37 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Evaluation of the prognostic role of centromere 17 gain and HER2/topoisomerase II alpha gene status and protein expression in patients with breast cancer treated with anthracycline-containing adjuvant chemotherapy: pooled analysis of two Hellenic Cooperative Oncology Group (HeCOG) phase III trials

    Full text link

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF

    A fish-specific transposable element shapes the repertoire of p53 target genes in zebrafish.

    Get PDF
    Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish
    corecore