130 research outputs found

    Chemical abundances in M31 from HII regions

    Full text link
    We have obtained multi-slit spectroscopic observations from 3700A to 9200A with LRIS at the Keck I telescope for 31 HII regions in the disk of the Andromeda galaxy (M31), spanning a range in galactocentric distance from 3.9 kpc to 16.1 kpc. In 9 HII regions we measure one or several auroral lines ([OIII]4363, [NII]5755, [SIII]6312, [OII]7325), from which we determine the electron temperature (Te) of the gas and derive chemical abundances using the 'direct Te-based method'. We analyze, for the first time in M31, abundance trends with galactocentric radius from the 'direct' method, and find that the Ne/O, Ar/O, N/O and S/O abundance ratios are consistent with a constant value across the M31 disc, while the O/H abundance ratio shows a weak gradient. We have combined our data with all spectroscopic observations of HII regions in M31 available in the literature, yielding a sample of 85 HII regions spanning distances from 3.9 kpc to 24.7 kpc (0.19 - 1.2 R25) from the galaxy center. We have tested a number of empirical calibrations of strong emission line ratios. We find that the slope of the oxygen abundance gradient in M31 is -0.023+/-0.002 dex/kpc, and that the central oxygen abundance is in the range 12+log(O/H) = 8.71 - 8.91 dex (i.e. between 1.05 and 1.66 times the solar value, for 12+log(O/H)_solar=8.69), depending on the calibration adopted. The HII region oxygen abundances are compared with the results from other metallicity indicators (supergiant stars and planetary nebulae). The comparison shows that HII region O/H abundances are systematically ~0.3 dex below the stellar ones. This discrepancy is discussed in terms of oxygen depletion onto dust grains and possible biases affecting Te-based oxygen abundances at high metallicity.Comment: 21 pages and 11 figures. Accepted for publication in MNRA

    Multi-Element Abundance Measurements from Medium-Resolution Spectra. IV. Alpha Element Distributions in Milky Way Dwarf Satellite Galaxies

    Get PDF
    We derive the star formation histories of eight dwarf spheroidal (dSph) Milky Way satellite galaxies from their alpha element abundance patterns. Nearly 3000 stars from our previously published catalog (Paper II) comprise our data set. The average [alpha/Fe] ratios for all dSphs follow roughly the same path with increasing [Fe/H]. We do not observe the predicted knees in the [alpha/Fe] vs. [Fe/H] diagram, corresponding to the metallicity at which Type Ia supernovae begin to explode. Instead, we find that Type Ia supernova ejecta contribute to the abundances of all but the most metal-poor ([Fe/H] < -2.5) stars. We have also developed a chemical evolution model that tracks the star formation rate, Types II and Ia supernova explosions, and supernova feedback. Without metal enhancement in the supernova blowout, massive amounts of gas loss define the history of all dSphs except Fornax, the most luminous in our sample. All six of the best-fit model parameters correlate with dSph luminosity but not with velocity dispersion, half-light radius, or Galactocentric distance.Comment: 28 pages, 14 figures; accepted for publication in ApJ; very minor editorial corrections in v

    A VAMP7/Vti1a SNARE complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels

    Get PDF
    The KChIPs (K+ channel-interacting proteins) are EF hand-containing proteins required for the traffic of channel-forming Kv4 K+ subunits to the plasma membrane. KChIP1 is targeted, through N-terminal myristoylation, to intracellular vesicles that appear to be trafficking intermediates from the ER (endoplasmic reticulum) to the Golgi but differ from those underlying conventional ER–Golgi traffic. To define KChIP1 vesicles and the traffic pathway followed by Kv4/KChIP1 traffic, we examined their relationship to potential SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins mediating the trafficking step. To distinguish Kv4/KChIP1 from conventional constitutive traffic, we compared it to the traffic of the VSVG (vesicular-stomatitis virus G-protein). Expression of KChIP with single or triple EF hand mutations quantitatively inhibited Kv4/KChIP1 traffic to the cell surface but had no effect on VSVG traffic. KChIP1-expressing vesicles co-localized with the SNARE proteins Vti1a and VAMP7 (vesicle-associated membrane protein 7), but not with the components of two other ER–Golgi SNARE complexes. siRNA (small interfering RNA)-mediated knockdown of Vti1a or VAMP7 inhibited Kv4/KChIP1traffic to the plasma membrane in HeLa and Neuro2A cells. Vti1a and VAMP7 siRNA had no effect on VSVG traffic or that of Kv4.2 when stimulated by KChIP2, a KChIP with different intrinsic membrane targeting compared with KChIP1. The present results suggest that a SNARE complex containing VAMP7 and Vti1a defines a novel traffic pathway to the cell surface in both neuronal and non-neuronal cells

    Vitamin D status and its association with parathyroid hormone concentrations in women of child-bearing age living in Jakarta and Kuala Lumpur.

    Get PDF
    Objective:To describe the vitamin D status of women living in two Asian cities, – Jakarta (6°S) and Kuala-Lumpur (2°N), to examine the association between plasma 25-hydroxyvitamin D and parathyroid hormone (PTH) concentrations, and to determine a threshold for plasma 25-hydroxyvitamin D above which there is no further suppression of PTH. Also, to determine whether dietary calcium intake influences the relationship between PTH and 25-hydroxyvitamin D.Design:Cross-sectional.Setting:Jakarta, Indonesia and Kuala Lumpur, Malaysia.Participants:A convenience sample of 504 non-pregnant women 18–40 years.Main measures:Plasma 25-hydroxyvitamin D and PTH.Results:The mean 25-hydroxyvitamin D concentration was 48 nmol/l. Less than 1% of women had a 25-hydroxyvitamin D concentration indicative of vitamin D deficiency (<17.5 nmol/l); whereas, over 60% of women had a 25-hydroxyvitamin D concentration indicative of insufficiency (<50 nmol/l). We estimate that 52 nmol/l was the threshold concentration for plasma 25-hydroxyvitamin D above which no further suppression of PTH occurred. Below and above this concentration the slopes of the regression lines were −0.18 (different from 0; P=0.003) and −0.01 (P=0.775), respectively. The relation between vitamin D status and parathyroid hormone concentration did not differ between women with low, medium or high calcium intakes (P=0.611); however, even in the highest tertile of calcium intake, mean calcium intake was only 657 mg/d.Conclusion:On the basis of maximal suppression of PTH we estimate an optimal 25-hydroxyvitamin D concentration of ∼ 50 nmol/l. Many women had a 25-hydroxyvitamin D below this concentration and may benefit from improved vitamin D status

    Guidelines; from foe to friend? Comparative interviews with GPs in Norway and Denmark

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GPs follow clinical guidelines to varying degrees across practices, regions and countries, but a review study of GPs' attitudes to guidelines found no systematic variation in attitudes between studies from different countries. However, earlier qualitative studies on this topic are not necessarily comparable. Hence, there is a lack of empirical comparative studies of GP's attitudes to following clinical guidelines. In this study we reproduce a Norwegian focus group study of GPs' general attitudes to national clinical guidelines in Denmark and conduct a comparative analysis of the findings.</p> <p>Methods</p> <p>A strategic sample of GP's in Norway (27 GPs) and Denmark (18 GPs) was interviewed about their attitudes to guidelines, and the interviews coded and compared for common themes and differences.</p> <p>Results</p> <p>Similarities dominated the comparative material, but the analysis also revealed notable differences in attitudes between Norwegian and the Danish GPs. The most important difference was related to GP's attitudes to clinical guidelines that incorporated economic evaluations. While the Norwegian GPs were sceptical to guidelines that incorporated economic evaluation, the Danish GPs regarded these guidelines as important and legitimate. We suggest that the differences could be explained by the history of guideline development in Norway and Denmark respectively. Whereas government guidelines for rationing services were only newly introduced in Norway, they have been used in Denmark for many years.</p> <p>Conclusion</p> <p>Comparative qualitative studies of GPs attitudes to clinical guidelines may reveal cross-national differences relating to the varying histories of guideline development. Further studies are needed to explore this hypothesis.</p

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore