15 research outputs found

    IDH-wild type glioblastomas featuring at least 30% giant cells are characterized by frequent RB1 and NF1 alterations and hypermutation

    Get PDF
    : Giant cell glioblastoma (GC-GBM) is a rare variant of IDH-wt GBM histologically characterized by the presence of numerous multinucleated giant cells and molecularly considered a hybrid between IDH-wt and IDH-mutant GBM. The lack of an objective definition, specifying the percentage of giant cells required for this diagnosis, may account for the absence of a definite molecular profile of this variant. This study aimed to clarify the molecular landscape of GC-GBM, exploring the mutations and copy number variations of 458 cancer-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI) in 39 GBMs dichotomized into having 30-49% (15 cases) or\u2009 65\u200950% (24 cases) GCs. The type and prevalence of the genetic alterations in this series was not associated with the GCs content (<\u200950% or 65\u200950%). Most cases (82% and 51.2%) had impairment in TP53/MDM2 and PTEN/PI3K pathways, but a high proportion also featured TERT promoter mutations (61.5%) and RB1 (25.6%) or NF1 (25.6%) alterations. EGFR amplification was detected in 18% cases in association with a shorter overall survival (P\u2009=\u20090.004). Sixteen (41%) cases had a TMB\u2009>\u200910 mut/Mb, including two (5%) that harbored MSI and one with a POLE mutation. The frequency of RB1 and NF1 alterations and TMB counts were significantly higher compared to 567 IDH wild type (P\u2009<\u20090.0001; P\u2009=\u20090.0003; P\u2009<\u20090.0001) and 26 IDH-mutant (P\u2009<\u20090.0001; P\u2009=\u20090.0227; P\u2009<\u20090.0001) GBMs in the TCGA PanCancer Atlas cohort. These findings demonstrate that the molecular landscape of GBMs with at least 30% giant cells is dominated by the impairment of TP53/MDM2 and PTEN/PI3K pathways, and additionally characterized by frequent RB1 alterations and hypermutation and by EGFR amplification in more aggressive cases. The high frequency of hypermutated cases suggests that GC-GBMs might be candidates for immune check-point inhibitors clinical trials

    DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association

    Get PDF
    Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Genomic characterization of hepatoid tumors: context matters

    No full text
    Hepatoid tumors (HT) are rare neoplasms, morphologically resembling hepatocellular carcinoma, which arise in several organs other than the liver. A comprehensive molecular profile of this group of neoplasms is still lacking. Genomic characterization of 19 HT from different organs (3 colon, 4 esophagogastric, 4 biliary, 6 genitourinary, 2 lung) was performed using a multigene next-generation sequencing panel. NGS unraveled a composite molecular profile of HT. Their genetic alterations were clearly clustered by tumor site: i) colorectal HT displayed microsatellite instability, high tumor mutational burden, mutations in ARID1A/B genes and NCOA4-RET gene fusion (2/3 cases); ii) gastric HT had TP53 mutations (2/4); iii) biliary HT displayed loss of CDKN2A (3/4) and loss of chromosome 18 (2/4); iv) genital HT showed gain of chromosome 12 (3/6); v) lung HT had STK11 somatic mutations (2/2). The only commonly mutated gene occurring in HT of different sites was TP53 (8/19 cases: 2 colon, 2 esophagogastric, 2 biliary, 1 genital, 1 lung). This study shows that most genetic alterations of HT were clustered by site, indicating that context matters. The novel potential targets for HT precision oncology are also clustered based on the anatomic origin. This study shed light into the biology of these rare cancers, and may have important consequences for treatment decision and clinical trial selection for HT patients

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Pan-cancer analysis of whole genomes

    No full text
    corecore