324 research outputs found

    The composition of Event-B models

    No full text
    The transition from classical B [2] to the Event-B language and method [3] has seen the removal of some forms of model structuring and composition, with the intention of reinventing them in future. This work contributes to thatreinvention. Inspired by a proposed method for state-based decomposition and refinement [5] of an Event-B model, we propose a familiar parallel event composition (over disjoint state variable lists), and the less familiar event fusion (over intersecting state variable lists). A brief motivation is provided for these and other forms of composition of models, in terms of feature-based modelling. We show that model consistency is preserved under such compositions. More significantly we show that model composition preserves refinement

    Boost Invariance and Multiplicity Dependence of the Charge Balance Functionin π+p\pi^{+}p and K+pK^{+}p Collisions at s=22\sqrt s= 22 GeV/c

    Get PDF
    Boost invariance and multiplicity dependence of the charge balance function are studied in \pi^{+}\rp and \rK^{+}\rp collisions at 250 GeV/cc incident beam momentum. Charge balance, as well as charge fluctuations, are found to be boost invariant over the whole rapidity region, but both depend on the size of the rapidity window. It is also found that the balance function becomes narrower with increasing multiplicity, consistent with the narrowing of the balance function when centrality and/or system size increase, as observed in current relativistic heavy ion experiments.Comment: 4 pages, 5 figures, Revte

    Machine learning for automated EEG-based biomarkers of cognitive impairment during Deep Brain Stimulation screening in patients with Parkinson's Disease

    Get PDF
    Objective: A downside of Deep Brain Stimulation (DBS) for Parkinson's Disease (PD) is that cognitive function may deteriorate postoperatively. Electroencephalography (EEG) was explored as biomarker of cognition using a Machine Learning (ML) pipeline.Methods: A fully automated ML pipeline was applied to 112 PD patients, taking EEG time-series as input and predicted class-labels as output. The most extreme cognitive scores were selected for class differentiation, i.e. best vs. worst cognitive performance (n = 20 per group). 16,674 features were extracted per patient; feature-selection was performed using a Boruta algorithm. A random forest classifier was modelled; 10-fold cross-validation with Bayesian optimization was performed to ensure generalizability. The predicted class-probabilities of the entire cohort were compared to actual cognitive performance.Results: Both groups were differentiated with a mean accuracy of 0.92; using only occipital peak frequency yielded an accuracy of 0.67. Class-probabilities and actual cognitive performance were negatively linearly correlated (b =-0.23 (95% confidence interval (-0.29,-0.18))).Conclusions: Particularly high accuracies were achieved using a compound of automatically extracted EEG biomarkers to classify PD patients according to cognition, rather than a single spectral EEG feature.Significance: Automated EEG assessment may have utility for cognitive profiling of PD patients during the DBS screening. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Neurological Motor Disorder

    Important pharmacogenetic information for drugs prescribed during the SARS-CoV-2 infection (COVID-19)

    Full text link
    In December 2019, the severe acute respiratory syndrome virus-2 pandemic began, causing the coronavirus disease 2019. A vast variety of drugs is being used off-label as potential therapies. Many of the repurposed drugs have clinical pharmacogenetic guidelines available with therapeutic recommendations when prescribed as indicated on the drug label. The aim of this review is to provide a comprehensive summary of pharmacogenetic biomarkers available for these drugs, which may help to prescribe them more safelyM.N.-G. is co-financed by the European Social Fund and the Youth European Initiative; grant number PEJ-2018-TL/BMD-1108

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
    corecore