, M. Kataoka ${ }^{4}$, Y. Kataoka ${ }^{154}$, E. Katsoufis ${ }^{9}$, J. Katzy ${ }^{41}$, V. Kaushik ${ }^{6}$, K. Kawagoe ${ }^{66}$, T. Kawamoto ${ }^{154}$, G. Kawamura ${ }^{80}$, M.S. Kayl ${ }^{104}$, V.A. Kazanin ${ }^{106}$, M.Y. Kazarinov ${ }^{64}$, J.R. Keates ${ }^{81}$, R. Keeler ${ }^{168}$, R. Kehoe ${ }^{39}$, M. Keil ${ }^{54}$, G.D. Kekelidze ${ }^{64}$, J. Kennedy ${ }^{97}$, C.J. Kenney ${ }^{142}$, M. Kenyon ${ }^{53}$, O. Kepka ${ }^{124}$, N. Kerschen ${ }^{29}$, B.P. Kerševan ${ }^{73}$, S. Kersten ${ }^{173}$, K. Kessoku ${ }^{154}$, J. Keung ${ }^{157}$, F. Khalil-zada ${ }^{10}$, H. Khandanyan ${ }^{164}$, A. Khanov ${ }^{111}$, D. Kharchenko ${ }^{64}$, A. Khodinov ${ }^{95}$, A.G. Kholodenko ${ }^{127}$, A. Khomich ${ }^{58 a}$, T.J. Khoo ${ }^{27}$, G. Khoriauli ${ }^{20}$, A. Khoroshilov ${ }^{173}$, N. Khovanskiy ${ }^{64}$, V. Khovanskiy ${ }^{94}$, E. Khramov ${ }^{64}$, J. Khubua ${ }^{51 b}$, H. Kim ${ }^{145 a, 145 b}$, M.S. Kim ${ }^{2}$, P.C. Kim ${ }^{142}$, S.H. Kim ${ }^{159}$,
N. Kimura ${ }^{169}$, O. Kind ${ }^{15}$, B.T. King ${ }^{72}$, M. King ${ }^{66}$, R.S.B. King ${ }^{117}$, J. Kirk ${ }^{128}$, L.E. Kirsch ${ }^{22}$, A.E. Kiryunin ${ }^{98}$, T. Kishimoto ${ }^{66}$, D. Kisielewska ${ }^{37}$, T. Kittelmann ${ }^{122}$, A.M. Kiver ${ }^{127}$, E. Kladiva ${ }^{143 \mathrm{~b}}$, J. Klaiber-Lodewigs ${ }^{42}$, M. Klein ${ }^{72}$, U. Klein ${ }^{72}$, K. Kleinknecht ${ }^{80}$, M. Klemetti ${ }^{84}$, A. Klier ${ }^{170}$, A. Klimentov ${ }^{24}$, R. Klingenberg ${ }^{42}$, E.B. Klinkby ${ }^{35}$, T. Klioutchnikova ${ }^{29}$, P.F. Klok ${ }^{103}$, S. Klous ${ }^{104}$, E.-E. Kluge ${ }^{58 a}$, T. Kluge ${ }^{72}$, P. Kluit ${ }^{104}$, S. Kluth ${ }^{98}$, N.S. Knecht ${ }^{157}$, E. Kneringer ${ }^{61}$, J. Knobloch ${ }^{29}$, E.B.F.G. Knoops ${ }^{82}$, A. Knue ${ }^{54}$, B.R. Ko ${ }^{44}$, T. Kobayashi ${ }^{154}$, M. Kobel ${ }^{43}$, M. Kocian ${ }^{142}$, P. Kodys ${ }^{125}$, K. Köneke ${ }^{29}$, A.C. König ${ }^{103}$, S. Koenig ${ }^{80}$, L. Köpke ${ }^{80}$, F. Koetsveld ${ }^{103}$, P. Koevesarki ${ }^{20}$, T. Koffas ${ }^{28}$, E. Koffeman ${ }^{104}$, F. Kohn ${ }^{54}$, Z. Kohout ${ }^{126}$, T. Kohriki ${ }^{65}$, T. Koi ${ }^{142}$, T. Kokott ${ }^{20}$, G.M. Kolachev ${ }^{106}$, H. Kolanoski ${ }^{15}$, V. Kolesnikov ${ }^{64}$, I. Koletsou ${ }^{88 a}$, J. Koll ${ }^{87}$, D. Kollar ${ }^{29}$, M. Kollefrath ${ }^{48}$, S.D. Kolya ${ }^{81}$, A.A. Komar ${ }^{93}$, Y. Komori ${ }^{154}$, T. Kondo ${ }^{65}$, T. Kono ${ }^{41, p}$, A.I. Kononov ${ }^{48}$, R. Konoplich ${ }^{107, q}$, N. Konstantinidis ${ }^{76}$, A. Kootz ${ }^{173}$, S. Koperny ${ }^{37}$, S.V. Kopikov ${ }^{127}$, K. Korcyl ${ }^{38}$, K. Kordas ${ }^{153}$, V. Koreshev ${ }^{127}$, A. Korn ${ }^{117}$, A. Korol ${ }^{106}$, I. Korolkov ${ }^{11}$, E.V. Korolkova ${ }^{138}$, V.A. Korotkov ${ }^{127}$, O. Kortner ${ }^{98}$, S. Kortner ${ }^{98}$, V.V. Kostyukhin ${ }^{20}$, M.J. Kotamäki ${ }^{29}$, S. Kotov ${ }^{98}$, V.M. Kotov ${ }^{64}$, A. Kotwal ${ }^{44}$, C. Kourkoumelis ${ }^{8}$, V. Kouskoura ${ }^{153}$, A. Koutsman ${ }^{158 a}$, R. Kowalewski ${ }^{168}$, T.Z. Kowalski ${ }^{37}$, W. Kozanecki ${ }^{135}$, A.S. Kozhin ${ }^{127}$, V. Kral ${ }^{126}$, V.A. Kramarenko ${ }^{96}$, G. Kramberger ${ }^{73}$, M.W. Krasny ${ }^{77}$, A. Krasznahorkay ${ }^{107}$, J. Kraus ${ }^{87}$, J.K. Kraus ${ }^{20}$, A. Kreisel ${ }^{152}$, F. Krejci ${ }^{126}$, J. Kretzschmar ${ }^{72}$, N. Krieger ${ }^{54}$, P. Krieger ${ }^{157}$, K. Kroeninger ${ }^{54}$, H. Kroha ${ }^{98}$, J. Kroll ${ }^{119}$, J. Kroseberg ${ }^{20}$, J. Krstic ${ }^{12 a}$, U. Kruchonak ${ }^{64}$, H. Krüger ${ }^{20}$, T. Kruker ${ }^{16}$, N. Krumnack ${ }^{63}$, Z.V. Krumshteyn ${ }^{64}$, A. Kruth ${ }^{20}$, T. Kubota ${ }^{85}$, S. Kuehn ${ }^{48}$, A. Kugel ${ }^{58 \mathrm{C}}$, T. Kuhl ${ }^{41}$, D. Kuhn ${ }^{61}$, V. Kukhtin ${ }^{64}$, Y. Kulchitsky ${ }^{89}$, S. Kuleshov ${ }^{\text {31b }}$, C. Kummer ${ }^{17}$, M. Kuna ${ }^{77}$, N. Kundu ${ }^{117}$, J. Kunkle ${ }^{119}$, A. Kupco ${ }^{124}$, H. Kurashige ${ }^{66}$, M. Kurata ${ }^{159}$, Y.A. Kurochkin ${ }^{89}$, V. Kus ${ }^{124}$, M. Kuze ${ }^{156}$, J. Kvita ${ }^{29}$, R. Kwee ${ }^{15}$, A. La Rosa ${ }^{49}$, L. La Rotonda' ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, L. Labarga ${ }^{79}$, J. Labbe ${ }^{4}$, S. Lablak ${ }^{\text {134a }}$, C. Lacasta ${ }^{166}$, F. Lacava ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, H. Lacker ${ }^{15}$, D. Lacour ${ }^{77}$, V.R. Lacuesta ${ }^{166}$, E. Ladygin ${ }^{64}$, R. Lafaye ${ }^{4}$, B. Laforge ${ }^{77}$, T. Lagouri ${ }^{79}$, S. Lai ${ }^{48}$, E. Laisne ${ }^{55}$, M. Lamanna ${ }^{29}$, C.L. Lampen ${ }^{6}$, W. Lampl ${ }^{6}$, E. Lancon ${ }^{135}$, U. Landgraf ${ }^{48}$, M.P.J. Landon ${ }^{74}$, H. Landsman ${ }^{151}$, J.L. Lane ${ }^{81}$, C. Lange ${ }^{41}$, A.J. Lankford ${ }^{162}$, F. Lanni ${ }^{24}$, K. Lantzsch ${ }^{173}$, S. Laplace ${ }^{77}$, C. Lapoire ${ }^{20}$, J.F. Laporte ${ }^{135}$, T. Lari ${ }^{\text {88a }}$, A.V. Larionov ${ }^{127}$, A. Larner ${ }^{117}$, C. Lasseur ${ }^{29}$, M. Lassnig ${ }^{29}$, P. Laurelli ${ }^{47}$, W. Lavrijsen ${ }^{14}$, P. Laycock ${ }^{72}$, A.B. Lazarev ${ }^{64}$, O. Le Dortz ${ }^{77}$, E. Le Guirriec ${ }^{82}$, C. Le Maner ${ }^{157}$, E. Le Menedeu ${ }^{135}$, C. Lebel ${ }^{92}$, T. LeCompte ${ }^{5}$, F. Ledroit-Guillon ${ }^{55}$, H. Lee ${ }^{104}$, J.S.H. Lee ${ }^{115}$, S.C. Lee ${ }^{150}$, L. Lee ${ }^{174}$, M. Lefebvre ${ }^{168}$, M. Legendre ${ }^{135}$, A. Leger ${ }^{49}$, B.C. LeGeyt ${ }^{119}$, F. Legger ${ }^{97}$, C. Leggett ${ }^{14}$, M. Lehmacher ${ }^{20}$, G. Lehmann Miotto ${ }^{29}$, X. Lei ${ }^{6}$, M.A.L. Leite ${ }^{23 \mathrm{~d}}$, R. Leitner ${ }^{125}$, D. Lellouch ${ }^{170}$, M. Leltchouk ${ }^{34}$, B. Lemmer ${ }^{54}$, V. Lendermann ${ }^{58 \text { áa }}$, K.J.C. Leney ${ }^{144 \mathrm{~b}}$, T. Lenz ${ }^{104}$, G. Lenzen ${ }^{173}$, B. Lenzi ${ }^{29}$, K. Leonhardt ${ }^{43}$, S. Leontsinis ${ }^{9}$, C. Leroy ${ }^{92}$, J.-R. Lessard ${ }^{168}$, J. Lesser ${ }^{145 a}$, C.G. Lester ${ }^{27}$,
A. Leung Fook Cheong ${ }^{171}$, J. Levêque ${ }^{4}$, D. Levin ${ }^{86}$, L.J. Levinson ${ }^{170}$, M.S. Levitski ${ }^{127}$, A. Lewis ${ }^{117}$, G.H. Lewis ${ }^{107}$, A.M. Leyko ${ }^{20}$, M. Leyton ${ }^{15}$, B. Li ${ }^{82}$, $\mathrm{H}. \mathrm{Li}^{171, r}$, S. Li ${ }^{32 \mathrm{~b}, \mathrm{~s}}$, X. Li 86, Z. Liang ${ }^{39}$, Z. Liang ${ }^{117, t}$, H. Liao ${ }^{33}$, B. Liberti ${ }^{132 a}$, P. Lichard ${ }^{29}$, M. Lichtnecker ${ }^{97}$, K. Lie ${ }^{164}$, W. Liebig ${ }^{13}$, R. Lifshitz ${ }^{151}$, C. Limbach ${ }^{20}$, A. Limosani ${ }^{85}$, M. Limper ${ }^{62}$, S.C. Lin ${ }^{150, u}$, F. Linde ${ }^{\text {104 }}$, J.T. Linnemann ${ }^{87}$, E. Lipeles ${ }^{119}$, L. Lipinsky ${ }^{124}$, A. Lipniacka ${ }^{\prime 3}$, T.M. Liss ${ }^{164}$, D. Lissauer ${ }^{24}$, A. Lister ${ }^{49}$, A.M. Litke ${ }^{136}$, C. Liu ${ }^{28}$, D. Liu ${ }^{150}$, H. Liu ${ }^{86}$, J.B. Liu ${ }^{86}$, M. Liu ${ }^{32 \mathrm{~b}}$, S. Liu ${ }^{2}$, Y. Liu ${ }^{32 \mathrm{~b}}$, M. Livan ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, S.S.A. Livermore ${ }^{117}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{79}$, S.L. Lloyd ${ }^{74}$, E. Lobodzinska ${ }^{41}$, P. Loch ${ }^{6}$, W.S. Lockman ${ }^{136}$, T. Loddenkoetter ${ }^{20}$, F.K. Loebinger ${ }^{81}$, A. Loginov ${ }^{174}$, C.W. Loh ${ }^{167}$, T. Lohse ${ }^{15}$, K. Lohwasser ${ }^{48}$, M. Lokajicek ${ }^{124}$, J. Loken ${ }^{117}$, V.P. Lombardo ${ }^{4}$, R.E. Long ${ }^{70}$, L. Lopes ${ }^{123 a, b}$, D. Lopez Mateos ${ }^{57}$, M. Losada ${ }^{161}$, P. Loscutoff ${ }^{14}$, F. Lo Sterzo ${ }^{131 a, 131 \mathrm{~b}}$, M.J. Losty ${ }^{158 \mathrm{a}}$, X. Lou ${ }^{40}$, A. Lounis ${ }^{114}$, K.F. Loureiro ${ }^{161}$, J. Love ${ }^{21}$, P.A. Love ${ }^{70}$, A.J. Lowe ${ }^{142, e}$, F. Lu ${ }^{32 \mathrm{a}}$, H.J. Lubatti ${ }^{137}$, C. Luci ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, A. Lucotte ${ }^{55}$, A. Ludwig ${ }^{43}$, D. Ludwig ${ }^{41}$, I. Ludwig ${ }^{48}$, J. Ludwig ${ }^{48}$, F. Luehring ${ }^{60}$, G. Luijckx ${ }^{104}$, D. Lumb ${ }^{48}$, L. Luminari ${ }^{131 a}$, E. Lund ${ }^{116}$, B. Lund-Jensen ${ }^{146}$, B. Lundberg ${ }^{78}$, J. Lundberg ${ }^{145 a, 145 b^{\prime}}$, J. Lundquist ${ }^{35}$, M. Lungwitz ${ }^{80}$, G. Lutz ${ }^{98}$, D. Lynn ${ }^{24}$, J. Lys ${ }^{14}$, E. Lytken ${ }^{78}$, H. Ma ${ }^{24}$, L.L. Ma ${ }^{171}$, J.A. Macana Goia ${ }^{92}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{98}$, B. Maček ${ }^{73}$, J. Machado Miguens ${ }^{123 a}$, R. Mackeprang ${ }^{35}$, R.J. Madaras ${ }^{14}$, W.F. Mader ${ }^{43}$, R. Maenner ${ }^{58 \text { c }}$, T. Maeno ${ }^{24}$, P. Mättig ${ }^{173}$, S. Mättig ${ }^{41}$, L. Magnoni ${ }^{29}$, E. Magradze ${ }^{54}$, Y. Mahalalel ${ }^{152}$, K. Mahboubi ${ }^{48}$, G. Mahout ${ }^{\text {17 }}$, C. Maiani ${ }^{\text {131a, }}{ }^{\text {S31b }}$, C. Maidantchik ${ }^{23 a}$, A. Maio ${ }^{123 a, b}$, S. Majewski ${ }^{24}$, Y. Makida ${ }^{65}$, N. Makovec ${ }^{114}$, P. Mal ${ }^{135}$, Pa. Malecki ${ }^{38}$, P. Malecki ${ }^{38}$, V.P. Maleev ${ }^{120}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{62}$, D. Malon ${ }^{5}$, C. Malone ${ }^{142}$, S. Maltezos ${ }^{9}$, V. Malyshev ${ }^{106}$, S. Malyukov ${ }^{29}$, R. Mameghani ${ }^{97}$, J. Mamuzic ${ }^{12 b}$, A. Manabe ${ }^{65}$, L. Mandelli ${ }^{88 a}$, I. Mandić ${ }^{73}$, R. Mandrysch ${ }^{15}$, J. Maneira ${ }^{123 a}$, P.S. Mangeard ${ }^{87}$, I.D. Manjavidze ${ }^{64}$, A. Mann ${ }^{54}$, P.M. Manning ${ }^{136}$, A. Manousakis-Katsikakis ${ }^{8}$,
B. Mansoulie ${ }^{135}$, A. Manz ${ }^{98}$, A. Mapelli ${ }^{29}$, L. Mapelli ${ }^{29}$, L. March ${ }^{79}$, J.F. Marchand ${ }^{29}$, F. Marchese ${ }^{132 a, 132 b}$, G. Marchiori ${ }^{77}$, M. Marcisovsky ${ }^{124}$, A. Marin ${ }^{21, *}$, C.P. Marino ${ }^{168}$, F. Marroquim ${ }^{23 a}$, R. Marshall ${ }^{81}$, Z. Marshall ${ }^{29}$, F.K. Martens ${ }^{157}$, S. Marti-Garcia ${ }^{166}$, A.J. Martin ${ }^{74}$, A.J. Martin ${ }^{174}$, B. Martin ${ }^{29}$, B. Martin ${ }^{87}$, F.F. Martin ${ }^{119}$, J.P. Martin ${ }^{92}$, Ph. Martin ${ }^{55}$, T.A. Martin ${ }^{17}$, V.J. Martin ${ }^{45}$, B. Martin dit Latour ${ }^{49}$, S. Martin-Haugh ${ }^{148}$, M. Martinez ${ }^{11}$, V. Martinez Outschoorn ${ }^{57}$, A.C. Martyniuk ${ }^{81}$, M. Marx ${ }^{81}$, F. Marzano ${ }^{1311 a}$, A. Marzin ${ }^{110}$, L. Masetti ${ }^{80}$, T. Mashimo ${ }^{154}$, R. Mashinistov ${ }^{93}$, J. Masik ${ }^{81}$, A.L. Maslennikov ${ }^{106}$, I. Massa ${ }^{19 a}$, 19b , G. Massaro ${ }^{104}$, N. Massol ${ }^{4}$, P. Mastrandrea ${ }^{131 \mathrm{a}, 131 \mathrm{~b}}$, A. Mastroberardino ${ }^{36 a, 36 \mathrm{~b}}$, T. Masubuchi ${ }^{154}$, M. Mathes ${ }^{20}$, P. Matricon ${ }^{114}$, H. Matsumoto ${ }^{154}$, H. Matsunaga ${ }^{154}$, T. Matsushita ${ }^{66}$, C. Mattravers ${ }^{117, c}$, J.M. Maugain ${ }^{29}$, J. Maurer ${ }^{82}$, S.J. Maxfield ${ }^{72}$, D.A. Maximov ${ }^{106, f}$, E.N. May ${ }^{5}$, A. Mayne ${ }^{138}$, R. Mazini ${ }^{150}$, M. Mazur ${ }^{20}$, M. Mazzanti ${ }^{88 a}$, E. Mazzoni ${ }^{121 a, 121 b}$, S.P. Mc Kee ${ }^{86}$, A. McCarn ${ }^{164}$, R.L. McCarthy ${ }^{147}$, T.G. McCarthy ${ }^{28}$, N.A. McCubbin ${ }^{128}$, K.W. McFarlane ${ }^{56}$, J.A. Mcfayden ${ }^{138}$, H. McGlone ${ }^{53}$, G. Mchedlidze ${ }^{51 \mathrm{~b}}$, R.A. McLaren ${ }^{29}$, T. Mclaughlan ${ }^{17}$, S.J. McMahon ${ }^{128}$, R.A. McPherson ${ }^{168, j}$, A. Meade ${ }^{83}$, J. Mechnich ${ }^{104}$, M. Mechtel ${ }^{173}$, M. Medinnis ${ }^{41}$, R. Meera-Lebbai ${ }^{110}$, T. Meguro ${ }^{115}$, R. Mehdiyev ${ }^{92}$, S. Mehlhase ${ }^{35}$, A. Mehta ${ }^{72}$, K. Meier ${ }^{58 \mathrm{a}}$, B. Meirose ${ }^{78}$, C. Melachrinos ${ }^{30}$, B.R. Mellado Garcia ${ }^{171}$, L. Mendoza Navas ${ }^{161}$, Z. Meng ${ }^{150, r}$, A. Mengarelli ${ }^{19 a, 19 b}$, S. Menke ${ }^{98}$, C. Menot ${ }^{29}$, E. Meoni ${ }^{11}$, K.M. Mercurio ${ }^{57}$, P. Mermod ${ }^{117}$, L. Merola ${ }^{101 \mathrm{a}, 101 \mathrm{~b}}$, C. Meroni ${ }^{88 \mathrm{a}}$, F.S. Merritt ${ }^{30}$, A. Messina ${ }^{29}$, J. Metcalfe ${ }^{102}$, A.S. Mete ${ }^{63}$, C. Meyer ${ }^{80}$, C. Meyer ${ }^{30}$, J.-P. Meyer ${ }^{135}$, J. Meyer ${ }^{172}$, J. Meyer ${ }^{54}$, T.C. Meyer ${ }^{29}$, W.T. Meyer ${ }^{63}$, J. Miao ${ }^{32 \mathrm{~d}}$, S. Michal ${ }^{29}$, L. Micu ${ }^{25 a}$, R.P. Middleton ${ }^{128}$, P. Miele ${ }^{29}$, S. Migas ${ }^{72}$, L. Mijović ${ }^{41}$, G. Mikenberg ${ }^{170}$, M. Mikestikova ${ }^{124}$, M. Mikuž ${ }^{73}$, D.W. Miller ${ }^{30}$, R.J. Miller ${ }^{87}$, W.J. Mills ${ }^{167}$, C. Mills ${ }^{57}$, A. Milov ${ }^{170}$, D.A. Milstead ${ }^{145 a, 145 b}$, D. Milstein ${ }^{170}$, A.A. Minaenko ${ }^{127}$, M. Miñano Moya ${ }^{166}$, I.A. Minashvili ${ }^{64}$, A.I. Mincer ${ }^{107}$, B. Mindur ${ }^{37}$, M. Mineev ${ }^{64}$, Y. Ming ${ }^{129}$, L.M. Mir ${ }^{11}$, G. Mirabelli ${ }^{131 \mathrm{a}}$, L. Miralles Verge ${ }^{11}$, A. Misiejuk ${ }^{75}$, J. Mitrevski ${ }^{136}$, G.Y. Mitrofanov ${ }^{127}$, V.A. Mitsou ${ }^{166}$, S. Mitsui ${ }^{65}$, P.S. Miyagawa ${ }^{138}$, K. Miyazaki ${ }^{66}$, J.U. Mjörnmark ${ }^{78}$, T. Moa ${ }^{145 \mathrm{a},}{ }^{145 \mathrm{~b}}$, P. Mockett ${ }^{137}$, S. Moed ${ }^{57}$, V. Moeller ${ }^{27}$, K. Mönig ${ }^{41}$, N. Möser ${ }^{20}$, S. Mohapatra ${ }^{147}$, W. Mohr ${ }^{48}$, S. Mohrdieck-Möck ${ }^{98}$, A.M. Moisseev ${ }^{127, *}$, R. Moles-Valls ${ }^{166}$, J. Molina-Perez ${ }^{29}$, J. Monk ${ }^{76}$, E. Monnier ${ }^{82}$, S. Montesano ${ }^{88 a, 88 b}$, F. Monticelli ${ }^{69}$, S. Monzani ${ }^{19 a, 19 b}$, R.W. Moore ${ }^{2}$, G.F. Moorhead ${ }^{85}$, C. Mora Herrera ${ }^{49}$, A. Moraes ${ }^{53}$, N. Morange ${ }^{135}$, J. Morel ${ }^{54}$, G. Morello ${ }^{36 a, 36 b}$, D. Moreno ${ }^{80}$, M. Moreno Llácer ${ }^{166}$, P. Morettini ${ }^{50 a}$, M. Morii ${ }^{57}$, J. Morin ${ }^{\text {44 }}$, A.K. Morley ${ }^{29}$, G. Mornacchi ${ }^{29}$, S.V. Morozov ${ }^{95}$, J.D. Morris ${ }^{74}$, L. Morvaj ${ }^{100}$, H.G. Moser ${ }^{98}$, M. Mosidze ${ }^{51 \mathrm{~b}}$, J. Moss ${ }^{108}$, R. Mount ${ }^{142}$, E. Mountricha ${ }^{135}$, S.V. Mouraviev ${ }^{93}$, E.J.W. Moyse ${ }^{83}$, M. Mudrinic ${ }^{12 \mathrm{~b}}$, F. Mueller ${ }^{58 \mathrm{a}}$, J. Mueller ${ }^{122}$, K. Mueller ${ }^{20}$, T.A. Müller ${ }^{97}$, D. Muenstermann ${ }^{29}$, A. Muir ${ }^{167}$, Y. Munwes ${ }^{152}$, W.J. Murray ${ }^{128}$, I. Mussche ${ }^{104}$, E. Musto ${ }^{1011^{\prime}, 101 \mathrm{D}}$, A.G. Myagkov ${ }^{127}$, M. Myska ${ }^{124}$, J. Nadal ${ }^{11}$, K. Nagai ${ }^{159}$, K. Nagano ${ }^{65}$, Y. Nagasaka ${ }^{59}$, A.M. Nairz ${ }^{29}$, Y. Nakahama ${ }^{29}$, K. Nakamura ${ }^{154}$, T. Nakamura ${ }^{154}$, I. Nakano ${ }^{109}$, G. Nanava ${ }^{20}$, A. Napier ${ }^{160}$, M. Nash ${ }^{76, c}$, N.R. Nation ${ }^{21}$, T. Nattermann ${ }^{20}$, T. Naumann ${ }^{41}$, G. Navarro ${ }^{161}$, H.A. Neal ${ }^{86}$, E. Nebot ${ }^{79}$, P.Yu. Nechaeva ${ }^{93}$, A. Negri ${ }^{1188^{\prime}, 118 \mathrm{~b}}$, G. Negri ${ }^{29}$, S. Nektarijevic ${ }^{49}$, A. Nelson ${ }^{16{ }^{\prime}}$, S. Nelson ${ }^{142}$, T.K. Nelson ${ }^{142}$, S. Nemecek ${ }^{124}$, P. Nemethy ${ }^{107}$, A.A. Nepomuceno ${ }^{23 \mathrm{a}}$, M. Nessi ${ }^{29, v}$, M.S. Neubauer ${ }^{164}$, A. Neusiedl ${ }^{80}$, R.M. Neves ${ }^{107}$, P. Nevski ${ }^{24}$, P.R. Newman ${ }^{17}$, V. Nguyen Thi Hong ${ }^{135}$, R.B. Nickerson ${ }^{117}$, R. Nicolaidou ${ }^{135}$, L. Nicolas ${ }^{138}$, B. Nicquevert ${ }^{29}$, F. Niedercorn ${ }^{114}$, J. Nielsen ${ }^{136}$, T. Niinikoski ${ }^{29}$, N. Nikiforou ${ }^{34}$, A. Nikiforov ${ }^{15}$, V. Nikolaenko ${ }^{127}$, K. Nikolaev ${ }^{64}$, I. Nikolic-Audit ${ }^{77}$, K. Nikolics ${ }^{49}$, K. Nikolopoulos ${ }^{24}$, H. Nilsen ${ }^{48}$, P. Nilsson ${ }^{7}$, Y. Ninomiya ${ }^{154}$, A. Nisati ${ }^{131 a}$, T. Nishiyama ${ }^{66}$, R. Nisius ${ }^{98}$, L. Nodulman ${ }^{5}$, M. Nomachi ${ }^{115}$, I. Nomidis ${ }^{153}$, M. Nordberg ${ }^{29}$, B. Nordkvist ${ }^{145 a}$, 145b , P.R. Norton ${ }^{128}$, J. Novakova ${ }^{125}$, M. Nozaki ${ }^{65}$, L. Nozka ${ }^{112}$, I.M. Nugent ${ }^{158 a}$, A.-E. Nuncio-Quiroz ${ }^{20}$, G. Nunes Hanninger ${ }^{85}$, T. Nunnemann ${ }^{97}$, E. Nurse ${ }^{76}$, T. Nyman ${ }^{29}$, B.J. O'Brien ${ }^{45}$, S.W. O'Neale ${ }^{17, *}$, D.C. O'Neil ${ }^{141}$, V. O'Shea ${ }^{53}$, F.G. Oakham ${ }^{28, d}$, H. Oberlack ${ }^{98}$, J. Ocariz ${ }^{77}$, A. Ochi ${ }^{66}$, S. Oda ${ }^{154}$, S. Odaka ${ }^{65}$, J. Odier ${ }^{82}$, H. Ogren ${ }^{60}$, A. Oh 81, S.H. Oh ${ }^{44}$, C.C. Ohm ${ }^{145 a, 145 \mathrm{~b}}$, T. Ohshima ${ }^{100}$, H. Ohshita ${ }^{139}$, S. Okada ${ }^{66}$, H. Okawa ${ }^{162}$, Y. Okumura ${ }^{100}$, T. Okuyama ${ }^{154}$, A. Olariu ${ }^{25 a}$, M. Olcese ${ }^{50 a}$, A.G. Olchevski ${ }^{64}$, M. Oliveira ${ }^{123 a, h}$, D. Oliveira Damazio ${ }^{24}$, E. Oliver Garcia ${ }^{166}$, D. Olivito ${ }^{119}$, A. Olszewski ${ }^{38}$, J. Olszowska ${ }^{38}$, C. Omachi ${ }^{66}$, A. Onofre ${ }^{123 a, w}$, P.U.E. Onyisi ${ }^{30}$, C.J. Oram ${ }^{158 a}$, M.J. Oreglia ${ }^{30}$, Y. Oren ${ }^{152}$, D. Orestano ${ }^{133 a, 133 b}$, I. Orlov ${ }^{106}$, C. Oropeza Barrera ${ }^{53}$, R.S. Orr ${ }^{157}$, B. Osculati ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, R. Ospanov ${ }^{119}$, C. Osuna ${ }^{11}$, G. Otero y Garzon ${ }^{26}$, J.P. Ottersbach ${ }^{104}$, M. Ouchrif ${ }^{1344}$,, F. Ould-Saada ${ }^{116}$, A. Ouraou ${ }^{135}$,' Q. Ouyang ${ }^{32 a}$, M. Owen ${ }^{81}$, S. Owen ${ }^{138}$, V.E. Ozcan ${ }^{18 \mathrm{a}}$, N. Ozturk ${ }^{7}$, A. Pacheco Pages ${ }^{11}$, C. Padilla Aranda ${ }^{11}$, S. Pagan Griso ${ }^{14}$, E. Paganis ${ }^{138}$, F. Paige ${ }^{24}$, P. Pais ${ }^{83}$, K. Pajchel ${ }^{116}$, G. Palacino ${ }^{158 b}$,
C.P. Paleari ${ }^{6}$, S. Palestini ${ }^{29}$, D. Pallin ${ }^{33}$, A. Palma ${ }^{123 a}$, J.D. Palmer ${ }^{17}$, Y.B. Pan ${ }^{171}$, E. Panagiotopoulou ${ }^{9}$, B. Panes ${ }^{31 a}$, N. Panikashvili ${ }^{86}$, S. Panitkin ${ }^{24}$, D. Pantea ${ }^{25 a}$, M. Panuskova ${ }^{124}$, V. Paolone ${ }^{122}$, A. Papadelis ${ }^{145 \mathrm{a}}$, Th.D. Papadopoulou ${ }^{9}$, A. Paramonov ${ }^{5}$, W. Park ${ }^{24, x}$, M.A. Parker ${ }^{27}$, F. Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J.A. Parsons ${ }^{34}$, U. Parzefall ${ }^{48}$, E. Pasqualucci ${ }^{131 \mathrm{a}}$, A. Passeri ${ }^{133 \mathrm{a}}$, F. Pastore ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, Fr. Pastore ${ }^{75}$, G. Pásztor ${ }^{49, y}$, S. Pataraia ${ }^{173}$, N. Patel ${ }^{149}$, J.R. Pater ${ }^{81}$, S. Patricelli ${ }^{101 a, 101 b}$, T. Pauly ${ }^{29}$, M. Pecsy ${ }^{143 a}$, M.I. Pedraza Morales ${ }^{171}$, S.V. Peleganchuk ${ }^{106}$, H. Peng ${ }^{32 b}$, R. Pengo ${ }^{29}$, A. Penson ${ }^{34}$, J. Penwell ${ }^{60}$, M. Perantoni ${ }^{23 a}$, K. Perez ${ }^{34, z}$, T. Perez Cavalcanti ${ }^{41}$, E. Perez Codina ${ }^{11}$, M.T. Pérez García-Estañ ${ }^{166}$, V. Perez Reale ${ }^{34}$, L. Perini ${ }^{88 a, 88 b}$, H. Pernegger ${ }^{29}$, R. Perrino ${ }^{71 a}$, P. Perrodo ${ }^{4}$, S. Persembe ${ }^{3 a}$, A. Perus ${ }^{114}$, V.D. Peshekhonov ${ }^{64}$, B.A. Petersen ${ }^{29}$, J. Petersen ${ }^{29}$, T.C. Petersen ${ }^{35}$, E. Petit ${ }^{82}$, A. Petridis ${ }^{153}$, C. Petridou ${ }^{153}$, E. Petrolo ${ }^{131 a}$, F. Petrucci ${ }^{133 a, 133 b}$, D. Petschull ${ }^{41}$, M. Petteni ${ }^{141}$, R. Pezoa ${ }^{31 b}$, A. Phan ${ }^{85}$, P.W. Phillips ${ }^{128}$, G. Piacquadio ${ }^{29}$, E. Piccaro ${ }^{74}$, M. Piccinini ${ }^{19 a}$, 19b , S.M. Piec ${ }^{41}$, R. Piegaia ${ }^{26}$, J.E. Pilcher ${ }^{30}$, A.D. Pilkington ${ }^{81}$, J. Pina ${ }^{123 a, b}$, M. Pinamonti ${ }^{163 a, 163 c}$, A. Pinder ${ }^{117}$, J.L. Pinfold ${ }^{2}$, J. Ping ${ }^{32 c}$, B. Pinto ${ }^{123 a, b}$, O. Pirotte ${ }^{29}$, C. Pizio ${ }^{88 a, 88 b}$, M. Plamondon ${ }^{168}$, M.-A. Pleier ${ }^{24}$, A.V. Pleskach ${ }^{127}$, A. Poblaguev ${ }^{24}$, S. Poddar ${ }^{58 \mathrm{a}}$, F. Podlyski ${ }^{33}$, L. Poggioli ${ }^{114}$, T. Poghosyan ${ }^{20}$, M. Pohl ${ }^{49}$, F. Polci ${ }^{55}$, G. Polesello ${ }^{118 \mathrm{a}}$, A. Policicchio ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, A. Polini ${ }^{19 \mathrm{a}}$, J. Poll ${ }^{74}$, V. Polychronakos ${ }^{24}$, D.M. Pomarede ${ }^{135}$, D. Pomeroy ${ }^{22}$, K. Pommès ${ }^{29}$, L. Pontecorvo ${ }^{131 a}$, B.G. Pope ${ }^{87}$, G.A. Popeneciu ${ }^{25 a}$, D.S. Popovic ${ }^{12 a}$, A. Poppleton ${ }^{29}$, X. Portell Bueso ${ }^{29}$, C. Posch ${ }^{21}$, G.E. Pospelov ${ }^{98}$, S. Pospisil ${ }^{126}$, I.N. Potrap ${ }^{98}$, C.J. Potter ${ }^{148}$, C.T. Potter ${ }^{113}$, G. Poulard ${ }^{29}$, J. Poveda ${ }^{171}$, R. Prabhu ${ }^{76}$, P. Pralavorio ${ }^{82}$, A. Pranko ${ }^{14}$, S. Prasad ${ }^{57}$, R. Pravahan ${ }^{7}$, S. Prell ${ }^{63}$, K. Pretzl ${ }^{16}$, L. Pribyl ${ }^{29}$, D. Price ${ }^{60}$, L.E. Price ${ }^{5}$, M.J. Price ${ }^{29}$, D. Prieur ${ }^{122}$, M. Primavera ${ }^{71 \mathrm{a}}$, K. Prokofiev ${ }^{107}$, F. Prokoshin ${ }^{311}$, S. Protopopescu ${ }^{24}$, J. Proudfoot ${ }^{5}$, X. Prudent ${ }^{43}$, H. Przysiezniak ${ }^{4}$, S. Psoroulas ${ }^{20}$, E. Ptacek ${ }^{113}$, E. Pueschel ${ }^{83}$, J. Purdham ${ }^{86}$, M. Purohit ${ }^{24, x}$, P. Puzo ${ }^{114}$, Y. Pylypchenko ${ }^{116}$, J. Qian ${ }^{86}$, Z. Qian ${ }^{82}$, Z. Qin ${ }^{41}$, A. Quadt ${ }^{54}$, D.R. Quarrie ${ }^{14}$, W.B. Quayle ${ }^{171}$, F. Quinonez ${ }^{31}{ }^{1 a}$, M. Raas ${ }^{103}$, V. Radescu ${ }^{58 \mathrm{~b}}$, B. Radics ${ }^{20}$, T. Rador ${ }^{18 \mathrm{a}}$, F. Ragusa ${ }^{\text {88a, } 88 \mathrm{~b}}$, G. Rahal ${ }^{176}$, A.M. Rahimi ${ }^{108}$, D. Rahm ${ }^{24}$, S. Rajagopalan ${ }^{24}$, M. Rammensee ${ }^{48}$, M. Rammes ${ }^{140}$, M. Ramstedt ${ }^{145 a, 145 \mathrm{~b}}$, A.S. Randle-Conde ${ }^{39}$, K. Randrianarivony ${ }^{28}$, P.N. Ratoff ${ }^{70}$, F. Rauscher ${ }^{97}$, M. Raymond ${ }^{29}$, A.L. Read ${ }^{116}$, D.M. Rebuzzi ${ }^{118 \mathrm{a}, 118 \mathrm{~b}}$, A. Redelbach ${ }^{172}$, G. Redlinger ${ }^{24}$, R. Reece ${ }^{119}$, K. Reeves ${ }^{40}$, A. Reichold ${ }^{104}$, E. Reinherz-Aronis ${ }^{152}$, A. Reinsch ${ }^{113}$, I. Reisinger ${ }^{42}$, D. Reljic ${ }^{12 a}$, C. Rembser ${ }^{29}$, Z.L. Ren ${ }^{150}$, A. Renaud ${ }^{114}$, P. Renkel ${ }^{39}$, M. Rescigno ${ }^{131 a}$, S. Resconi ${ }^{88 a}$, B. Resende ${ }^{135}$, P. Reznicek ${ }^{97}$, R. Rezvani ${ }^{157}$, A. Richards ${ }^{\prime 76}$, R. Richter ${ }^{98}$, E. Richter-Was ${ }^{4, a a}$, M. Ridel ${ }^{\text {B7 }}{ }^{77}$, M. Rijpstra ${ }^{104}$, M. Rijssenbeek ${ }^{147}$, A. Rimoldi ${ }^{118 a, 118 \mathrm{~b}}$, L. Rinaldi ${ }^{19 \mathrm{a}}$, R.R. Rios ${ }^{39}$, I. Riu ${ }^{11}$, G. Rivoltella ${ }^{88 \mathrm{a}}{ }^{\prime}, 88 \mathrm{~b}$, F. Rizatdinova ${ }^{111}$, E. Rizvi ${ }^{74}$, S.H. Robertson ${ }^{84, j}$, A. Robichaud-Veronneau ${ }^{117}$, D. Robinson ${ }^{27}$, J.E.M. Robinson ${ }^{76}$, M. Robinson ${ }^{113}$, A. Robson ${ }^{53}$, J.G. Rocha de Lima ${ }^{105}$, C. Roda ${ }^{121 a, 121 b}$, D. Roda Dos Santos ${ }^{29}$, S. Rodier ${ }^{79}$, D. Rodriguez ${ }^{161}$, Y. Rodriguez Garcia ${ }^{161}$, A. Roe ${ }^{54}$, S. Roe ${ }^{29}$, O. Røhne ${ }^{116}$, V. Rojo ${ }^{1}$, S. Rolli ${ }^{160}$, A. Romaniouk ${ }^{95}$, M. Romano ${ }^{19 a}$, 19 b , V.M. Romanov ${ }^{64}$, G. Romeo ${ }^{26}$, L. Roos ${ }^{77}$, E. Ros ${ }^{166}$, S. Rosati ${ }^{131 a}$, K. Rosbach ${ }^{49}$, A. Rose ${ }^{148}$, M. Rose ${ }^{75}$, G.A. Rosenbaum ${ }^{157}$, E.I. Rosenberg ${ }^{63}$, P.L. Rosendahl ${ }^{13}$, O. Rosenthal ${ }^{140}$, L. Rosselet ${ }^{49}$, V. Rossetti ${ }^{11}$, E. Rossi ${ }^{131 a, 131 \mathrm{~b}}$, L.P. Rossi ${ }^{50 \mathrm{a}}$, M. Rotaru ${ }^{25 \mathrm{a}}$, I. Roth ${ }^{\text {' } 170}$, J. Rothberg ${ }^{137^{\prime}}$, D. Rousseau ${ }^{114}$, C.R. Royon ${ }^{135}$, A. Rozanov ${ }^{82}$, Y. Rozen ${ }^{151}$, X. Ruan ${ }^{114, a b}$, I. Rubinskiy ${ }^{41}$, B. Ruckert ${ }^{97}$, N. Ruckstuhl ${ }^{104}$, V.I. Rud ${ }^{96}$, C. Rudolph ${ }^{43}$, G. Rudolph ${ }^{61}$, F. Rühr ${ }^{6}$, F. Ruggieri ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, A. Ruiz-Martinez ${ }^{63}$, V. Rumiantsev ${ }^{90, *}$, L. Rumyantsev ${ }^{64}$, K. Runge ${ }^{48}$, O. Runolfsson ${ }^{20}$, Z. Rurikova ${ }^{48}$, N.A. Rusakovich ${ }^{64}$, D.R. Rust ${ }^{60}$, J.P. Rutherfoord ${ }^{6}$, C. Ruwiedel ${ }^{14}$, P. Ruzicka ${ }^{124}$, Y.F. Ryabov ${ }^{120}$, V. Ryadovikov ${ }^{127}$, P. Ryan ${ }^{87}$, M. Rybar ${ }^{125}$, G. Rybkin ${ }^{114}$, N.C. Ryder ${ }^{117}$, S. Rzaeva ${ }^{10}$, A.F. Saavedra ${ }^{149}$, I. Sadeh ${ }^{152}$, H.F.-W. Sadrozinski ${ }^{136}$, R. Sadykov ${ }^{64}$, F. Safai Tehrani ${ }^{131 a}$, H. Sakamoto ${ }^{154}$, G. Salamanna ${ }^{74}$, A. Salamon ${ }^{132 a}$, M. Saleem ${ }^{110}$, D. Salihagic ${ }^{98}$, A. Salnikov ${ }^{142}$, J. Salt ${ }^{166}$, B.M. Salvachua Ferrando ${ }^{5}$, D. Salvatore ${ }^{36 a, 36 b}$, F. Salvatore ${ }^{148}$, A. Salvucci ${ }^{103}$, A. Salzburger ${ }^{29}$, D. Sampsonidis ${ }^{153}$, B.H. Samset ${ }^{116}$, A. Sanchez ${ }^{101 a, 101 b}$, H. Sandaker ${ }^{13}$, H.G. Sander ${ }^{80}$, M.P. Sanders ${ }^{97}$, M. Sandhoff ${ }^{173}$, T. Sandoval ${ }^{27}$, C. Sandoval ${ }^{161}$, R. Sandstroem ${ }^{98}$, S. Sandvoss ${ }^{173}$, D.P.C. Sankey ${ }^{128}$, A. Sansoni ${ }^{47}$, C. Santamarina Rios ${ }^{84}$, C. Santoni ${ }^{33}$, R. Santonico ${ }^{132 a, 132 b}$, H. Santos ${ }^{123 a}$, J.G. Saraiva ${ }^{123 a}$, T. Sarangi ${ }^{171}$, E. Sarkisyan-Grinbaum ${ }^{7}$, F. Sarri ${ }^{\text {121a, } 121 \mathrm{~b}}$, G. Sartisohn ${ }^{173}$, O. Sasaki ${ }^{65}$ N. Sasao ${ }^{67}$, I. Satsounkevitch ${ }^{89}$, G. Sauvage ${ }^{4}$, E. Sauvan ${ }^{4}$, J.B. Sauvan ${ }^{114}$, P. Savard ${ }^{157, d}$, V. Savinov ${ }^{122}$, D.O. Savu ${ }^{29}$, L. Sawyer ${ }^{24, l}$, D.H. Saxon ${ }^{53}$, L.P. Says ${ }^{33}$, C. Sbarra ${ }^{19 a}$, A. Sbrizzi ${ }^{19 a, 19 b}$, O. Scallon ${ }^{92}$, D.A. Scannicchio ${ }^{162}$, J. Schaarschmidt ${ }^{114}$, P. Schacht ${ }^{98}$, U. Schäfer ${ }^{80}$, S. Schaepe ${ }^{20}$, S. Schaetzel ${ }^{58 \mathrm{~b}}$, A.C. Schaffer ${ }^{114}$, D. Schaile ${ }^{97}$, R.D. Schamberger ${ }^{147}$, A.G. Schamov ${ }^{100}$, V. Scharf ${ }^{58 a}$, V.A. Schegelsky ${ }^{120}$,
D. Scheirich ${ }^{86}$, M. Schernau ${ }^{162}$, M.I. Scherzer ${ }^{14}$, C. Schiavi ${ }^{50 a, 50 b}$, J. Schieck ${ }^{97}$, M. Schioppa ${ }^{36 a, 36 b}$, S. Schlenker ${ }^{29}$, J.L. Schlereth ${ }^{5}$, E. Schmidt ${ }^{48}$, K. Schmieden ${ }^{20}$, C. Schmitt ${ }^{80}$, S. Schmitt ${ }^{58 \mathrm{D}}$, M. Schmitz ${ }^{20}$, A. Schöning ${ }^{58 b}$, M. Schott ${ }^{29}$, D. Schouten ${ }^{158 \mathrm{a}}$, J. Schovancova ${ }^{124}$, M. Schram ${ }^{84}$, C. Schroeder ${ }^{80}$, N. Schroer ${ }^{58 c}$, S. Schuh ${ }^{29}$, G. Schuler ${ }^{29}$, J. Schultes ${ }^{173}$, H.-C. Schultz-Coulon ${ }^{58 a}$, H. Schulz ${ }^{15}$, J.W. Schumacher ${ }^{20}$, M. Schumacher ${ }^{48}$, B.A. Schumm ${ }^{136}$, Ph. Schune ${ }^{135}$, C. Schwanenberger ${ }^{81}$, A. Schwartzman ${ }^{142}$, Ph. Schwemling ${ }^{77}$, R. Schwienhorst ${ }^{87}$, R. Schwierz ${ }^{43}$, J. Schwindling ${ }^{135}$, T. Schwindt ${ }^{20}$, W.G. Scott ${ }^{128}$, J. Searcy ${ }^{113}$, G. Sedov ${ }^{41}$, E. Sedykh ${ }^{120}$, E. Segura ${ }^{11}$, S.C. Seidel ${ }^{102}$, A. Seiden ${ }^{136}$, F. Seifert ${ }^{43}$, J.M. Seixas ${ }^{23 a}$, G. Sekhniaidze ${ }^{101 a}$, D.M. Seliverstov ${ }^{120}$, B. Sellden ${ }^{145 a}$, G. Sellers ${ }^{72}$, M. Seman ${ }^{143 \mathrm{~b}}$, N. Semprini-Cesari ${ }^{19 a, 19 b}$, C. Serfon ${ }^{97}$, L. Serin ${ }^{114}$, R. Seuster ${ }^{98}$, H. Severini ${ }^{\text {'110 }}$, M.E. Sevior ${ }^{85}$, A. Sfyrla ${ }^{29}$, E. Shabalin' ${ }^{54}$, M. Shamim ${ }^{113}$, L.Y. Shan ${ }^{32 a}$, J.T. Shank ${ }^{21}$, Q.T. Shao ${ }^{85}$, M. Shapiro ${ }^{14}$, P.B. Shatalov ${ }^{94}$, L. Shaver ${ }^{6}$, K. Shaw ${ }^{163 a, 163 c}$, D. Sherman ${ }^{174}$, P. Sherwood ${ }^{76}$, A. Shibata ${ }^{107}$, H. Shichi ${ }^{100}$, S. Shimizu ${ }^{29}$, M. Shimojima ${ }^{99}$, T. Shin ${ }^{56}$, M. Shiyakova ${ }^{64}$, A. Shmeleva ${ }^{93}$, M.J. Shochet ${ }^{30}$, D. Short ${ }^{117}$, S. Shrestha ${ }^{63}$, M.A. Shupe ${ }^{6}$, P. Sicho ${ }^{124}$, A. Sidoti ${ }^{131 a}$, A. Siebel ${ }^{173}$, F. Siegert ${ }^{48}$, Dj. Sijacki ${ }^{12 a}$, O. Silbert ${ }^{170}$, J. Silva ${ }^{123 a, b}$, Y. Silver ${ }^{152}$, D. Silverstein ${ }^{142}$, S.B. Silverstein ${ }^{145 a}$, V. Simak ${ }^{126}$, O. Simard ${ }^{135}$, Lj. Simic ${ }^{12 a}$, S. Simion ${ }^{114}$, B. Simmons ${ }^{76}$, M. Simonyan ${ }^{35}$, P. Sinervo ${ }^{157}$, N.B. Sinev ${ }^{113}$, V. Sipica ${ }^{140}$, G. Siragusa ${ }^{172}$, A. Sircar ${ }^{24}$, A.N. Sisakyan ${ }^{64}$, S.Yu. Sivoklokov ${ }^{96}$, J. Sjölin ${ }^{145 a, 145 b}$, T.B. Sjursen ${ }^{13}$, L.A. Skinnari ${ }^{14}$, H.P. Skottowe ${ }^{57}$, K. Skovpen ${ }^{106}$, P. Skubic ${ }^{110}$, N. Skvorodnev 2 22 $^{\prime}$, M. Slater ${ }^{17}$, T. Slavicek ${ }^{126}$, K. Sliwa ${ }^{160}$, J. Sloper ${ }^{29}$, V. Smakhtin ${ }^{170}$, S.Yu. Smirnov ${ }^{95}$, L.N. Smirnova ${ }^{96}$, O. Smirnova ${ }^{78}$, B.C. Smith ${ }^{57}$, D. Smith ${ }^{142}$, K.M. Smith ${ }^{53}$, M. Smizanska ${ }^{70}$, K. Smolek ${ }^{126}$, A.A. Snesarev ${ }^{93}$, S.W. Snow ${ }^{81}$, J. Snow ${ }^{110}$, J. Snuverink ${ }^{104}$, S. Snyder ${ }^{24}$, M. Soares ${ }^{123 a}$, R. Sobie ${ }^{168, j}$, J. Sodomka ${ }^{126}$, A. Soffer ${ }^{152}$, C.A. Solans ${ }^{166}$, M. Solar ${ }^{126}$, J. Solc ${ }^{126}$, E. Soldatov ${ }^{95}$, U. Soldevila ${ }^{166}$, E. Solfaroli Camillocci ${ }^{131}{ }^{\text {ª, }} 131 \mathrm{~B}$, A.A. Solodkov ${ }^{127}$, O.V. Solovyanov ${ }^{127}$, J. Sondericker ${ }^{24}$, N. Soni ${ }^{2}$, V. Sopko ${ }^{126}$, B. Sopko ${ }^{126}$, M. Sosebee ${ }^{7}$, R. Soualah ${ }^{163 a, 163 c}$, A. Soukharev ${ }^{106}$, S. Spagnolo ${ }^{71 a, 71 b}$, F. Spanò ${ }^{75}$, R. Spighi ${ }^{19 a}$, G. Spigo ${ }^{29}$, F. Spila ${ }^{131 a, 131 b}$, R. Spiwoks ${ }^{29}$, M. Spousta ${ }^{125}$, T. Spreitzer ${ }^{157}$, B. Spurlock ${ }^{7}$, R.D. St. Denis ${ }^{53}$, T. Stahl ${ }^{140}$, J. Stahlman ${ }^{119}$, R. Stamen ${ }^{58 a}$, E. Stanecka ${ }^{38}$, R.W. Stanek ${ }^{5}$, C. Stanescu ${ }^{133 a}$, S. Stapnes ${ }^{116}$, E.A. Starchenko ${ }^{127}$, J. Stark ${ }^{55}$, P. Staroba ${ }^{124}$, P. Starovoitov ${ }^{90}$, A. Staude ${ }^{97}$, P. Stavina ${ }^{143 a}$, G. Stavropoulos ${ }^{14}$, G. Steele ${ }^{53}$, P. Steinbach ${ }^{43}$, P. Steinberg ${ }^{24}$, I. Stekl ${ }^{126}$, B. Stelzer ${ }^{141}$, H.J. Stelzer ${ }^{87}$, O. Stelzer-Chilton ${ }^{158 \mathrm{a}}$, H. Stenzel ${ }^{52}$, K. Stevenson ${ }^{74}$, G.A. Stewart ${ }^{29}$, J.A. Stillings ${ }^{20}$, M.C. Stockton ${ }^{29}$, K. Stoerig ${ }^{48}$, G. Stoicea ${ }^{25 a}$, S. Stonjek ${ }^{98}$, P. Strachota ${ }^{125}$, A.R. Stradling ${ }^{7}$, A. Straessner ${ }^{43}$, J. Strandberg ${ }^{146}$, S. Strandberg ${ }^{145 a}$, 145 b , A. Strandlie ${ }^{116}$, M. Strang ${ }^{108}$, E. Strauss ${ }^{142}$, M. Strauss ${ }^{110}$, P. Strizenec ${ }^{143 b}$, R. Ströhmer ${ }^{172}$, D.M. Strom ${ }^{113}$, J.A. Strong $75, *$, R. Stroynowski ${ }^{39}$, J. Strube ${ }^{128}$, B. Stugu ${ }^{13}$, I. Stumer ${ }^{24, *}$, J. Stupak ${ }^{147}$, P. Sturm ${ }^{173}$, D.A. Soh ${ }^{150, t}$, D. Su ${ }^{142}$, HS. Subramania ${ }^{2}$, A. Succurro ${ }^{11}$, Y. Sugaya ${ }^{115}$, T. Sugimoto ${ }^{100}$, C. Suhr ${ }^{105}$, K. Suita ${ }^{66}$, M. Suk ${ }^{125}$, V.V. Sulin ${ }^{93}$, S. Sultansoy ${ }^{3 d}$, T. Sumida ${ }^{29}$, X. Sun ${ }^{55}$, J.E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{138}$, S. Sushkov ${ }^{11}$, G. Susinno ${ }^{36 a, 36 b}$, M.R. Sutton ${ }^{148}$, Y. Suzuki ${ }^{65}$, Y. Suzuki ${ }^{66}$, M. Svatos ${ }^{124}$, Yu.M. Sviridov ${ }^{127}$, S. Swedish ${ }^{167}$, I. Sykora ${ }^{143 a}$, T. Sykora ${ }^{125}$, B. Szeless ${ }^{29}$, J. Sánchez ${ }^{166}$, D. Ta ${ }^{104}$, K. Tackmann ${ }^{41}$, A. Taffard ${ }^{162}$, R. Tafirout ${ }^{158 a}$, N. Taiblum ${ }^{152}$, Y. Takahashi ${ }^{100}$, H. Takai ${ }^{24}$, R. Takashima ${ }^{68}$, H. Takeda ${ }^{66}$, T. Takeshita ${ }^{139}$, M. Talby ${ }^{82}$, A. Talyshev ${ }^{106, f}$, M.C. Tamsett ${ }^{\text {²4 }}$, J. Tanaka ${ }^{154}$, R. Tanaka ${ }^{114}$, S. Tanaka ${ }^{130}$, S. Tanaka ${ }^{65}$, Y. Tanaka ${ }^{99}$, K. Tani ${ }^{66}$, N. Tannoury ${ }^{82}$, G.P. Tappern ${ }^{29}$, S. Tapprogge ${ }^{80}$, D. Tardif ${ }^{157}$, S. Tarem ${ }^{151}$, F. Tarrade ${ }^{28}$, G.F. Tartarelli ${ }^{88 a}$, P. Tas ${ }^{125}$, M. Tasevsky ${ }^{\prime}{ }^{124}$, E. Tassi ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, M. Tatarkhanov ${ }^{14}$, Y. Tayalati ${ }^{134 \mathrm{~d}}$, C. Taylor ${ }^{76}$, F.E. Taylor ${ }^{91}$, G.N. Taylor ${ }^{85}$, W. Taylor ${ }^{158 \mathrm{~b}}$, M. Teinturier ${ }^{114}$, M. Teixeira Dias Castanheira ${ }^{74}$, P. Teixeira-Dias ${ }^{75}$, K.K. Temming ${ }^{48}$, H. Ten Kate ${ }^{29}$, P.K. Teng ${ }^{150}$, S. Terada ${ }^{65}$, K. Terashi ${ }^{154}$, J. Terron ${ }^{79}$, M. Terwort ${ }^{41, p}$, M. Testa ${ }^{47}$, R.J. Teuscher ${ }^{157, j}$, J. Thadome ${ }^{173}$, J. Therhaag ${ }^{20}$, T. Theveneaux-Pelzer ${ }^{77}$, M. Thioye ${ }^{174}$, S. Thoma ${ }^{48}$, J.P. Thomas ${ }^{17}$, E.N. Thompson ${ }^{34}$, P.D. Thompson ${ }^{17}$, P.D. Thompson ${ }^{157}$, A.S. Thompson ${ }^{53}$, E. Thomson ${ }^{119}$, M. Thomson ${ }^{27}$, R.P. Thun ${ }^{86}$, F. Tian ${ }^{34}$, T. Tic ${ }^{124}$, V.O. Tikhomirov ${ }^{93}$, Y.A. Tikhonov ${ }^{106, f}$, S. Timoshenko ${ }^{95}$, P. Tipton ${ }^{174}$, F.J. Tique Aires Viegas ${ }^{29}$, S. Tisserant ${ }^{82}$, B. Toczek ${ }^{37}$, T. Todorov ${ }^{4}$, S. Todorova-Nova ${ }^{160}$, B. Toggerson ${ }^{162}$, J. Tojo ${ }^{65}$, S. Tokár ${ }^{143 \mathrm{a}}$, K. Tokunaga ${ }^{66}$, K. Tokushuku ${ }^{65}$, K. Tollefson ${ }^{87}$, M. Tomoto ${ }^{100}$, L. Tompkins ${ }^{30}$, K. Toms ${ }^{102}$, G. Tong ${ }^{32 a}$, A. Tonoyan ${ }^{13}$, C. Topfel ${ }^{16}$, N.D. Topilin ${ }^{64}$, I. Torchiani ${ }^{29}$, E. Torrence ${ }^{113}$, H. Torres ${ }^{77}$, E. Torró Pastor ${ }^{166}$, J. Toth ${ }^{82, y}$, F. Touchard ${ }^{82}$, D.R. Tovey ${ }^{138}$, D. Traynor ${ }^{74}$, T. Trefzger ${ }^{172}$, L. Tremblet ${ }^{29}$, A. Tricoli ${ }^{29}$, I.M. Trigger ${ }^{158 a}$, S. Trincaz-Duvoid ${ }^{77}$, T.N. Trinh ${ }^{77}$, M.F. Tripiana ${ }^{69}$, W. Trischuk ${ }^{157}$, A. Trivedi ${ }^{24, x}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{88 a}$, M. Trottier-McDonald ${ }^{141}$,
M. Trzebinski ${ }^{38}$, A. Trzupek ${ }^{38}$, C. Tsarouchas ${ }^{29}$, J.C.-L. Tseng ${ }^{117}$, M. Tsiakiris ${ }^{104}$, P.V. Tsiareshka ${ }^{89}$, D. Tsionou ${ }^{4, a c}$, G. Tsipolitis ${ }^{9}$, V. Tsiskaridze ${ }^{48}$, E.G. Tskhadadze ${ }^{51 a}$, I.I. Tsukerman ${ }^{94}$, V. Tsulaia ${ }^{14}$, J.-W. Tsung ${ }^{20}$, S. Tsuno ${ }^{65}$, D. Tsybychev ${ }^{147}$, A. Tua ${ }^{138}$, A. Tudorache ${ }^{25 a}$, V. Tudorache ${ }^{25 a}$, J.M. Tuggle ${ }^{30}$, M. Turala ${ }^{38}$, D. Turecek ${ }^{126}$, I. Turk Cakir ${ }^{3 e}$, E. Turlay ${ }^{104}$, R. Turra ${ }^{88 a}, 88$ b , P.M. Tuts ${ }^{34}$, A. Tykhonov ${ }^{73}$, M. Tylmad ${ }^{145 a, 145 b}$, M. Tyndel ${ }^{128}$, H. Tyrvainen ${ }^{29}$, G. Tzanakos ${ }^{8}$, K. Uchida ${ }^{20}$, I. Ueda ${ }^{154}$, R. Ueno ${ }^{28}$, M. Ugland ${ }^{13}$, M. Uhlenbrock ${ }^{20}$, M. Uhrmacher ${ }^{54}$, F. Ukegawa ${ }^{159}$, G. Unal ${ }^{29}$, D.G. Underwood ${ }^{5}$, A. Undrus ${ }^{24}$, G. Unel ${ }^{162}$, Y. Unno ${ }^{65}$, D. Urbaniec ${ }^{34}$, E. Urkovsky ${ }^{152}$, G. Usai ${ }^{7}$, M. Uslenghi ${ }^{118 a, 118 b}$, L. Vacavant ${ }^{82}$, V. Vacek ${ }^{126}$, B. Vachon ${ }^{84}$, S. Vahsen ${ }^{14}$, J. Valenta ${ }^{124}$, P. Valente ${ }^{131 a}$, S. Valentinetti ${ }^{19 a}$, 19b , S. Valkar ${ }^{125}$, E. Valladolid Gallego ${ }^{166}$, S. Vallecorsa ${ }^{151}$, J.A. Valls Ferrer ${ }^{166}$, H. van der Graaf ${ }^{104}$, E. van der Kraaij ${ }^{104}$, R. Van Der Leeuw ${ }^{104}$, E. van der Poel ${ }^{104}$, D. van der Ster ${ }^{29}$, N. van Eldik ${ }^{83}$, P. van Gemmeren ${ }^{5}$, Z. van Kesteren ${ }^{104}$, I. van Vulpen ${ }^{104}$, M. Vanadia ${ }^{98}$, W. Vandelli ${ }^{29}$, G. Vandoni ${ }^{29}$, A. Vaniachine ${ }^{5}$, P. Vankov ${ }^{41}$, F. Vannucci ${ }^{77}$, F. Varela Rodriguez ${ }^{29}$, R. Vari ${ }^{131 a}$, E.W. Varnes ${ }^{6}$, D. Varouchas ${ }^{14}$, A. Vartapetian ${ }^{7}$, K.E. Varvell ${ }^{149}$, V.I. Vassilakopoulos ${ }^{56}$, F. Vazeille ${ }^{33}$, G. Vegni ${ }^{88 a, 88 b}$, J.J. Veillet ${ }^{114}$, C. Vellidis ${ }^{8}$, F. Veloso ${ }^{123 a}$, R. Veness ${ }^{29}$, S. Veneziano ${ }^{131 a}$, A. Ventura ${ }^{71 a}$, 71 b , D. Ventura ${ }^{137}$, M. Venturi ${ }^{48}$, N. Venturi ${ }^{16}$, V. Vercesi ${ }^{118 \mathrm{a}}$, M. Verducci ${ }^{137}$, W. Verkerke ${ }^{104}$, J.C. Vermeulen ${ }^{104}$, A. Vest ${ }^{43}$, M.C. Vetterli ${ }^{141, d}$, I. Vichou ${ }^{164}$, T. Vickey ${ }^{144 b, a d}$, O.E. Vickey Boeriu ${ }^{144 b}$, G.H.A. Viehhauser ${ }^{117}$, S. Viel ${ }^{167}$, M. Villa ${ }^{19 a, 19 b}$, M. Villaplana Perez ${ }^{166}$, E. Vilucchi ${ }^{47}$, M.G. Vincter ${ }^{28}$, E. Vinek ${ }^{29}$, V.B. Vinogradov ${ }^{64}$, M. Virchaux ${ }^{135, *}$, J. Virzi ${ }^{14}$, O. Vitells ${ }^{170}$, M. Viti ${ }^{41}$, I. Vivarelli ${ }^{48}$, F. Vives Vaque ${ }^{2}$, S. Vlachos ${ }^{9}$, D. Vladoiu ${ }^{97}$, M. Vlasak ${ }^{126}$, N. Vlasov ${ }^{20}$, A. Vogel ${ }^{20}$, P. Vokac ${ }^{126}$, G. Volpi ${ }^{47}$, M. Volpi ${ }^{85}$, G. Volpini ${ }^{88 \mathrm{a}}$, H. von der Schmitt ${ }^{98}$, J. von Loeben ${ }^{98}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{20}$, V. Vorobel ${ }^{125}$, A.P. Vorobiev ${ }^{127}$, V. Vorwerk ${ }^{11}$, M. Vos ${ }^{166}$, R. Voss ${ }^{29}$, T.T. Voss ${ }^{173}$, J.H. Vossebeld ${ }^{72}$, N. Vranjes ${ }^{12 a}$, M. Vranjes Milosavljevic ${ }^{104}$, V. Vrba ${ }^{124}$, M. Vreeswijk ${ }^{104}$, T. Vu Anh ${ }^{80}$, R. Vuillermet ${ }^{29}$, I. Vukotic ${ }^{114}$, W. Wagner ${ }^{173}$, P. Wagner ${ }^{119}$, H. Wahlen ${ }^{173}$, J. Wakabayashi ${ }^{100}$, J. Walbersloh ${ }^{42}$, S. Walch ${ }^{86}$, J. Walder ${ }^{70}$, R. Walker ${ }^{97}$, W. Walkowiak ${ }^{140}$, R. Wall ${ }^{174}$, P. Waller ${ }^{72}$, C. Wang ${ }^{44}$, H. Wang ${ }^{171}$, H. Wang ${ }^{32 \mathrm{~b}, a e}$, J. Wang ${ }^{150}$, J. Wang ${ }^{55}$, J.C. Wang ${ }^{137}$, R. Wang ${ }^{102}$, S.M. Wang ${ }^{150}$, A. Warburton ${ }^{84}$, C.P. Ward ${ }^{27}$, M. Warsinsky ${ }^{48}$, R. Wastie ${ }^{117}$, P.M. Watkins ${ }^{17}$, A.T. Watson ${ }^{17}$, M.F. Watson ${ }^{17}$, G. Watts ${ }^{137}$, S. Watts ${ }^{81}$, A.T. Waugh ${ }^{149}$, B.M. Waugh ${ }^{76}$, J. Weber ${ }^{42}$, M. Weber ${ }^{128}$, M.S. Weber ${ }^{16}$, P. Weber ${ }^{54}$, A.R. Weidberg ${ }^{117}$, P. Weigell ${ }^{98}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, H. Wellenstein ${ }^{22}$, P.S. Wells ${ }^{29}$, M. Wen ${ }^{47}$, T. Wenaus ${ }^{24}$, S. Wendler ${ }^{122}$, Z. Weng ${ }^{150, t}$, T. Wengler ${ }^{29}$, S. Wenig ${ }^{29}$, N. Wermes ${ }^{20}$, M. Werner ${ }^{48}$, P. Werner ${ }^{29}$, M. Werth ${ }^{162}$, M. Wessels ${ }^{58 a}$, C. Weydert ${ }^{55}$, K. Whalen ${ }^{28}$, S.J. Wheeler-Ellis ${ }^{162}$, S.P. Whitaker ${ }^{21}$, A. White ${ }^{7}$, M.J. White ${ }^{85}$, S.R. Whitehead ${ }^{117}$, D. Whiteson ${ }^{162}$, D. Whittington ${ }^{60}$, F. Wicek ${ }^{114}$, D. Wicke ${ }^{173}$, F.J. Wickens ${ }^{128}$, W. Wiedenmann ${ }^{171}$, M. Wielers ${ }^{128}$, P. Wienemann ${ }^{20}$, C. Wiglesworth ${ }^{74}$, L.A.M. Wiik-Fuchs ${ }^{48}$, P.A. Wijeratne ${ }^{76}$, A. Wildauer ${ }^{166}$, M.A. Wildt ${ }^{41, p}$, I. Wilhelm ${ }^{125}$, H.G. Wilkens ${ }^{29}$, J.Z. Will ${ }^{97}$, E. Williams ${ }^{34}$, H.H. Williams ${ }^{119}$, W. Willis ${ }^{34}$, S. Willocq ${ }^{83}$, J.A. Wilson ${ }^{17}$, M.G. Wilson ${ }^{142}$, A. Wilson ${ }^{86}$, I. Wingerter-Seez ${ }^{4}$, S. Winkelmann ${ }^{48}$, F. Winklmeier ${ }^{29}$, M. Wittgen ${ }^{142}$, M.W. Wolter ${ }^{38}$, H. Wolters ${ }^{123 a, h}$, W.C. Wong ${ }^{40}$, G. Wooden ${ }^{86}$, B.K. Wosiek ${ }^{38}$, J. Wotschack ${ }^{29}$, M.J. Woudstra ${ }^{83}$, K.W. Wozniak ${ }^{38}$, K. Wraight ${ }^{53}$, C. Wright ${ }^{53}$, M. Wright ${ }^{53}$, B. Wrona ${ }^{72}$, S.L. Wu ${ }^{171}$, X. Wu ${ }^{49}$, Y. Wu $^{32 \mathrm{~b}, a f}$, E. Wulf ${ }^{34}$, R. Wunstorf ${ }^{42}$, B.M. Wynne ${ }^{45}$, S. Xella ${ }^{35}$, M. Xiao ${ }^{135}$, S. Xie ${ }^{48}$, Y. Xie ${ }^{32 \mathrm{a}}, \mathrm{C} . \mathrm{Xu}^{32 \mathrm{~b}, a g}$, D. Xu ${ }^{138}, \mathrm{G}$. Xu $^{32 \mathrm{a}}$, B. Yabsley ${ }^{149}$, S. Yacoob ${ }^{144 \mathrm{~b}}$, M. Yamada ${ }^{65}$, H. Yamaguchi ${ }^{154}$, A. Yamamoto ${ }^{65}$, K. Yamamoto ${ }^{63}$, S. Yamamoto ${ }^{154}$, T. Yamamura ${ }^{154}$, T. Yamanaka ${ }^{154}$, J. Yamaoka ${ }^{44}$, T. Yamazaki ${ }^{154}$, Y. Yamazaki ${ }^{66}$, Z. Yan ${ }^{21}$, H. Yang ${ }^{\text {866 }}$, U.K. Yang ${ }^{81}$, Y. Yang ${ }^{60}$, Y. Yang ${ }^{32 \mathrm{Ja}}$, Z. Yang ${ }^{145 a ́ a}{ }^{145 \mathrm{~b}}$, S. Yanush ${ }^{90}$, Y. Yao ${ }^{14}$, Y. Yasu ${ }^{65}$, G.V. Ybeles Smit ${ }^{129}$, J. Ye ${ }^{39}$, S. Ye ${ }^{24}$, M. Yilmaz ${ }^{3 \mathrm{C}}$, R. Yoosoofmiya ${ }^{122}$, K. Yorita ${ }^{169}$, R. Yoshida ${ }^{5}$, C. Young ${ }^{142}$, S. Youssef ${ }^{21}$, D. Yu ${ }^{24}$, J. Yu ${ }^{7}$, J. Yu ${ }^{111}$, L. Yuan ${ }^{32 a, a h, ~}$ A. Yurkewicz ${ }^{105}$, B. Zabinski ${ }^{38}$, V.G. Zaets ${ }^{127}$, R. Zaidan ${ }^{62}$, A.M. Zaitsev ${ }^{127}$, Z. Zajacova ${ }^{29}$, Yo.K. Zalite ${ }^{120}$, L. Zanello ${ }^{131 \mathrm{a}, 131 \mathrm{~B}}$, P. Zarzhitsky ${ }^{39}$, A. Zaytsev ${ }^{106}$, C. Zeitnitz ${ }^{173}$, M. Zeller ${ }^{174}$, M. Zeman ${ }^{124}$, A. Zemla ${ }^{38}$, C. Zendler ${ }^{20}$, O. Zenin ${ }^{127}$, T. Ženiš ${ }^{143 a}$, Z. Zinonos ${ }^{121 a, 121 b}$, S. Zenz ${ }^{14}$, D. Zerwas ${ }^{114}$, G. Zevi della Porta ${ }^{57}$, Z. Zhan ${ }^{32 \mathrm{~d}}$, D. Zhang ${ }^{32 \mathrm{~b}, a e}$, H. Zhang ${ }^{87}$, J. Zhang ${ }^{5}$, X. Zhang ${ }^{32 \mathrm{~d}}$, Z. Zhang ${ }^{114}$, L. Zhao ${ }^{107}$, T. Zhao ${ }^{137}$, Z. Zhao ${ }^{32 b}$, A. Zhemchugov ${ }^{64}$, S. Zheng ${ }^{32 a}$, J. Zhong ${ }^{117}$, B. Zhou ${ }^{86}$, N. Zhou ${ }^{162}$, Y. Zhou ${ }^{150}$, C.G. Zhu ${ }^{32 \text { d }}$, H. Zhu ${ }^{41}$, J. Zhu ${ }^{86}$, Y. Zhu ${ }^{32 b}$, X. Zhuang ${ }^{97}$, V. Zhuravlov ${ }^{98}$, D. Zieminska ${ }^{60}$, R. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{48}$, M. Ziolkowski ${ }^{140}$, R. Zitoun ${ }^{4}$, L. Živković ${ }^{34}$, V.V. Zmouchko ${ }^{127, *}$, G. Zobernig ${ }^{171}$, A. Zoccoli ${ }^{19 a, 19 b}$, Y. Zolnierowski ${ }^{4}$, A. Zsenei ${ }^{29}$, M. zur Nedden ${ }^{15}$, V. Zutshi ${ }^{105}$, L. Zwalinski ${ }^{29}$
${ }^{1}$ University at Albany, Albany, NY, United States
${ }^{2}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
 TOBB University of Economics and Technology, Ankara; ${ }^{(e)}$ Turkish Atomic Energy Authority, Ankara, Turkey
${ }^{4}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
${ }^{5}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
${ }^{6}$ Department of Physics, University of Arizona, Tucson, AZ, United States
${ }^{7}$ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
${ }^{8}$ Physics Department, University of Athens, Athens, Greece
${ }^{9}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{10}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{11}$ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; ${ }^{(b)}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
${ }^{13}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
${ }^{15}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{16}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Division of Physics, Dogus University, Istanbul; ${ }^{(c)}$ Department of Physics Engineering, Gaziantep University, Gaziantep;
${ }^{(d)}$ Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica, Università di Bologna, Bologna, Italy
${ }^{20}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{21}$ Department of Physics, Boston University, Boston, MA, United States
22 Department of Physics, Brandeis University, Waltham, MA, United States
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{24}$ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
$25{ }^{(a)}$ National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(b)}$ University Politehnica Bucharest, Bucharest; ${ }^{(c)}$ West University in Timisoara, Timisoara, Romania
${ }^{26}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{27}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, ON, Canada
29 CERN, Geneva, Switzerland
${ }^{30}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
$31{ }^{(a)}$ Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ School of Physics, Shandong University, Shandong, China
${ }^{33}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
${ }^{34}$ Nevis Laboratory, Columbia University, Irvington, NY, United States
${ }^{35}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
${ }^{37}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
${ }^{38}$ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, TX, United States
${ }^{40}$ Physics Department, University of Texas at Dallas, Richardson, TX, United States
${ }^{41}$ DESY, Hamburg and Zeuthen, Germany
${ }^{42}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{43}$ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, NC, United States
${ }^{45}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{46}$ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
${ }_{56}^{56}$ Department of Physics, Hampton University, Hampton, VA, United States
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
$58{ }^{(a)}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{59}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
${ }^{60}$ Department of Physics, Indiana University, Bloomington, IN, United States
${ }^{61}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, United States
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{65}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
${ }^{67}$ Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
${ }^{69}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{70}$ Physics Department, Lancaster University, Lancaster, United Kingdom
71 (a) INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Fisica, Università del Salento, Lecce, Italy
72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{73}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{74}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{75}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{76}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{77}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{78}$ Fysiska Institutionen, Lunds Universitet, Lund, Sweden
${ }^{79}$ Departamento de Fisica Teorica C-15, Universidad Autónoma de Madrid, Madrid, Spain
${ }^{80}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{81}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{83}$ Department of Physics, University of Massachusetts, Amherst, MA, United States
84 Department of Physics, McGill University, Montreal, QC, Canada
85 School of Physics, University of Melbourne, Victoria, Australia
${ }^{86}$ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
${ }^{87}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
88 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
89 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
90 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
${ }^{91}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
92 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
93 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
94 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{95}$ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
96 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
${ }^{97}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 (a) INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{104}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb, IL, United States
${ }^{106}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York, NY, United States
108 Ohio State University, Columbus, OH, United States
109 Faculty of Science, Okayama University, Okayama, Japan
${ }^{110}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
${ }^{111}$ Department of Physics, Oklahoma State University, Stillwater, OK, United States
112 Palacký University, RCPTM, Olomouc, Czech Republic
113 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
114 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
115 Graduate School of Science, Osaka University, Osaka, Japan
116 Department of Physics, University of Oslo, Oslo, Norway
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
119 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
120 Petersburg Nuclear Physics Institute, Gatchina, Russia
121 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States
123 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; ${ }^{(b)}$ Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
${ }^{124}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{125}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
126 Czech Technical University in Prague, Praha, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina, SK, Canada
${ }^{130}$ Ritsumeikan University, Kusatsu, Shiga, Japan
131 (a) INFN Sezione di Roma I; ${ }^{(b)}$ Dipartimento di Fisica, Università La Sapienza, Roma, Italy
132 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Fisica, Università Roma Tre, Roma, Italy
$134{ }^{(a)}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
${ }^{135}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
137 Department of Physics, University of Washington, Seattle, WA, United States
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
142 SLAC National Accelerator Laboratory, Stanford, CA, United States
$143{ }^{(a)}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
$145{ }^{(a)}$ Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
${ }^{146}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
149 School of Physics, University of Sydney, Sydney, Australia

150 Institute of Physics, Academia Sinica, Taipei, Taiwan
151 Department of Physics, Technion - Israel Inst. of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{156}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
157 Department of Physics, University of Toronto, Toronto, ON, Canada
158 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto, ON, Canada
${ }^{159}$ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
160 Science and Technology Center, Tufts University, Medford, MA, United States
161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
162 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
163 (a) INFN Gruppo Collegato di Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
164 Department of Physics, University of Illinois, Urbana, IL, United States
165 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{166}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
167 Department of Physics, University of British Columbia, Vancouver, BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
169 Waseda University, Tokyo, Japan
170 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
171 Department of Physics, University of Wisconsin, Madison, WI, United States
172 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
173 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
174 Department of Physics, Yale University, New Haven, CT, United States
175 Yerevan Physics Institute, Yerevan, Armenia
${ }^{176}$ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
${ }^{a}$ Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
${ }^{b}$ Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
${ }^{c}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
${ }^{d}$ Also at TRIUMF, Vancouver, BC, Canada
${ }^{e}$ Also at Department of Physics, California State University, Fresno, CA, United States.
f Also at Novosibirsk State University, Novosibirsk, Russia.
g Also at Fermilab, Batavia, IL, United States.
${ }^{h}$ Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
${ }^{i}$ Also at Università di Napoli Parthenope, Napoli, Italy.
j Also at Institute of Particle Physics (IPP), Canada.
${ }^{k}$ Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
${ }^{l}$ Also at Louisiana Tech University, Ruston, LA, United States.
m Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
${ }^{n}$ Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
${ }^{o}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
q Also at Manhattan College, New York, NY, United States.
r Also at School of Physics, Shandong University, Shandong, China.
${ }^{s}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
t Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
u Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
v Also at Section de Physique, Université de Genève, Geneva, Switzerland.
${ }^{w}$ Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
x Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
y Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
z Also at California Institute of Technology, Pasadena, CA, United States.
aa Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
$a b$ Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
ac Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
ad Also at Department of Physics, Oxford University, Oxford, United Kingdom.
ae Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
af Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
ag Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
ah Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

* Deceased.

[^0]: 4 © CERN for the benefit of the ATLAS Collaboration.

 * E-mail address: atlas.publications@cern.ch.

