109 research outputs found

    Is there any genetic variation among native mexican and argentinian populations of Dalbulus maidis (Hemiptera: Cicadellidae)?.

    Get PDF
    The corn leafhopper Dalbulus maidis (Delong & Wolcott) (Hemiptera: Cicadellidae) originated in Mexico, but is found from southeastern and southwestern USA to Argentina. Differences in reproductive and phenotypic traits between Mexican (native) and Argentinian (adventive) populations have been previously reported, but information on their genetic variation is currently unavailable. The objective was to investigate possible genetic variability among D. maidis populations collected in Mexico on maize and maize relatives (annual and perennial teosintes) and on maize in Argentina. A region of the mitochondrial gene coding for the cytochrome oxidase subunit I (mtCOI) and the ribosomal internal transcribed spacer (ITS2) were sequenced and analyzed. We developed the forward and reverse primers for the DNA amplification of COI in D. maidis (dalCOI). Twenty two and 17 sequences for dalCOI and ITS2, respectively, were generated and analyzed. No genetic variation among Mexican and Argentinian populations was found in the ribosomal region and low genetic variation was found in the mitochondrial region. These results could be explained by the short evolutionary time scale, since both maize and the corn leafhopper moved throughout the Americas only in the most recent millenia, or in part to the limited host range, and thus a limited change in the corn leafhopper associated bacteria.Fil: Palomera, Veronica. Universidad de Guadalajara; MĂ©xicoFil: Bertin, Sabrina. Universidad de Torino ; ItaliaFil: Rodriguez, Aaron. Universidad de Guadalajara; MĂ©xicoFil: Bosco, Domenico. Universidad de Torino; ItaliaFil: Virla, Eduardo Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Planta Piloto de Procesos Industriales MicrobiolĂłgicos; ArgentinaFil: Moya-Raygoza, Gustavo. Universidad de Guadalajara; MĂ©xic

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    • 

    corecore