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Abstract 

Giant cell glioblastoma (GC-GBM) is a rare variant of IDH-wt GBM histologically characterized by the presence of 
numerous multinucleated giant cells and molecularly considered a hybrid between IDH-wt and IDH-mutant GBM. The 
lack of an objective definition, specifying the percentage of giant cells required for this diagnosis, may account for the 
absence of a definite molecular profile of this variant. This study aimed to clarify the molecular landscape of GC-GBM, 
exploring the mutations and copy number variations of 458 cancer-related genes, tumor mutational burden (TMB), 
and microsatellite instability (MSI) in 39 GBMs dichotomized into having 30–49% (15 cases) or ≥ 50% (24 cases) GCs. 
The type and prevalence of the genetic alterations in this series was not associated with the GCs content (< 50% or 
≥ 50%). Most cases (82% and 51.2%) had impairment in TP53/MDM2 and PTEN/PI3K pathways, but a high proportion 
also featured TERT promoter mutations (61.5%) and RB1 (25.6%) or NF1 (25.6%) alterations. EGFR amplification was 
detected in 18% cases in association with a shorter overall survival (P = 0.004). Sixteen (41%) cases had a TMB > 10 
mut/Mb, including two (5%) that harbored MSI and one with a POLE mutation. The frequency of RB1 and NF1 altera-
tions and TMB counts were significantly higher compared to 567 IDH wild type (P < 0.0001; P = 0.0003; P < 0.0001) and 
26 IDH-mutant (P < 0.0001; P = 0.0227; P < 0.0001) GBMs in the TCGA PanCancer Atlas cohort. These findings demon-
strate that the molecular landscape of GBMs with at least 30% giant cells is dominated by the impairment of TP53/
MDM2 and PTEN/PI3K pathways, and additionally characterized by frequent RB1 alterations and hypermutation and 
by EGFR amplification in more aggressive cases. The high frequency of hypermutated cases suggests that GC-GBMs 
might be candidates for immune check-point inhibitors clinical trials.
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Introduction
Glioblastoma (GBM) is classified into Isocitrate Dehy-
drogenase (IDH)-mutant and IDH-wild type (wt) [1]. The 
former mainly affects younger patients and has a better 
prognosis [2, 3].

Among IDH-wt GBMs, giant cell (GC)-GBM repre-
sents a rare histological variant, that accounts for less 
than 1% of all cases [4] and is histologically characterized 
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by bizarre multinucleated giant cells [1]. It is reported 
to affect younger subjects and to have a relatively better 
prognosis compared to conventional IDH-wt GBM [5].

It is still unclear whether GC-GBM represents a dis-
tinct entity or only a morphological variant of IDH-wt 
GBM. Most of our current knowledge on its genetic fea-
tures comes from few available molecular studies, mainly 
focusing on the analysis of selected genetic anomalies [6–
11]. According to these, GC-GBM seems to be a hybrid 
between IDH-wt and IDH-mutant GBM. Similarly to 
the former, it has a high prevalence of PTEN mutations 
(18/58 cases, 31%), but alike the latter, it also shows a 
high incidence of TP53 mutations (73/83 cases, 88%), low 
frequency of EGFR amplification (10/89 cases; 11%) and 
of TERT promoter mutations (21/65, 32%) [6–11]. Only 
one study performed a comprehensive molecular profil-
ing of 10 GC-GBMs by whole exome sequencing [10]. 
In addition to confirming that GC-GBM has frequent 
impairment of TP53/MDM2 (5 cases) and PTEN/PI3K 
(4 cases) pathways, it suggested that this morphological 
variant may be characterized by mutations in chromatin 
remodeling genes SETD2 (3 cases) and ATRX (2 cases) 
and alterations in RB1 (2 cases) [10]. Of note, one of the 
cases showed elevated tumor mutational burden (TMB) 
in association with MSH6 somatic mutation [10], which 
may indicate that this is an additional, though excep-
tional, feature of this variant.

Based on its heterogeneous DNA-methylation profile, 
GC-GBM is not currently considered to represent a dis-
tinct molecular entity [12]. However, due to the lack of 
an objective definition, specifying the exact percentage of 
giant cells required for this diagnosis, the molecular por-
trait of GC-GBM is hardly definable. In a recent paper, 
the mutation frequencies of TP53, ATRX, RB1, and NF1 
were significantly higher in 17 GBMs featuring > 30% 
giant cells than in 357 IDH-wt GBMs in the TCGA Pan-
Cancer Atlas cohort [6].

In order to clarify the molecular landscape of GC-
GBM, in this study we explored the mutations and copy 
number variation (CNV) of 458 cancer-related genes, 
microsatellite instability (MSI) and TMB, in 39 GBMs 
featuring at least 30% multinucleated giant cells and 
dichotomized into having 30–49% (15 cases) or ≥ 50% (24 
cases) GCs.

Materials and methods
Cases
Thirty-nine formalin-fixed paraffin-embedded (FFPE) 
surgically resected and treatment naïve GBMs, featur-
ing at least 30% multinucleated giant (i.e. having from 
few to more than 20 nuclei and a minimum diameter of 
20 µm), bizarre (i.e. with atypical, hyperchromatic nuclei, 

and with evident nucleoli at times), with positive GFAP 
staining or not, were included in this study.

Taking as a reference the method proposed by Cantero 
et al. [6], the percentage of multinucleated giant cells was 
manually quantified by counting at least 1000 neoplastic 
cells in 10–20 random fields at 200 × magnification.

All cases were independently revised by three pathol-
ogists (VB, MM, CG), who assessed the percentage 
of giant cells. In case of disagreement, the cases were 
reviewed using a multi-headed microscope. The paraf-
fin block with the highest number of GCs was selected 
for the subsequent molecular and immunohistochemical 
analyses.

Data on the overall survival (OS) were retrieved using 
clinical records.

Ethics
This study was approved by the Local Ethics Commit-
tees of the Polyclinic A. Gemelli of Rome (protocol n. 
1722, 2017/11/23) and of Verona (Protocol n. 35,628, 
2020/06/29).

Mutational and copy number variation status 
of cancer‑related genes
Tumor mutational burden, mutations and copy num-
ber variations of 409 cancer-related genes were assessed 
using the targeted next generation sequencing (NGS) 
panel Oncomine Tumor Mutational Load (TML) (Ther-
moFisher), which covers 1.65 Mb of genomic space.

The results were  confirmed  using the SureSelectXT 
HS CD Glasgow Cancer Core assay (Agilent) in 29 GC-
GBMs (cases 42GL-71GL).

DNA was obtained from 10 FFPE consecutive 4-μm 
sections using the QIAamp DNA FFPE Tissue Kit (Qia-
gen) and qualified as reported elsewhere [13].

Sequencing was performed on Ion Torrent platform 
using 20  ng of DNA for each multiplex PCR amplifica-
tion and subsequent library construction. The quality 
of libraries was evaluated using the Agilent 2100 Bio-
analyzer on-chip electrophoresis (Agilent Technologies). 
Libraries were clonally amplified by emulsion PCR with 
Ion OneTouch OT2 System (Thermofisher) and sequenc-
ing was run on Ion Proton (Thermofisher) loaded with 
Ion PI Chip v3.

Torrent Suite Software v.5.10 (Termofisher) was used 
for data analysis, including alignment to the hg19 human 
reference genome and variant calling. Filtered variants 
were annotated using a custom pipeline based on vcflib 
(https://​github.​com/​ekg/​vcflib), SnpSift [14], Variant 
Effect Predictor (VEP) [15] and NCBI RefSeq database. 
Additionally, alignments were visually verified with the 
Integrative Genomics Viewer (IGV) v2.9 [16] to confirm 

https://github.com/ekg/vcflib
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the presence of identified mutations. Germline mutations 
were assigned based on Sun et al. [17].

CNV was evaluated using OncoCNV v6.8 [18], com-
paring the BAM files obtained from tumor samples with 
those obtained from blood samples of four healthy males. 
The software includes a multi-factor normalization and 
annotation technique enabling the detection of large 
copy number changes from amplicon sequencing data 
and permits to visualize the output per chromosome.

Confirmation of mutational and copy number variation 
status of 125 cancer‑related genes and further exploration 
of 49 genes
Twenty-nine cases (42GL-71GL) were additionally ana-
lyzed using the SureSelectXT HS CD Glasgow Can-
cer Core assay (www.​agile​nt.​com), hereinafter referred 
as CORE [19] (details in Additional file  2). This spans 
1.85  Mb of the genome and interrogates 174 genes (49 
of which are not included in the TML panel) for somatic 
mutations, copy number alterations and structural 
rearrangements.

Sequencing libraries were prepared by targeted capture 
using the SureSelect kit (Agilent Technologies) according 
to the manufacturer instructions as previously described 
[20]. Genomic DNA was enzymatically fragmented 
with the SureSelect Enzymatic Fragmentation Kit (Agi-
lent Technologies). Quality and quantity of pre-capture 
libraries was assessed using the Qubit BR dsDNA assay 
(ThermoFisher). Hybridization-capture and purification 
of the libraries was performed using 100  ng from each 
pre-capture library to prepare 16-library pools (1.6 µg of 
total pooled DNA). Captured library pools were enriched 
by PCR, purified, and quantified using the Qubit dsDNA 
HS assay. Quality of the library pools was verified with 
the Agilent 4200 Tape Station and High Sensitivity 
D1000 ScreenTape (Agilent Technologies). Sequencing 
was performed on a NextSeq 500 (Illumina) loaded with 
2 captured library pools, using a high-output flow cell 
and 2 × 75 bp paired-end sequencing.

CORE panel analysis was performed as previously 
described [20]. Briefly, demultiplexing was performed on 
the BaseSpace Sequence Hub (https://​bases​pace.​illum​ina.​
com). Paired-end reads were aligned to the human ref-
erence genome (version hg38/GRCh38) using BWA and 
saved in the BAM file format [21]. BAM files were sorted, 
subjected to PCR duplicate removal, and indexed using 
biobam-bam2 v2.0.146 [22]. Coverage statistics were 
produced using samtools [23]. Single nucleotide variants 
were called using Shearwater [24]. Small (< 200 bp) inser-
tions and deletions were called using Pindel [25]. Small 
nucleotide variants were further annotated using a cus-
tom pipeline based on vcflib (https://​github.​com/​ekg/​
vcflib; last access 11/30/2020), SnpSift [14], the Variant 

Effect Predictor (VEP) software [15], and the NCBI Ref-
Seq transcripts database (www.​ncbi.​nlm.​nih.​gov/​refseq/). 
Annotated variants were filtered keeping only missense, 
nonsense, frameshift, or splice site variants. All candi-
date mutations were manually reviewed using Integra-
tive Genomics Viewer (IGV), version 2.9 [16] to exclude 
sequencing artefacts. Gene copy number alterations were 
detected using the geneCN software (https://​github.​com/​
wwcrc/​geneCN). Whole-chromosome or chromosome-
arm alterations were assessed by measuring the ratio of 
normalized, GC-adjusted coverage of tumor samples’ 
alignments to the mean, normalized, GC-adjusted cover-
age of 20 non-neoplastic samples for all targeted regions 
of a chromosome arm. Targeted regions included both 
targeted genes and a set of “backbone” regions probing 
each chromosome at 1 megabase intervals. Each large 
alteration was further confirmed by checking the copy 
number status of targeted genes included in the large 
alteration itself as reported by the geneCN software.

Classification of genetic variants
Following the five-tier classification system recom-
mended by the joint consensus of the American College 
of Medical Genetics and Genomics and the Association 
for Molecular Pathology (ACMG/AMP)[26], variants 
were classified: Benign (class 1); Likely Benign (class 2); 
Variant of Un-certain Significance (VUS – class 3); Likely 
Pathogenic (class 4); Pathogenic (class 5). Variants’ clas-
sification was retrieved from the ClinVar database when 
available (https://​www.​ncbi.​nlm.​nih.​gov/​clinv​ar/) and 
accepted when the record complied with the follow-
ing requisites: reviewed by expert panel according to 
the ACMG/AMP guidelines and/or reported by multi-
ple submitters with evaluation criteria according to the 
ACMG/AMP guidelines and no conflicts. When a con-
sistent classification was unavailable or when the variant 
was not present in the ClinVar database, variants were 
evaluated in-house, according to the ACMG/AMP guide-
lines using also the following databases and software to 
gather and integrate all relevant information: My Cancer 
Genome (https://​www.​mycan​cerge​nome.​org), Intogen 
[27] (https://​www.​intog​en.​org/) and QIAGEN Clinical 
Insight (QCI) software (https://variants. qiagenbioinfor-
matics.eu/qci/).

TERT promoter mutational analysis
TERT was amplified by PCR and both strands were 
sequenced using the ABI PRISM 3500 Genetic Analyzer 
(Applied Biosystems) as previously described [28]. The 
primers used were: TERT-F GTC​CTG​CCC​CTT​CAC​
CTT​ and TERT-R GCA​CCT​CGC​GGT​AGTGG.

http://www.agilent.com
https://basespace.illumina.com
https://basespace.illumina.com
https://github.com/ekg/vcflib
https://github.com/ekg/vcflib
http://www.ncbi.nlm.nih.gov/refseq/
https://github.com/wwcrc/geneCN
https://github.com/wwcrc/geneCN
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.mycancergenome.org
https://www.intogen.org/
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Tumor mutational burden
TMB and mutational spectrum were evaluated using 
the Oncomine TML 5.10 plugin available on IonRe-
porter software (Thermofisher). Default Modified 
parameters were used to exclude sequencing artefacts. 
In detail, a threshold of at least 60 reads and 10% 
allelic frequency was used for variant calling. TMB was 
expressed as the number of mutations per Mb (muts/
Mb), where mutations included nonsynonymous mis-
sense and nonsense single nucleotide variants (SNVs) 
detected per Mb of exonic sequences.

Immunohistochemistry of DNA mismatch repair proteins
Immunostaining was performed using the Bond Pol-
ymer Refine Detection kit (Leica Biosystems) in a 
BOND-MAX system (Leica Biosystems) on 4 μm-thick 
FFPE sections using the following primary antibodies 
purchased from DakoCytomation: mouse monoclonal 
clones ES05 against MLH1 (dilution 1:30) and FE11 
against MSH2 (dilution 1:30); rabbit monoclonal clones 
EP49 against MSH6 (dilution 1:100) and EP51 against 
PMS2 (dilution 1:100). Normal cells within the samples 
acted as positive internal controls.

Microsatellite instability analysis
MSI was tested by a fluorescent multiplex PCR exploit-
ing the 5 mononucleotide microsatellites BAT25, 
BAT26, NR21, NR22, NR24. Amplicons were separated 
by capillary electrophoresis using the ABI Genetic Ana-
lyzer 3130XL (Applied Biosystems). Variations ≥ 3  bp 
for BAT25, NR21, NR22, NR24 and ≥ 4  bp for BAT26 
were considered as instability.

Comparison with GBMs IDH‑wt and IDH‑mutant in The 
Cancer Genome Atlas database
In order to compare the clinical and genetic findings in 
this cohort of GBMs with giant cells with those in IDH-
wt and IDH-mutant GBMs, we accessed The Cancer 
Genome Atlas (TCGA) databases for GBMs (cbiopor-
tal.org) and retrieved data from the series of “Glioblas-
toma Multiforme (TCGA PanCancer Atlas)”.

Statistical analysis
We used Chi-squared and Mann–Whitney tests to ana-
lyze the correlation between the percentage of giant 
cells or TMB and the various genetic alterations, and to 
assess the statistical difference in the patients age, fre-
quency of genetic alterations or in TMB between the 
present 39 GBMs with giant cells and IDH-wt or IDH-
mutant GBMs in TCGA PanCancer Atlas.

Overall survival (OS) of the patients was assessed by 
the Kaplan–Meier method, using the date of surgery 

as the entry data and the length of survival until the 
patient’s death as the endpoint. Patients who died of 
GBM-independent diseases were censored. Mantel–
Cox log-rank test was applied to assess the strength of 
association between OS and each variable. Successively, 
a multivariate analysis (Cox regression model) was uti-
lized to determine the independent effect of the vari-
ables on OS.

Mantel-Cox log-rank test was also carried out to ana-
lyze the difference in the OS of patients win this cohort 
with and those with IDH-wt or IDH-mutant GBM in 
TCGA PanCancer Atlas.

A P-value < 0.05 was considered as significant. All anal-
yses were performed using MedCalc for Windows ver-
sion 15.6 (MedCalc Software, Ostend, Belgium) and R 
v.3.2.1.

Results
Cases
The clinical-pathological features of the 39 GBMs are 
summarized in Additional file 3: Table 1.

Male to female ratio was 2:1 (26 male and 13 female 
patients) and median age was 63  years (mean age: 
57.6 years, range 15–84). Fifteen patients were < 55 years, 
while 24 were ≥ 55 years. All tumors were localized in the 
brain lobes, except for 3 cases that were in the third ven-
tricle. All patients had surgery, followed by chemother-
apy with temozolomide and radiotherapy.

All tumors featured frequent atypical mitoses. Thirty-
five had microvascular proliferation and 33 had necrosis. 
The percentage of GCs ranged between 30 and 90%.The 
cases were dichotomized into having 30–50% GCs (13 
cases) and ≥ 50% GCs (22 cases) (Fig. 1).

Mutational status of 458 genes
The alterations in 409-cancer related genes, detected in 
the 39 GBMs using TML and CORE panels, and those in 
additional 49 genes using the CORE panel in a subset of 
29 cases (42GL-71GL) are summarized in Fig. 2, detailed 
in Additional file 3: Table 2 and described below accord-
ing to the altered pathway. Genes’ mutations and CNV 
were not significantly different according to the percent-
age of GCs. Regarding the 125 genes in common between 
the two panels, the CORE confirmed the presence of the 
alterations identified using the TML panel in the  sub-
group of 29 cases (cases 42GL-71GL).

IDH1/2 mutations
None of the cases had IDH1/2 mutations.

TP53/MDM2 pathway
Thirty-two GBMs (82%) had alterations in p53 pathway. 
In detail, 29 (74.4%) cases had TP53 mutations, that 
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co-occurred with CDKN2A homozygous deletion in 8. 
Among TP53 wild type tumors, three had MDM2 ampli-
fication and 4 had CDKN2A homozygous deletion.

RB1/CDKN2A/CDK4 pathway
Twenty-seven (69%) GBMs had alterations. Ten (24.6%) 
had RB1 inactivation due to homozygous deletion (4 
cases), or heterozygous deletion combined with muta-
tion of the other allele (6 cases). Among the cases with 
intact RB1, four had CDK4 amplification, 12 featured the 
homozygous deletion of CDKN2A/B and one had a trun-
cating mutation of CDKN2A.

PI3K//PTEN/AKT/mTOR pathway
Twenty (51.2%) GBMs had alterations in this pathway. 
Twelve had PTEN alterations consisting in mutations (1 
case), homozygous deletion (2 cases) or heterozygous 
deletion combined with mutation of the other allele (9 

cases). In one case, PTEN alteration co-occurred with 
PIK3CA and mTOR mutations. Of the PTEN wild type 
cases, two had PIK3CA mutations, one had co-occurring 
PIK3CA, PIK3R1 and TSC2 mutations, three had PIK3R1 
mutation, associated with mTOR mutation in one case, 
one had mTOR mutation, one had TSC1 heterozygous 
deletion coupled with the mutation of the second allele.

Receptor Tyrosine Kinase pathway
Thirteen (33.3%) GBMs had activation of Receptor 
Tyrosine Kinase signaling pathways. Seven cases (17.9%) 
had EGFR amplification, co-occurring with PDGFRA 
amplification (50GL) in one case. Of the EGFR unampli-
fied cases, three showed the concurrent amplification of 
PGFRA, KIT and KDR, three had MET mutations, with 
co-occurring FGFR2 mutation in one case, and one had 
FGFR3 mutation.

Chromatin remodeling pathway
Eight (20.5%) GBMs had alterations in chromatin remod-
eling genes, including ATRX (5/39; 12.8%), ARID1A 
(1/39; 2.6%), SETD2 (3/39; 7.6%), CREBBP (2/39; 5.1%), 
DNMT3A (2/39; 5.1%).

MMR genes
Nine (23%) GBMs had sequence alterations in MMR 
genes. Three had somatic mutations of MSH2, three fea-
tured somatic mutations of MSH6 and one had a somatic 
mutation of MLH1. One additional case had concurrent 
somatic mutation of MLH1 and germinal mutation of 
MSH2 and another had a germinal mutation of MSH6.

Other genes
GBMs featured mutations in other genes, among which 
NF1 was the most frequently mutated (10/39; 25.6%). Of 
note, one case (48GL) had POLE mutation.

TERT promoter
Twenty-four (61.5%) GBMs had TERT promoter muta-
tions. Fifteen (38.5%) had C228T mutation and 9 (23%) 
had C250T mutation. In one case (62GL) TERT promoter 
mutation C250T co-occurred with ATRX mutation.

Numerical chromosomal alterations
Based on the chromosomal position of each gene, the sta-
tus of chromosome arms was inferred. The most frequent 
chromosomal alterations were gains of chromosome 7 
(15/39; 38.5%) and loss of chromosome 10 (23/39, 74.3%) 
(Additional file 1: Fig. 1).

Fig. 1  Histological aspect of giant cell enriched glioblastomas. In the 
upper image is a glioblastoma classified as having ≥ 50% giant cells, 
while in the lower is a glioblastoma classified as having 30–49% giant 
cells
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Fig. 2  Clinical-pathological features, gene alterations and MMR status of 39 giant cells enriched GBMs. The matrix shows for each case the 
tumor mutational burden, mutational signature, gene alterations, immunohistochemical analysis of genes involved in DNA mismatch repair (MMR 
IHC) and the presence of microsatellite instability as assessed by MSI-PCR. Samples are sorted by the percentage of giant cells (30–49%; ≥ 50%) and 
then by ID number. Genes are grouped by pathway and then by frequencies of alterations and alphabetical order
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Tumor mutational burden
The number of mutations/Mb ranged between 5.4 and 
153.8 (median: 9.3; inter-quartile range:8.2–12) (Fig.  1, 
Table 1). Using the cut-off of 10 mutations/Mb by Camp-
bell et  al. to define hypermutation [29], sixteen (41%) 
GC-GBMs were hypermutated.

Cases with TERT promoter mutation had significantly 
lower TMB (median TMB: 8.8 mutations/Mb) than 
cases with wild-type TERT promoter (median TMB: 13.1 
mutations/Mb) (P = 0.0061). One hypermutated GC-
GBM (48GL) had a POLE mutation.

Table 1  Univariate and multivariate analyses for OS in 39 patients with giant cells enriched GBM

H.R:: hazard ratio. C.I.: confidence interval

Parameter n Univariate analysis Multivariate analysis

H.R. (95% C.I.) P H.R. (95% C.I.) P

Age

 < 55 years 15 1 1

 ≥ 55 years 24 2.7 (1.1–6.2) 0.019 0.2 (0.1–0.7) 0.0117

Sex

 M 26 1

 F 13 2.6 (0.9–7.2) 0.062

% Giant cells

 30–49% 15 1

 ≥ 50% 24 1.7 (0.7–4) 0.205

TP53 mutations

 No 10 1

 Yes 29 0.3 (0.1–1.2) 0.116

RB1 mutations

 No 29 1

 Yes 10 0,5 (0.2–1.4) 0.215

PTEN mutations

 No 27 1

 Yes 12 1.7 (0.5–5.1) 0.331

 CDKN2A/B homozygous deletion

 No 27 1

 Yes 12 2.2 (0.8–5.5) 0.086

EGFR amplification

 No 32 1 1

 Yes 7 6.5 (1.7–24) 0.004 3.6 (1.4–9.3) 0.007

NF1 mutations

 No 29

 Yes 10 0.5 (0.2–1.4) 0.228

TERT promoter mutations

 No 15

 Yes 24 2.2 (0.9–5.3) 0.055

Chromosome 7 gains

 No 24

 Yes 15 1.9 (0.7–4.6) 0.152

Chromosome 10 LOH

 No 16

 Yes 23 1.1 (0.4–2.7) 0.753

Hypermutation

 No 23 1 1

 Yes 16 0.3 (0.1–0.8) 0.0263 0.3 (0.1–0.8) 0.018
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Microsatellite Instability
Two (5.1%) cases had MSI (29GL; 30G) as assessed by 
the PCR analysis of mononucleotide microsatellites 
(Additional file 3: Table 3; Fig. 2).

MMR protein immunohistochemistry
Immunostaining of MMR proteins was classified as 
retained or lost (when absent in all tumor cells). Loss 
of MMR protein immunostaining was found in 8 cases, 
including 7 with the concordant loss of the matched pair 
partners (MSH2/MSH6 or MLH1/PMS2) and one with 
loss of MSH6 only (case 58GL) (Fig. 1; Additional file 3: 
Table  3). Namely, the concordant loss of MSH2/MSH6 
was found in 5 cases (30GL, 31GL, 44GL, 60GL, 66GL) 
(Fig. 3), while that of MLH1/PMS2 was found in 2 (29GL, 
49GL).

Correlation of MMR immunohistochemistry, MSI status 
and MMR gene mutations and TMB
Of the 8 cases with MMR protein losses, only 2 fea-
tured MSI, while 5 with concordant losses and the case 

with loss of MSH6 only had stable microsatellites (Fig. 1; 
Additional file 3: Table 3).

Of the 2 cases with MSI, one had MMR gene muta-
tions (29GL), while the other case (30GL) had no MMR 
gene mutations. Of the 37 cases with stable microsatel-
lites, 8 showed MMR gene mutations. These included 2 
with retained MMR proteins, 1 with concordant loss of 
MLH1/PMS2, four with concordant loss of MSH2/MSH6 
and 1 with loss of MSH6 (Additional file 3: Table 3).

Of the 16 hypermutated cases, 2 had MSI and matched 
loss of MSH2/MSH6 proteins or MLH1/PMS2, 5 had sta-
ble microsatellites and the matched loss of MSH2/MSH6 
(4 cases) or of MLH1/PMS2 (1 case), 1 had stable micro-
satellites and the isolated loss of MSH6 protein and 9 had 
stable microsatellites and no MMR loss.

Survival analysis
Information on the OS was available for all patients. At 
the last follow-up time, 15 patients were alive and 24 had 
died of GBM. OS ranged between 4 and 27  months for 

Fig. 3  Immunostaining of MMR proteins in a GBM enriched in GCs. This case showed the loss of MSH2 and MSH6 in all tumor cells (60GL), 
albeit having stable microsatellites
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died patients, while follow-up time ranged between 2 and 
72 months for alive patients (Additional file 3: Table 1).

At univariate analyses, we tested the effect on patients’ 
survival of the following variables: age (< 55  years 
vs ≥ 55 years); sex; percentage of GCs (30–49% vs ≥ 50%); 
mutation in TP53, NF1 or TERT promoter; alteration 
of RB1 or PTEN; homozygous deletion of CDKN2A/B; 
amplification of EGFR; hypermutation; gains of chromo-
some 7; loss of chromosome 10.

Age ≥ 55  years (P = 0.019; Hazard Ratio: 2.7; 95%CI: 
1.1–6.2) and EGFR amplification (P = 0.004; Hazard 
Ratio: 6.5; 95%CI: 1.7–24) were significantly associated 
with shorter OS (Table 1; Fig. 4). The presence of hyper-
mutation (P = 0.0263; Hazard Ratio: 0.3; 95%CI: 0.1–0.8) 
was significantly associated with longer OS (Table  1; 
Fig. 3).

Multivariate analysis, including age of the patients, 
EGFR amplification and hypermutation as covariates, 
showed that all three were independent prognostic vari-
ables (Table 1).

Comparison of the present GBM series with the TCGA 
PanCancer Atlas GBM series
To clarify whether GBMs featuring > 30% GCs are a dis-
tinct group, we compared their clinical features, TMB 
and genes mutations/CNV with those of 567 IDH-wt and 
26 IDH-mutant GBMs in TCGA PanCancer Atlas series.

The age of the patients in the present series was signifi-
cantly higher than that of the patients with IDH-mutant 
GBMs (P = 0.0001), but not different from that of the 
patients with IDH-wt GBM (P = 0.440) (Table 2).

GBMs with > 30% giant cells had significantly higher 
TMB than both IDH-wt and IDH-mutant GBMs in 
TCGA (P < 0.0001). TMB was calculated in TCGA cases 

profiled using whole exome sequencing considering that 
an exome is 1% of the genome (i.e., 30 × 106 bp).

In 567 IDH-wt GBMs, TMB ranged between 0 and 
230 mutations/Mb with  a median of 1.7 mutations/Mb 
(interquartile range 1.4–2.2) (Table  2). Ten (2.7%) cases 
had a TMB ≥ 10 mutations/Mb, including one (TCGA-
19–5956 with TMB of 230 mutations/Mb) with POLE 
and MLH1 mutations and two (TCGA-16–0848 with 
TMB of 11 mutations/Mb; TCGA-16–0829 with TMB of 
20.3 mutations/Mb) with MSH6 mutations. The review 
of the pathological reports of these cases showed that the 
POLE-mutated was a GC-GBM. Only one hypermutated 
case (TCGA-19–1787 with TMB of 17.2 mutations/Mb) 
had MSI, as defined by MSI sensor score ≥ 3.5[30]. Two 
other cases, including one (TCGA-06–0187) with a TMB 
of 1.3 mutations/Mb and another (TCGA-12–0772) with 
unavailable mutation count, had MSI sensor score ≥ 3.5.

In 26 IDH-mutant GBMs, TMB ranged between 0.6 
and 405 mutations/Mb, with a median of 1.4 muta-
tions/Mb (interquartile range 1.4–2.2). Two cases (7.6%) 
had a TMB ≥ 10 mutations/Mb, including one (TCGA-
06–5416 with TMB of 405.9 mutations/Mb) with POLE, 
MSH2 and MSH6 mutations. None of the cases had MSI 
(MSI sensor score < 3.5).

In the TCGA series, 551 IDH-wt and 24 IDH-mutant 
GBMs were profiled for CNV; 371 IDH-wt and all 26 
IDH-mutant GBMs were profiled for gene mutations.

GBMs with > 30% GCs had significantly higher fre-
quency of RB1 (P =  < 0.0001) and NF1 alterations 
(P = 0.0003; P = 0.0227) than both IDH-wt and IDH-
mutant GBMs in TCGA PanCancer Atlas.

In addition, they featured frequencies of TP53 and 
ATRX mutations (74.4%; 12.8%) significantly higher than 
IDH-wt (27%; 4.6%; P < 0.0001; P = 0.0301) and lower 

Fig. 4  Impact of EGFR amplification and hypermutation on clinical outcome. The overall survival of patients with glioblastomas enriched in giant 
cells and harboring EGFR amplification (P = 0.004), or TMB < 10 mutations/Mb (P = 0.0263) was significantly shorter than that of patients with giant 
cells enriched glioblastoma lacking EGFR amplification or having TMB ≥ 10 mutations/Mb
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Table 2  Comparison between the genetic alterations and TMB in the present 39 GBMs and in TGCA (PanCancer Atlas cohort) IDH-wt 
and IDH-mutant GBMs

* 371 samples were profiled for mutations and 551 for copy number variations (CNV)
** 26 samples were profiled for mutations and 24 for CNV
*** Mutation count was available for 368 IDH-wt and 26 IDH-mutant GBMs in TGCA PanCancer Atlas cohort
**** MSI sensor score was available for 184 IDH-wt and 26 IDH-mutant GBMs in TGCA PanCancer Atlas cohort

genetic alterations are arranged by their frequency in the cohort of giant cells enriched GBMs. The statistical difference in the frequency of each genetic alteration 
between giant cells enriched GBMs and IDH-wt or IDH-mutant GBMs was assessed using Chi-squared test. The statistical difference in TMB was assessed using Mann–
Whitney test

Present GBMs 
(n = 39)

TGCA IDH-wt GBMs* P TGCA IDH-mutant GBMs** P

Clinical features

Mean age; age range 57.6 years; 
15–84 years

60 years; 10–89 years 0.440 38 years; 21–60 years 0.0001

Male:Female 2:1 1.4:1 1.5:1

TMB ***

median; range; inter-
quartile range

9.3 muts/Mb; 
5.4–153.8; 8.2–12

1.7 muts/Mb; 0–230; 1.4–2.2  < 0.0001 1.4 muts/Mb; 0.6–405; 1.1–2  < 0.0001

MSI**** 2 5.1% 3 1.6% 0.210 0 0 0.512

Genetic alterations n % n % n %

TP53 29 74.4% 100 27.0%  < 0.0001 25 96.2% 0.022
PTEN 12 30.8% 187 33.9% 0.686 1 4.2%  < 0.0001
CDKN2A/B hom del 12 30.8% 318 57.7% 0.0011 4 16.7% 0.215

RB1 10 25.6% 52 9.4%  < 0.0001 1 4.2%  < 0.0001
NF1 10 25.6% 45 12.1% 0.0003 1 3.8% 0.0227
EGFR ampl 7 17.9% 255 46.3% 0.0006 0 0.0% 0.0001
CDK4 ampl 5 12.8% 76 13.8% 0.864 6 25.0% 0.219

ATRX 5 12.8% 17 4.6% 0.0301 20 76.9%  < 0.0001
MSH6 4 10.3% 6 1.6% 0.0009 1 3.8% 0.345

PIK3CA 4 10.3% 35 9.4% 0.867 5 19.2% 0.308

PIK3R1 4 10.3% 34 9.2% 0.823 3 11.5% 0.871

PDGFRAampl 4 10.3% 73 13.2% 0.592 2 8.3% 0.802

MSH2 4 10.3% 0 0.0%  < 0.0001 1 3.8% 0.345

MDM2 ampl 3 7.7% 47 8.5% 0.856 0 0.0% 0.167

MTOR 3 7.7% 5 1.3% 0.0007 1 3.8% 0.530

KIT ampl 3 7.7% 54 9.8% 0.667 2 8.3% 0.927

KDRampl 3 7.7% 35 6.4% 0.742 2 8.3% 0.0927

SETD2 3 7.7% 9 2.4% 0.0638 2 7.7% 1

MLH1 2 5.1% 1 0.3% 0.0007 0 0.0% 0.244

CREBBP 2 5.1% 6 1.6% 0.132 1 3.8% 0.810

DNMT3A 2 5.1% 2 0.5% 0.0056 1 3.8% 0.810

MET ampl 1 2.6% 14 2.5% 0.992 1 4.2% 0.726

ARID1A 1 2.6% 4 1.1% 0.421 1 3.8% 0.771

TSC1 1 2.6% 3 0.8% 0.289 1 3.8% 0.771

TSC2 1 2.6% 1 0.3% 0.0507 0 0.0% 0.414

EGFR mutation 1 2.6% 91 24.5% 0.0018 3 11.5% 0.143

FGFR3 1 2.6% 2 0.5% 0.158 1 3.8% 0.771

FGFR2 1 2.6% 4 1.1% 0.421 0 0.0% 0.414

ARID2 1 2.6% 1 0.3% 0.0507 1 3.8% 0.771
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than IDH-mutant GBMs (96.2%; 76.2%; P = 0.0139; 
P < 0.0001), and frequency of EGFR amplification (17.9%) 
significantly lower than IDH-wt (46.3%; P = 0.0006) and 
higher than IDH-mutant GBM (0%; P = 0.0001) (Table 2). 
The frequency of PTEN alterations was similar to that in 
IDH-wt GBMs (30.8% vs 33.9%; P = 0.686) and signifi-
cantly lower than that in IDH-wt GBMs (4%; P = 0.0011).

Frequencies of alterations in mTOR, MMR and chro-
matin remodeling DNMT3A genes were similar to those 
in IDH-mutant GBMs, but significantly more frequent 
than those in IDH-wt GBMs (Table 2).

The OS was known for 568 patients with IDH-wt 
(median: 12  months; range: 0–121  months; 440 died of 
GBM) and 24 with IDH-mutant (median: 20  months; 
range: 3–41  months; 9 died of GBM) GBMs in TCGA 
PanCancer Atlas series. Patients with GBMs in this series 
had an OS length significantly shorter than patients with 
IDH-mutant GBM (Hazard ratio: 0.4; 95% C.I.: 02–0.8; 
P = 0.0127), but not significantly different from patients 
with IDH-wt GBM (Hazard ratio: 1.3; 95% C.I.: 0.9–1.8; 
P = 0.187) (Fig. 5).

When the GC-GBMs in this cohort were dichoto-
mized on the basis of the age at diagnosis (< 55  years 
and ≥ 55  years), the patients younger than 55  years had 
on OS longer than patients with IDH-wt GBMs (Hazard 
ratio: 0.4; 95% C.I.: 0.2–0.7) and similar to patients with 
IDH-mutant GBMs (Hazard ratio: 1.2; 95% C.I.: 0.6–2.2) 
in TCGA PanCancer Atlas series (P = 0.0013) (Fig. 5). On 
the other hand, the patients of 55 years or older had an 
OS significantly shorter than patients with IDH-mutant 
GBMs (Hazard ratio: 3.1; 95% C.I.: 1.6–6) and similar to 
patients with IDH-wt GBMs (Hazard ratio: 1.1; 95% C.I.: 

0.6–1.8) in TCGA PanCancer Atlas series (P = 0.0013) 
(Fig. 5).

Discussion
The 2016 WHO classification defines GC-GBM as a 
variant of IDH-wt GBM characterized histologically by 
numerous multinucleated giant cells and molecularly 
by a high frequency of TP53 mutations and rare EGFR 
amplification [1].

In this study on 39 GBMs featuring a percentage of 
giant cells ranging between 30 and 90%, the alterations 
found in 458 cancer-related genes analyzed with NGS 
were not associated with the giant cell content (30% 
-50% or > 50%). As expected, no cases had IDH1/2 muta-
tions and a high percentage (82%) featured alterations of 
TP53/MDM2 pathway. However, a consistent propor-
tion (69.2%) of GC-GBMs also harbored alterations in 
RB1/CDKN2A/CDK4 pathway, with 25.6% cases having 
impairment of RB1, 33.3% displaying CDKN2A homozy-
gous deletion and 10% showing CDK4 amplification. 
EGFR amplification was found in 18% cases and was 
significantly correlated to a worse prognosis. Other fre-
quent alterations were detected in NF1 (25.6%), chroma-
tin remodeling genes (25.6%) (including 12.8% mutations 
in ATRX and 7.6% in SETD2), and MMR genes (23%). 
The comparison with GBMs in the TCGA PanCancer 
Atlas cohort revealed that the rates of TP53 and ATRX 
mutations, PTEN alterations, EGFR amplification and 
CDKN2A/B homozygous deletion in the present series 
were intermediate between those found in IDH-wt and 
IDH-mutant GBMs. In contrast, the frequency of RB1 or 
NF1 (25.6%) alterations was significantly higher than in 

Fig. 5  Comparison in the OS of patients with GBMs enriched in giant cells and TCGA GBMs IDH-wt or IDH-mutant. Patients with giant cells enriched 
GBM had an OS significantly shorter than patients with IDH-mutant GBM (P = 0.0127), but not significantly different from that of patients with 
IDH-wt GBM (P = 0.187). Patients with giant cell enriched GBM and younger than 55 years had an OS significantly longer than patients with IDH-wt 
GBM and similar to patients with IDH-mutant GBM, while those of 55 years or older had an OS length similar to IDH-wt GBM and significantly shorter 
than IDH-mutant GBM (P = 0.0013)
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both TCGA groups (14% vs 3.8%, for RB1; 12.1 vs 3.8% 
for NF1), suggesting that this is a distinctive feature of 
GBMs enriched in GCs. In accordance, 2/10 (20%) GC-
GBMs analyzed in a previous study by whole exome 
sequencing had RB1 mutations [10], and 8 (47%) and 6 
(35%) of 17 GBMs with > 30% giant cells had RB1 and 
NF1 mutations in another [6].

One of the present GBMs had a pathogenic POLE 
mutation, similarly to other reported cases of GBMs 
enriched in giant cells [6, 28, 31, 32], which suggests 
that also POLE mutations may be part of the molecular 
portrait of GC-GBM.

Therefore, our findings confirm and expand the con-
cept that GC enriched GBM is a peculiar entity, dis-
tinct from either IDH-wt or IDH-mutant GBM. In most 
cases (32 cases; 82%), it is driven by the alteration of 
P53 function due to either TP53 gene mutations (29 
cases, 74.4%) or amplification of its principal cellular 
antagonist, the MDM2 gene (3 cases, 7.7%). However, it 
is also enriched in alterations of RB1/CDKN2A/CDK4 
pathway and mutations in NF1, POLE, and chromatin 
remodeling genes.

A major issue in the diagnosis of GC-GBM is repre-
sented by the lack of a cut-off of giant cells required for 
this diagnosis. Only one previous study specified the 
percentage of giant cells in the cases analyzed [6]. In 
agreement with our results, it reported that the muta-
tion frequencies of RB1 and NF1 were significantly 
higher in 17 GBMs with > 30% giant cells than in TCGA 
IDH-wt GBMs [6]. Moreover, the extrapolated muta-
tion frequencies of RB1 and NF1 were significantly 
higher in the 17 GBMs with > 30% giant cells (8/17, 
47.1%; 5/17, 29.4%) than in the 18 GBMs with < 30% 
giant cells (2/18, 11%; 2/18, 11%) [6].

Of note, the rate of MMR genes mutations in the pre-
sent GBMs (9/39 cases; 23%) was significantly higher 
than in the IDH-wt GBMs of TCGA PanCancer Atlas 
(1.6%) or in other cohorts of conventional GBMs of 
adults (3%) and children (6.6%) [33, 34]. However, in 
only one case MMR genes mutations were coupled with 
MSI, similarly to that found in TCGA PanCancer Atlas, 
where all 7 MMR-mutated GBMs lacked MSI. In our 
series, another GBM had MSI but lacked MMR muta-
tions. Both GBMs with MSI had the loss of the matched 
MMR MSH2/MSH6 protein partners. Nevertheless, 
MMR losses were found in 6 additional cases with sta-
ble microsatellites. The absence of MSI in cases with 
the immunohistochemical loss of MMR proteins was 
previously reported in other cohorts of gliomas or in 
meningiomas [35, 36] and suggests caution in the use 
of immunohistochemistry for MMR proteins as a sur-
rogate of MSI.

MMR deficiency and hypermutation are currently 
considered as biomarkers predictive of the response to 
immune checkpoint inhibition [37]. Indeed, it is reported 
that tumors with MMR deficiency have 10 to 100 times 
more somatic mutations than MMR-proficient tumors 
and this hypermutation state could lead to a high neoan-
tigen load and consequent activation of the immune sys-
tem and tumor destruction [38].

In the present GBMs enriched in GCs, TMB ranged 
between 5.4 and 153.8 (median: 9.3; inter-quartile 
range:8.2–12) and mutation counts were significantly 
higher than in the IDH-wt and IDH-mutant GBMs in 
TCGA PanCancer Atlas. Due to a wide TMB variability 
across tumor types, there is not a universal definition 
for hypermutation [39, 40]. Using a cut-off of ≥ 10 muta-
tions/Mb, 16/39 (41%) of the present GBMs were hyper-
mutated, compared to only 10/368 (2.7%) IDH-wt and 
2/26 (7.6%) IDH-mutant GBMs in TCGA PanCancer 
Atlas. This suggests that hypermutation might represent 
an additional characterizing feature of GBMs enriched 
in GCs. In accordance, other authors reported that 1/10 
(10%) GC-GBMs, analyzed by means of whole exome 
sequencing [10], and 2/11 (18%) GBMs with > 30% giant 
cells, assessed with the TML Oncomine panel, had ≥ 10 
muts/Mb [6]. Moreover, most GBMs with > 100 muts/Mb 
had giant cell histology in other studies [31, 41].

In treatment naïve diffuse gliomas, hypermutation was 
mainly associated with POLE and MMR mutations [31, 
33, 36, 42].

In agreement, one of the present hypermutated GBMs 
had POLE mutation and 8 had mutations in MMR genes. 
Of these latter, only one had MSI, suggesting that mecha-
nisms different from defective MMR system may lead to 
a hypermutational status in gliomas and that the recent 
proposal to use MMR immunohistochemistry to identify 
hypermutated cases for immunotherapy should be con-
sidered with caution [43].

This study is the first to address the question on 
whether genetic alterations may have prognostic rel-
evance in GC enriched GBMs. Similar to IDH-mutated 
or conventional IDH-wt GBMs [44], the presence of 
EGFR amplification was associated with significantly 
shorter patients’ survival. In contrast to that reported in 
gliomas treated with temozolomide [36], hypermutation 
was an independent predictor of longer overall survival. 
Of note, the OS length overlapped that of patients with 
IDH-wt GBM in TCGA PanCancer Atlas series, which 
might suggest that GC variant does not harbor a better 
prognosis than conventional IDH-wt GBMs. However, 
the subgroup of patients younger than 55  years had an 
OS length similar to patients with IDH-mutant GBM and 
significantly longer than patients with IDH-wt GBMs. 
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This indicates that, among IDH-wt GBMs, giant cell 
variant carries a favorable prognostic significance only in 
younger patients.

In conclusion, the molecular landscape of GBMs with 
at least 30% GCs is dominated by tumor suppressor 
impairment represented by alterations in TP53/MDM2 
and RB1/CDKN2A/CDK4 pathways, associated with 
EGFR amplification in more aggressive cases. Compared 
to conventional IDH-wt GBM, this variant has higher 
frequency of RB1, NF1 and POLE mutations and hyper-
mutation. In view of these latter features, a significant 
proportion of GC-GBMs may be potential candidates for 
clinical trials with immune checkpoint inhibitors.
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