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� A fully automated EEG-based machine learning pipeline was applied to DBS candidates with Parkin-
son’s Disease.

� The model differentiates good versus poor cognitive function with high accuracy.
� Automatically extracted EEG biomarkers may have utility during the DBS screening.

a b s t r a c t

Objective: A downside of Deep Brain Stimulation (DBS) for Parkinson’s Disease (PD) is that cognitive func-
tion may deteriorate postoperatively. Electroencephalography (EEG) was explored as biomarker of cogni-
tion using a Machine Learning (ML) pipeline.
Methods: A fully automated ML pipeline was applied to 112 PD patients, taking EEG time-series as input
and predicted class-labels as output. The most extreme cognitive scores were selected for class differen-
tiation, i.e. best vs. worst cognitive performance (n = 20 per group). 16,674 features were extracted per
patient; feature-selection was performed using a Boruta algorithm. A random forest classifier was mod-
elled; 10-fold cross-validation with Bayesian optimization was performed to ensure generalizability. The
predicted class-probabilities of the entire cohort were compared to actual cognitive performance.
Results: Both groups were differentiated with a mean accuracy of 0.92; using only occipital peak fre-
quency yielded an accuracy of 0.67. Class-probabilities and actual cognitive performance were negatively
linearly correlated (b = �0.23 (95% confidence interval (�0.29, �0.18))).
Conclusions: Particularly high accuracies were achieved using a compound of automatically extracted
EEG biomarkers to classify PD patients according to cognition, rather than a single spectral EEG feature.
Significance: Automated EEG assessment may have utility for cognitive profiling of PD patients during the
DBS screening.
� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Parkinson’s Disease (PD) is the fastest growing neurological
disorder worldwide, with both characteristic motor and non-
motor symptoms. Patients who develop motor complications
may be eligible for Deep Brain Stimulation (DBS), an invasive
surgical intervention which is highly effective in relieving motor
complications and improves quality of life (Ahlskog and
Muenter, 2001; Deuschl and Agid, 2013). Despite good effects
on motor functioning and substantial relief of motor complica-
tions refractory to oral medication (Deuschl and Agid, 2013;
Okun et al., 2012), DBS does not improve cognitive symptoms
and some deterioration can be observed in cognitive domains
(Contarino et al., 2007; Weaver et al., 2009) and neuropsychi-
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atric functioning after surgery (Drapier et al., 2006; Smeding
et al., 2011). The screening process for DBS therefore entails an
extensive evaluation of cognitive and neuropsychiatric function-
ing to rule out severe impairment prior to surgery, in order to
determine DBS eligibility (Geraedts et al., 2019; Lang et al.,
2006). However, accurate evaluations of cognition are limited
by factors such as intellectual status (Duncan, 1993), while per-
formance tasks may be subject to misinterpretation due to e.g.
motor impairment, fatigue, mood disorder, stress, and personal
motivation, which may render results less valid (Duckworth
et al., 2011; Duckworth and Yeager, 2015). In addition, neu-
ropsychological screening is time-consuming and stressful for
patients. Consequently, there is a need for new biomarkers to
complement current neuropsychological assessments of
cognition.

A candidate instrument for such complementary assessments
is quantitative Electroencephalography (qEEG), which can mea-
sure brain activity directly and non-invasively. The utility of
qEEG to aid during assessment of cognitive impairment, and
even predict cognitive deterioration has been previously estab-
lished in the general PD population (Geraedts et al., 2018a). Par-
ticularly spectral features reflecting EEG slowing are related to
cognitive deterioration, although recent advances in EEG pro-
cessing have demonstrated an association of cognitive impair-
ment with connectivity and network dysfunction in cross-
sectional studies as well (Chaturvedi et al., 2019; Geraedts
et al., 2018b; Utianski et al., 2016). However, these latter metrics
have been sparsely studied in comparison to spectral analyses
(Geraedts et al., 2018a). An extensive evaluation across the
numerous possibilities of EEG metrics beyond spectral powers,
to determine which metrics have the highest potential for
reflecting PD symptoms, is lacking.

A limitation of qEEG analyses is the laborious amount of pre-
processing, and particularly, the arbitrary selection of features to
include during the final modelling. Traditionally, features from
time series are manually selected and computed, which is time-
consuming and requires expert knowledge and is therefore diffi-
cult to translate to clinical practice. A machine learning (ML)
approach may overcome these limitations by providing output,
such as a classification of cognitive status, without predefined
data-extraction or modelling (Bonanni, 2019). Preliminary ML
results on determining levels of cognitive severity demonstrated
high performance scores, although limited to predetermined (spec-
tral) features only. These models still require a large degree of pre-
processing and manual feature-extraction (Betrouni et al., 2019).
Ideally, the ML approach is extended to a fully automated ML pipe-
line, deemed a ‘sequence of data processing components’ (Geron,
2017). Within a ML pipeline, the EEG time series are delivered as
input, after which an automated algorithm extracts a large number
of features, selects those features which are needed to create a rep-
resentative EEG profile, and learns and optimizes a ML model,
without any intervention in between. Such a pipeline limits the
necessity of making arbitrary choices, makes the entire process
more efficient, and increases the likelihood of identifying novel
biomarkers.

Given the need for complementary objective screening instru-
ments to evaluate cognition during the DBS screening, the aim of
our study was to evaluate the utility of a qEEG ML pipeline for
determining cognitive status in these patients. To this end, the
most ‘extreme’ DBS candidates were selected to build a supervised
learning model, i.e. best vs. worst cognitive scores after a compre-
hensive neuropsychological test battery. The model could then be
applied to evaluate the remaining DBS candidates, during which
the association between ML-predictions and the actual levels of
cognitive function could be studied.
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2. Methods

2.1. Study participants

All consecutive patients who underwent preoperative screen-
ings for DBS at the Leiden University Medical Center (LUMC)
between September 2015 and June 2019 were included in the
study. All patients fulfilled the criteria for clinically established
PD (Postuma et al., 2015). The study was approved by the local
medical ethics committee and all patients gave written informed
consent.

2.2. EEG acquisition, pre-processing and analysis

EEG acquisition and pre-processing has been described else-
where (Geraedts et al., 2018b). Eyes-closed resting-state record-
ings were made with 21 Ag/AgCl EEG electrodes according to
standard 10–20 positions. Patients used their medication accord-
ing to their individual schedules (i.e. ‘ON’); dyskinesias were not
observed. Data were re-referenced towards a source derivation
approaching the surface Laplacian derivation (Hjorth, 1980) to
amplify spatial resolution (Burle et al., 2015). After visual confir-
mation of artefact-free signals, five consecutive non-overlapping
4096-point (8.192 seconds) epochs were selected for offline analy-
sis in American Standard Code for Information Interchange (ASCII)
format. Recordings with less than five epochs were excluded from
analyses. Brainwave software was used for computation of clini-
cally used peak frequencies (BrainWave version 0.9.152.12.26, C.

J. Stam; available at http://home.kpn.nl/stam7883/brainwave.

html).

2.3. Group composition

From the comprehensive neuropsychological evaluations, six
neuropsychological domains were identified according to the Diag-
nostic and Statistical Manual of mental disorders (5th edition,
DSM-V).(American Psychiatric Association, 2013) According to
DSM-V consensus guidelines, the following cognitive tests were
selected for each domain: (1) ‘Learning and Memory’: Cambridge
Cognitive Examination (CAMCOG) memory section (Huppert
et al., 1995), Rey Auditory Verbal Learning Test (RAVLT) (Vakil
and Blachstein, 1993), and Wechsler Memory Scale (WMS)
(Wechsler, 1945); (2) ‘Executive Functioning’: CAMCOG abstract
reasoning, Digit Cancellation Test (DCT) (Dekker et al., 2007), digit
span (Richardson, 2007), Word-colour Stroop Test (Stroop) 3
(Scarpina and Tagini, 2017), Trail Making Test (TMT) B
(Tombaugh, 2004); (3) ‘Psychomotor speed’: Stroop 1 and 2, and
TMT A; (4) ‘Language’: CAMCOG language section and verbal flu-
ency; (5) ‘Perceptive-motoric functioning’: CAMCOG perception
and CAMCOG praxis, and (6) ‘Neuropsychiatric status’: Becks
Depression Inventory (BDI) (Beck et al., 1996) and Hospital Anxiety
and Depression Scale (HADS) A-D (Zigmond and Snaith, 1983). All
individual test-scores were standardised (Z-transformed) and
averaged per domain for direct comparability. In case of missing
data, an average of the remaining test-scores within the pertaining
domain was used rather than imputing data, as long as �2 test-
scores remained per domain (except for the domain ‘Language’
which contains only two tests and for which no data was imputed).
A composite Z-score was derived from averaging all domains, if
data from �4 domains were available. Higher Z-scores indicate
better cognitive functioning. From the entire dataset, the most
extreme patients in terms of cognitive performance were selected:
either the highest cognitive composite scores (high-COG, n = 20) or
the lowest scores (low-COG, n = 20). All other patients were classi-
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fied as ‘intermediate cognitive performance (int-COG). Given the
nature of the cohort (i.e. DBS candidates who had already under-
went a clinical pre-screening) (Geraedts et al., 2019), it was
deemed unlikely that a sufficient number of patients would fulfil
the criteria for either PD Dementia (PDD) or Mild Cognitive Impair-
ment (MCI) and these classes were therefore deemed unsuitable to
use for classification purposes.

Secondary outcomes included: motor function (Movement
Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) part III (range 0–132)) (Goetz et al., 2008), and non-
dopaminergic functioning (SEverity of Non-dopaminergic Symp-
toms in Parkinson’s Disease (SENS-PD) scale (range 0–54)) (van
der Heeden et al., 2016), and level II criteria for PD-MCI (Litvan
et al., 2012).

2.4. ML pipeline

A previously reported ML pipeline approach was used for time
series classification purposes (Koch and Bäck, 2018; Koch et al.,
2018). Originally developed and applied in the automotive indus-
try to classify time series originating from vehicle-data (i.e. pre-
dicting damaged parts after a low-speed crash (Koch and Bäck,
2018; Koch et al., 2018)), the approach was further applied to time
series originating from EEGs, particularly to evaluate different ML
approaches for classification of PD patients according to their cog-
nitive performance (Koch et al., 2019). The resulting ML pipeline
consists of four phases: (1) feature-extraction, (2) feature-
selection, (3) training of a classifier, and (4) hyperparameter opti-
mization. All four steps are completely automated, with the EEG
time series as input and the class-labels (i.e. high-COG or low-
COG) as output. The library ‘Time Series FeatuRe Extraction on
basis of Scalable Hypothesis tests’ (tsfresh) was used to extract fea-
tures from the time series (Christ et al., 2018, 2016), resulting in
16,674 features per EEG (794 comprehensive features for each of
the 21 time series) (Kursa and Rudnicki, 2010). Feature selection
was performed using the Boruta algorithm, by testing the variable
importance (VIMP) of each feature against that of ‘shadow fea-
tures’, which are created by random shuffling of the real features.
The VIMP of shadow and real features are obtained from a random
forest model trained thereon. A real feature would be selected if its
VIMP frequently dominates the maximal VIMP of shadow features,
in multiple independent trials (Kursa and Rudnicki, 2010). After
feature-selection, this feature set is used to train a Random Forest
Classifier (RFC). A RFC is an ensemble of decision trees; the result-
ing decision is the majority vote from all decision trees (Hastie
et al., 2009). The hyperparameters of the RFC, such as the number
of decision trees and their individual tree depths, are optimized
with a variant of Bayesian Optimization technique called Mixed
Integer Parallel Efficient Global Optimization (MIP-EGO) (Wang
et al., 2018, 2017) for mixed-integer categorical search spaces
(Yang et al., 2019). To ensure generalizability of the RFC, a cross-
validation procedure was adopted: the data is randomly split into
10 folds, after which training was performed on 9 folds and tested
on the remaining fold. This process was repeated until each fold
has served as test set; the average of all test scores of the compu-
tations represents the final score. A secondary assessment of inter-
val validity was based on a combination of cross-validation and
split-sample validation: cross-validated model-training based on
50% of the data and validated on the remaining sample. This
approach was repeated for 60–90% of the data used for model-
building with the remaining sample used for internal validation
purposes, although it should be noted that cross-validation is supe-
rior to split-sample validation to assess internal validity especially
for small sample sizes (Steyerberg, 2018). A detailed description of
the applied ML Pipeline is published elsewhere (Koch et al., 2019).
Since all four steps are fully automated, no arbitrary choices on
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feature-extraction or feature-selection were made during the
model-building-process.

2.5. Application of the pipeline to EEG data

Both occipital and global peak frequencies, routinely used for
clinical purposes, were used as standard-features. All five epochs
were averaged per patient, in order to obtain more robust time ser-
ies and to limit intra-individual variability (Koch et al., 2019). The
features from each individual computation-run were selected and
combined. The resulting model with the combined features was
evaluated for model performance. A comparison was drawn
between a model using only the occipital peak frequency as a sin-
gle classifying feature and the ML Pipeline using a combination of
the routinely-used peak frequency and the automatically extracted
features from the EEG time series.

The final selected model with the best-classifying performance
was then applied to the unclassified patients (i.e. those with ‘inter-
mediate’ cognitive performance scores) and the predicted proba-
bilities of being classified as low-COG were calculated for all
patients. A linear regression model was fitted with these predicted
probabilities as an outcome, and the composite global cognitive
score subdivided into three splines in accordance with the original
cognitive classification as independent variables.

2.6. Statistical analysis

Demographic, clinical, and neuropsychological variables, as well
as electrophysiological spectral features, were compared between
the high-COG and low-COG groups using Student T-tests if nor-
mally distributed, and Mann-Whitney U tests if not-normally dis-
tributed in case of continuous variables, and Pearson’s v2 Tests
in case of categorical data. The ML Pipeline, as well as a model
using only occipital peak frequency as classifying feature, was eval-
uated using accuracy, sensitivity, and specificity metrics. The fea-
tures included in the ML pipeline were compared using General
Linear Models, both crude and corrected for age, disease duration,
and sex.

Missing values, other than cognitive performance scores, were
imputed using multiple imputation with five iterations in case of
�15% missing data.

All analyses were performed using IBM Statistical Package for
the Social Sciences (SPSS) 25 Software (SPSS inc., Chicago, Illinois,
USA).

2.7. Data availability

Anonymized data may be shared upon request.
3. Results

3.1. Patient characteristics

A total of 112 patients were included. Patients classified as
high-COG were younger, and with a younger age-at-onset than
low-COG patients. Non-dopaminergic disease severity, as well as
motor functioning during ‘ON’ was better in high-COG patients,
whereas motor functioning during ‘OFF’ did not differ (see Table 1).
Composite cognitive Z scores were inherently different between
the high-COG and low-COG groups with approximately 1.5 stan-
dard deviations (SD) difference (mean (SD) 0.78 (0.57) vs. �0.78
(0.54), respectively). High-COG patients had similarly better scores
for the domains ‘Learning and Memory’, ‘Perceptive-motoric func-
tioning’, ‘Executive functioning’, and ‘Language’. Strikingly, scores
for the domains ‘Neuropsychiatric functioning’ and ‘Psychomotoric



Table 1
Demographic and clinical characteristics.

High-COG Low-COG P * Int-COG

N 20 20 72
Age a 59.5 (54.6–66.4) 67.8 (60.1–72.1) 0.004 63.5 (57.7–68.0)
Age at onset b 48.2 (9.3) 55.4 (9.6) 0.023 51.1 (10.7)
Disease duration b 11.2 (4.5) 10.9 (5.1) 0.814 11.8 (8.0)
LED a 1151.50 (900.00–1287.50) 1097.25 (517.50–1519.13) 0.547 1150.00 (811.50–1463.50)
% Use of psychoactive medication (n) c 15 (3) 30 (6) 0.451 32 (23)
% Female (n) c 45 (9) 10 (2) 0.031 37.5 (27)
MDS-UPDRS III ‘ON’ a 18.5 (11–22.5) 23 (19–36) 0.012 20.5 (13.3–30)
MDS-UPDRS III ‘OFF’ a 46.5 (39.3–55.5) 48.5 (41–57) 0.718 44 (36–55)
SENS-PD b 9.2 (4.0) 15.3 (4.8) <0.001 12.4 (4.8)
Z Psychomotoric speed a �0.71 (�0.97 to �0.38) 0.55 (�0.27 to 1.30) <0.001 �0.23 (�0.60 to 0.18)
Z Language a 0.88 (0.50–1.24) �0.93 (�2.11 to �0.45) <0.001 0.04 (�0.35 to 0.53)
Z Neuropsychiatric functioning a �0.40 (�0.78 to 0.28) 0.16 (�0.39 to 0.41) 0.108 �0.12 (�0.42 to 0.37)
Z Executive functioning a 0.59 (0.28–0.74) �0.71 (�1.64 to �0.35) <0.001 0.08 (�0.23 to 0.40)
Z Perceptive-motoric functioning a 0.40 (0.40–0.76) �1.35 (�1.61 to �0.63) <0.001 0.40 (�0.06 to 0.76)
Z Learning and Memory a 0.92 (0.34–1.07) �0.79 (�1.83 to �0.32) <0.001 0.06 (�0.28 to 0.50)
Z Global Cognition b 0.78 (0.57) �0.78 (0.54) <0.001 0.09 (0.22)
% PD-MCI (�2 domains � �1.5 SD) (n) 0 30 (6) 0
% PD-MCI (�2 domains (�1, �1.5) SD) (n) 0 15 (3) 3 (2)

Int-COG = all patients with intermediate cognitive scores.
LEDD: Levodopa Equivalent Dose; PD-MCI: Parkinson’s Disease Mild Cognitive Impairment MDS-UPDRS III: Movement Disorders Society – Unified Parkinson’s Disease Rating
Scale III; SENS-PD: SEverity of Non-dopaminergic Symptoms in Parkinson’s Disease.

* High-COG (20 patients with highest cognitive scores) vs. Low-COG (20 patients with lowest cognitive scores)
a Mann Whitney U tests (median (interquartile range)).
b Student T tests (mean (standard deviation)).
c Pearson v2 tests.
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speed’ were lower for the high-COG patients than for the low-COG
patients.

High-COG patients had spectrally faster EEGs than low-COG
patients, demonstrated by particularly higher occipital peak fre-
quencies (mean (SD) 9.0 (0.9) vs. 7.8 (1.4) Hz) and lower ratios of
slow-over-fast relative powers ((d + h)/(a1 + a2 + b)) (median (in-
terquartile range) 0.69 (0.49–0.86) vs. 1.21 (0.57–2.20) (Table 2
and Fig. 1).

Patients classified as int-COG had clinical, cognitive, and spec-
tral scores situated between low-COG and high-COG scores,
respectively.

3.2. ML pipeline performance

The accuracy (mean (SD)) of the average of all individual runs of
the pipeline was 0.81 (0.01). After a secondary series of cross-
validation runs incorporating all features from the individual runs,
the extended model performance increased to 0.92 (0.02). Using
only the occipital peak frequency as a classifying feature, the accu-
racy was lower: 0.67 (0.06) (see Table 3). The list of features
(n = 13) selected by the ML pipeline included the clinically used
‘occipital peak frequency’. No significant differences were found
for the included features (see Supplementary Table S1), except
Table 2
EEG spectral characteristics.

High-COG

Occipital peak frequency a 9.0 (0.9)
Total peak frequency a 8.8 (0.8)
Relative d power b 0.21 (0.18–0.27)
Relative h power b 0.15 (0.11–0.20)
Relative a1 power b 0.23 (0.16–0.30)
Relative a2 power b 0.11 (0.09–0.17)
Relative b power b 0.19 (0.16–0.25)
Slowing ratio ((d + h)/(a1 + a2 + b)) b 0.69 (0.49–0.86)

High-COG (20 patients with highest cognitive scores) vs. Low-COG (20 patients with low
Int-COG = all patients with intermediate cognitive scores.

a Student T-test (mean (standard deviation)).
b Mann Whitney U test (median (interquartile range)).
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for the occipital peak frequency, both in the analysis including
crude differences and after correction for age, disease duration,
and sex. All features were in a VIMP range of 4–15% (see Supple-
mentary Table S1 and Supplementary Figure S1A-E for a complete
overview). A combination of cross-validation and split-sample val-
idation demonstrated good internal validity for all splits (see Sup-
plementary Figure S2).

An additional model differentiating low-COG from int-COG
yielded a mean accuracy of 0.80 (0.03); whereas an additional
model differentiating int-COG from high-COG yielded a mean
(SD) accuracy of 0.80 (0.02). As classes were relatively unbalanced,
the sensitivity of the models was much lower (low-COG vs. int-
COG: mean (SD) sensitivity 0.26 (0.16); int-COG vs. high-COG
mean (SD) sensitivity: 0.24 (0.08)), and corresponding specificities
were relatively high (low-COG vs. int-COG: mean (SD) specificity
0.95 (0.03); int-COG vs. high-COG mean (SD) 0.96 (0.04)) (see Sup-
plementary Table S2).

3.3. Calibration

A scatterplot demonstrating the correlation between actual cog-
nitive functioning and the predicted probability of being classified
as low-COG is shown in Fig. 2, demonstrating a negative trend (i.e.
Low-COG P * Int-COG

7.8 (1.4) 0.003 8.4 (1.4)
7.9 (1.4) 0.013 8.2 (1.1)
0.24 (0.17–0.39) 0.369 0.26 (0.20–0.35)
0.20 (0.13–0.31) 0.068 0.17 (0.12–0.26)
0.16 (0.07–0.22) 0.024 0.14 (0.09–0.21)
0.07 (0.06–0.11) 0.008 0.09 (0.06–0.13)
0.16 (0.12–0.23) 0.327 0.19 (0.15–0.25)
1.21 (0.57–2.20) 0.026 1.07 (0.59–1.43)

est cognitive scores).



Fig. 1. Spectral plots (peak-frequency) per cognitive class. Peak frequencies were calculated in Hz. Patients with high cognitive performance scores have spectrally faster
EEGs than patients with lower cognitive performance scores. Low-COG: lower cognitive performance scores; Int-COG: intermediate cognitive performance scores; High-COG:
higher cognitive performance scores.

Table 3
Machine Learning model performances.

Occipital peak
frequency only

Mean of all individual
cross-validation runs

All features from all
cross-validation runs

Accuracy 0.67 (0.06) 0.81 (0.01) 0.92 (0.02)
Sensitivity 0.74 (0.09) 0.82 (0.04) 0.90 (0.04)
Specificity 0.59 (0.04) 0.83 (0.07) 0.94 (0.02)

Fig. 2. Predicted probability of being classified ‘low-COG’ vs. actual cognitive
performance. Low-COG: lower cognitive performance scores; Int-COG: intermedi-
ate cognitive performance scores; High-COG: higher cognitive performance scoers;
PD-MCI: Parkinson’s Disease – Mild Cognitive Impairment; ML: Machine Learning.
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a lower probability of being classified as low-COG correlates to bet-
ter cognition: b = �0.23 (95%CI �0.29, �0.18)). Both the high-COG
and the low-COG groups contributed to this negative trend (spline-
high-COG: b = �0.289 (95% CI �0.37, �0.20), spline-low-COG: b =
�0.26 (95%CI �0.34, �0.17)), but the int-COG patients, who were
not used during model-training, did not (spline-int-COG: b = 0.12
(95%CI �0.05, 0.30)).
4. Discussion

In this study, we show that DBS candidates with PD with either
clinically determined ‘good’ or ‘poor’ cognition may be classified
according to their cognitive function based on a fully automated
EEG-assessment.

Contrary to previous studies which highlight singular, or few
features to distinguish patients with different levels of cognitive
impairment (Betrouni et al., 2019; Chaturvedi et al., 2019;
Geraedts et al., 2018b; Klassen et al., 2011; Utianski et al., 2016),
we showed that a compound of multiple EEG-biomarkers provides
the highest accuracy in classifying patients.
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Our final model performs slightly better than previously
reported ML algorithms, which report accuracies between 74%
(Chaturvedi et al., 2019) and 88%.(Betrouni et al., 2019) Betrouni
and colleagues differentiated five groups of PD patients, with dif-
ferent levels of cognitive impairment using support vector machi-
nes (accuracy = 84%) and k-nearest neighbour models (88%)
(Betrouni et al., 2019). Although different electrode-densities were
used, analyses were limited to spectral features in an effort to pre-
vent overfitting. As the dataset was subdivided into five different
categories based on cognitive clusters, the two groups with worst
cognitive function were smallest, containing respectively five and
nine patients. In contrast, the results described above demonstrate
the advantage of automated feature-extraction and simultaneous
analysis to both increase the accuracy and limit the need for labo-
rious pre-processing. Pragmatically, the use of spectral features to
reflect EEG slowing is currently still easier to translate to routine
clinical practice than applying a ML pipeline to new EEG data,
although less accurate. Another study added connectivity metrics,
i.e. Phase-Lag-Index (PLI) to spectral features resulting in 396 fea-
tures (66 spectral- and 330 PLI features) (Chaturvedi et al., 2019).
Although the reported accuracies were lower, PLI features discrim-
inated better between PD patients with or without MCI (spectral
features: Area-under-the-curve (AUC) = 0.64; PLI features:
AUC = 0.74). Our model does not include between-channel connec-
tivity metrics but rather focuses on synchronization patterns
within one individual time series. The amount of computation run-
time increases exponentially when automated models are
expanded in such way (Chaturvedi et al., 2019). In line with our
attempt to limit arbitrary choices on feature selection, adding
between-channel-connectivity would expand the model with the
factorial of 16,674 features and would clearly transcend any cur-
rent practical computational runtime (García-Martín et al., 2019).
Theoretically, our accuracy may yet be further increased by includ-
ing connectivity- or network features, but the gain in predictive
performance is likely limited given the already high accuracy.

Although the ML pipeline treats all patients within one sub-
group equally, despite within-group differences in cognitive func-
tioning, the association between the predicted class-probability
and actual cognitive performance follows a linear correlation. This
trend is predominantly fuelled by the patients on which the model
was trained, i.e. high-COG and low-COG patients. Patients classi-
fied as int-COG were poorly predicted and no linear trend could
be discerned for this subgroup. The final model including all fea-
tures from the separate cross-validation was inherently not based
on ‘unseen data’ and therefore runs the risk of overfitting, despite
several safeguards such as multiple cross-validation runs and
Bayesian hyperparameter optimization. This was unavoidable
given the small sample size, and the accuracies from the final
model are therefore best interpreted as the best approximated
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maximum, with accuracies from the averaged cross-validation
runs as minimum. The risk of overfitting may also partly explain
why the model-performance in the int-COG group was ineffective.
Other explanations include the limited variability in the int-COG
group (by definition, all patients had cognitive scores within 1.5
SD) and variation in cognitive performance within this limited
range is likely to occur regardless of the degree of cortical PD
pathology and reflect normal variation also found in the otherwise
‘normal’ population. We emphasize that patients with an ‘interme-
diate’ cognition were never included during the initial-model
building and therefore constitute a separate class which is rightly
unrecognized by the model. Although potentially an interesting
group to have further biomarkers on, their cognition is likely more
influenced by external factors such as education, motivation, and
random effects and less well characterized by pathophysiological
changes than the extremer tertiles. The initial ML algorithm is
therefore unable to put these patients in a class into which they,
clinically speaking, do not belong. Incorporating the intermediate
class into the model (as shown in the additional analyses to classify
low-COG vs. int-COG and int-COG vs. high-COG) results in slightly
lower accuracies, but highly unbalanced sensitivity vs. specificity
due to the large class imbalance.

Other than the occipital peak frequency, none of the features
retained in the ML pipeline were significantly different between
the cognitive classes. This emphasizes the role of a cortical profile
of EEG alterations in cognitive functioning and a need to combine
multiple EEG-features rather than focussing on a single EEG-
biomarker. It is particularly noteworthy that of the 13 retained fea-
tures, 10 were derived from a Fast Fourier Transformation (FFT)
which is typically associated with spectral metrics. Given that
the FFT metrics constitute only a fraction of the available metrics
from the tsfresh feature library, we hypothesize that the neuro-
physiological profile underlying cognitive alterations is predomi-
nantly spectrally-based, and less related to measures of intra-
channel connectivity such as entropy or autocorrelation. This is
in line with previous literature that showed the importance of
spectral metrics compared to connectivity variables, although
these metrics were mostly related to inter-channel connectivity
(Geraedts et al., 2018a). Within the EEG spectrum, multiple aspects
of the FFT appear important, including the real and imaginary parts
of the FFT, the skewness and the angle. In terms of localization, the
ML pipeline selected features within the parieto-occipital regions
(10/13 features), consistent with previous literature on cognition
(Babiloni et al., 2015; Geraedts et al., 2018a).

In contrast to previous studies that explored a wide range of
cognitive functioning in PD patients, our results focus on PD
patients undergoing the screening procedure for DBS. DBS candi-
dates often have a relatively longer disease duration to allow for
several treatment options before considering DBS surgery and
often have more severe PD symptoms than newly-diagnosed PD
patients. Furthermore, severe cognitive impairment is a con-
traindication for DBS (Geraedts et al., 2019; Lang et al., 2006)
and patients with obvious cognitive deficits will not be referred
for screening, indicating that the range of cognitive function is
likely much smaller in the DBS population than in the global PD
population, emphasizing the sensitivity of this ML pipeline.

As with all supervised learning models, the crucial determinant
of the models’ validity is the correct labelling (either high-COG or
low-COG, or another arbitrarily defined label). In this study, an
extensive neuropsychological test battery was used to determine
cognitive functioning of six consensus-based domains (American
Psychiatric Association, 2013), and a derived composite score
reflecting global cognition. However, cognitive (dys)function is
not a purely binary classification: performance is rated in a spec-
trum of possible scores and a derived binary classification may
be subject to discussion. In this study, classes of cognitive function-
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ing were determined in a data-driven fashion by taking the twenty
best- and worst performing patients from the entire cohort. This
was an a priori defined classification, as it was deemed unlikely
that there would be sufficient DBS candidates with either MCI or
PDD. However, it should be noted that both a classification based
on the neuropsychological test battery, and cognitive-screening-
tests reported previously (Koch et al., 2019), yielded similar model
performances suggesting high accuracy regardless of the exact
tests used for cognitive profiling.

Our results therefore indicate the utility of using qEEG as com-
plementary biomarker to assess cognitive function, but do not pro-
vide an answer towards the pathophysiological mechanism
underlying cognitive deficits. We speculate that higher-density
source-space setups may provide a better indication of such an
underlying mechanism, possibly using Magnetoencephalography
(MEG) to better reflect subcortical structures (Bonanni, 2019).
However, such an approach would have lower practical utility as
it would be more difficult to implement high-density EEG or
MEG in routine clinical practice. Nevertheless, this study demon-
strates the cortical spatial expansion of the mechanism underlying
cognitive impairment.

The ultimate ground truth in terms of clinical impact would be
a classification based on long-term postoperative cognitive func-
tioning. This data is however not available, whereas patients with
poor preoperative functioning, as identified by the neuropsycho-
logical test battery, may be rejected for DBS surgery after screening
and thus not contribute to follow-up data. In the high-COG group,
18/20 patients ultimately received DBS (one rejection due to atro-
phy on the MRI, and one patient opted for gamma-knife surgery
instead). In the low-COG group, 12/20 patients received DBS (all
rejections due to cognitive impairment). We emphasize that there
are other reasons to perform-, or refrain from, DBS apart from cog-
nitive functioning (Geraedts et al., 2019). In terms of predicting
future cognitive decline, several previous studies limited to spec-
tral metrics have reported on the utility of EEG (Geraedts et al.,
2018a). A low occipital peak frequency (<8.5 Hz) in particular has
been associated with a 13-fold higher hazard of developing PDD
(Klassen et al., 2011). Given the superiority of our approach in
terms of reflecting current cognitive functioning, we hypothesize
that our ML pipeline may have similar potential in predicting
future cognitive decline as well.

Strengths of our study include the automated ML pipeline
which circumvents making arbitrary choices on pre-processing
and feature selection, the large number of extracted features, and
extensive cognitive profiling on which the initial classification
was based. The use of cross-validation warrants the internal valid-
ity of our model. To our knowledge, ours is the only cohort of con-
secutively included DBS candidates with PD with EEG data
available in the literature. Given the uniqueness of our cohort, no
external validity can therefore be assessed. Despite multiple
cross-validation runs, the algorithm was trained on only 20 vs.
20 patients. This constitutes a small sample size to base definitive
conclusions on and requires validation in a larger cohort. Neverthe-
less, our results clearly demonstrate the utility of qEEG during the
DBS screening for automated cognitive profiling and the superior-
ity of a compound of EEG features over a single spectral feature.

The classification was based on the most extreme patients with
composite scores of six Z-transformed domains. The domains ‘Neu-
ropsychiatric functioning’ and ‘Psychomotoric speed’ were para-
doxically worse in patients classified as high-COG than low-COG.
A possible explanation for this is the younger age in high-COG
patients in which PD places a higher burden on daily functioning,
despite lower severity of symptoms. However, these factors do
not constitute a contra-indication for surgery.

Future studies may confirm the external validity of our model
within the population of DBS candidates and evaluate the use of
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such a ML pipeline on other neurodegenerative diseases with cog-
nitive impairment such as Alzheimer’s Disease of Dementia with
Lewy Bodies (Dauwan et al., 2016). In such a way, it could be deter-
mined whether biomarkers differentiating cognitive subtypes are
disease-specific (i.e. different biomarkers for different diseases),
or whether there is a neurophysiological compound underlying
cognitive impairment across neurodegenerative diseases. As the ts-
fresh library used by us for feature-extraction is by no means
exhaustive, future studies may evaluate the predictive potential
of our automated feature-extraction methods on other libraries
such as Deep Canonical Correlation Analysis (Andrew et al.,
2013) or tslearn (Tavenard et al., 2020), to investigate whether
these methods produce similar accuracies and if so, which features
are retained. Furthermore, the ultimate goal of the ML pipeline
would be to determine its utility as a predictor of cognitive deteri-
oration rather than cross-sectional classification of cognitive
functioning.

Strikingly, the model proposed here was originally developed
for the automotive industry and applied here to a vastly different
research field. This suggests that the origin of the time series, i.e.
whether a signal originates from an EEG or from a vehicle, is not
important during analyses. We speculate that multidisciplinary
approaches such as these may advance healthcare-research and
valorise these higher-order analysis-techniques through applica-
tions in fundamentally different fields.

We emphasize that currently, the EEG analyses described here
are not intended to replace the neuropsychological assessments
during the DBS screening and should be seen as complementary.
However, these results provide strong evidence of the utility of
qEEG as a biomarker for cognitive performance during the DBS
screening and may have potential both in clinical practice and
for future clinical trials studying disease modifying therapy.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

The authors would like to thank the members of the DBS team of
LUMC/Haga Teaching Hospital (G.E.L. Hendriks, A. Mosch, R. Zutt,
C.F. Hoffmann, N.A. van der Gaag) for patient care and the EEG
technicians of the LUMC for their help with the data acquisition.

Funding sources

This work was supported by a grant from the ‘Stichting Parkin-
sonFonds’ and the ‘Stichting Alkemade-Keuls’.

Author contributions

1. V.J. Geraedts MD MSc: conceived the study and responsible for
scientific integrity. Data collection, data analysis, writing the
manuscript.

2. M. Koch MSc: data analysis, critical revision of the manuscript.
3. M.F. Contarino MD PhD: conceived the study, critical revision of

the manuscript.
4. H.A.M. Middelkoop PhD: data collection, critical revision of the

manuscript.
5. H. Wang PhD: data analysis, critical revision of the manuscript.
6. J.J. van Hilten MD PhD: critical revision of the manuscript.
7. T.H.W. Bäck PhD: critical revision of the manuscript.
1047
8. M.R. Tannemaat MD PhD: conceived the study and responsible
for its scientific integrity. Critical revision of the manuscript.

Disclosures

V.J. Geraedts reports no disclosures. M. Koch reports no disclo-
sures. M.F. Contarino received grant support from the Stichting
ParkinsonFonds, travel support from Boston Scientific,
Consultancy-fees (to institution) fromMedtronic, has been a mem-
ber of the scientific advisory board of Medtronic and received unre-
stricted educational grant support from Medtronic. H.A.M.
Middelkoop has nothing to disclose. H. Wang reports no disclo-
sures. J.J. van Hilten received grant support from the Stichting
Alkemade Keuls, Stichting ParkinsonFonds, and the Netherlands
Organisation for Health Research and Development (ZonMw). T.
H.W. Bäck received grant support from the Netherlands Organisa-
tion for Scientific Research (NWO). M.R. Tannemaat received grant
support from the Stichting Alkemade Keuls.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.clinph.2021.01.021.

References

Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor
fluctuations as estimated from the cumulative literature. Mov Disord 2001;16
(3):448–58.

American Psychiatric Association. Diagnostic and statistical manual of mental
disorders, 5th ed. Arlington: VA: American Psychiatric Publishing; 2013.

Andrew G, Arora R, Bilmes J, Livescu K. Deep Canonical Correlation Analysis. In:
Sanjoy D, David M, editors. Proceedings of the 30th International Conference on
Machine Learning. Proceedings of Machine Learning Research: PMLR. p.
1247–55.

Babiloni C, Del Percio C, Boccardi M, Lizio R, Lopez S, Carducci F, et al. Occipital
sources of resting-state alpha rhythms are related to local gray matter density
in subjects with amnesic mild cognitive impairment and Alzheimer’s disease.
Neurobiol Aging 2015;36(2):556–70.

Beck AT, Steer RA, Ball R, Ranieri W. Comparison of beck depression Inventories -IA
and -II in psychiatric outpatients. J Pers Assess 1996;67(3):588–97.

Betrouni N, Delval A, Chaton L, Defebvre L, Duits A, Moonen A, et al.
Electroencephalography-based machine learning for cognitive profiling in
Parkinson’s disease: preliminary results. Mov Disord 2019;34(2):210–7.

Bonanni L. The democratic aspect of machine learning: limitations and
opportunities for Parkinson’s disease. Mov Disord 2019;34(2):164–6.

Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, Vidal F. Spatial and temporal
resolutions of EEG: Is it really black and white? A scalp current density view. Int
J Psychophysiol 2015;97(3):210–20.

Chaturvedi M, Bogaarts JG, Kozak Cozac VV, Hatz F, Gschwandtner U, Meyer A, et al.
Phase lag index and spectral power as QEEG features for identification of
patients with mild cognitive impairment in Parkinson’s disease. Clin
Neurophysiol 2019;130(10):1937–44.

Christ M, Braun N, Neuffer J, Kempa-Liehr AW. Time series FeatuRe extraction on
basis of scalable hypothesis tests (tsfresh – A Python package). Neurocomputing
2018;307:72–7.

Christ M, Kempa-Liehr AW, Feindt M. Distributed and parallel time series feature
extraction for industrial big data applications. arXiv e-prints 2016.

Contarino MF, Daniele A, Sibilia AH, Romito LM, Bentivoglio AR, Gainotti G, et al.
Cognitive outcome 5 years after bilateral chronic stimulation of subthalamic
nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry
2007;78(3):248–52.

Dauwan M, van der Zande JJ, van Dellen E, Sommer IEC, Scheltens P, Lemstra AW,
et al. Random forest to differentiate dementia with Lewy bodies from
Alzheimer’s disease. Alzheimers Dement (Amst) 2016;4:99–106.

Dekker R, Mulder JL, Dekker PH. De ontwikkeling van vijf nieuwe Nederlandstalige
tests. Leiden: PITS; 2007.

Deuschl G, Agid Y. Subthalamic neurostimulation for Parkinson’s disease with early
fluctuations: balancing the risks and benefits. Lancet Neurol 2013;12
(10):1025–34.

Drapier D, Drapier S, Sauleau P, Haegelen C, Raoul S, Biseul I, et al. Does subthalamic
nucleus stimulation induce apathy in Parkinson’s disease? J Neurol 2006;253
(8):1083–91.

Duckworth AL, Quinn PD, Lynam DR, Loeber R, Stouthamer-Loeber M. Role of test
motivation in intelligence testing. Proc Natl Acad Sci USA 2011;108
(19):7716–20.

Duckworth AL, Yeager DS. Measurement matters: assessing personal qualities other
than cognitive ability for educational purposes. Educ Res 2015;44(4):237–51.

https://doi.org/10.1016/j.clinph.2021.01.021
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0005
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0005
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0005
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0015
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0015
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0015
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0015
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0020
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0020
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0020
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0020
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0025
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0025
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0030
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0030
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0030
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0035
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0035
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0040
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0040
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0040
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0045
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0045
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0045
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0045
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0050
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0050
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0050
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0060
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0060
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0060
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0060
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0065
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0065
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0065
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0070
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0070
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0075
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0075
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0075
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0080
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0080
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0080
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0085
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0085
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0085
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0090
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0090


V.J. Geraedts, M. Koch, M.F. Contarino et al. Clinical Neurophysiology 132 (2021) 1041–1048
Duncan JS. Conventional and clinimetric approahces to individualization of
antiepileptic drug therapy. In: Meinardi H, Cramer JA, Baker GA, da Silva AM
(editors). Quantitative assessment in epilepsy care. Porto, Portugal: Springer
Science+Business Media, LLC; 1993.

García-Martín E, Rodrigues CF, Riley G, Grahn H. Estimation of energy consumption
in machine learning. J Parallel Distrib Comput 2019;134:75–88.

Geraedts VJ, Boon LI, Marinus J, Gouw AA, van Hilten JJ, Stam CJ, et al. Clinical
correlates of quantitative EEG in Parkinson disease: a systematic review.
Neurology 2018a;91(19):871–83.

Geraedts VJ, Kuijf ML, van Hilten JJ, Marinus J, Oosterloo M, Contarino MF. Selecting
candidates for Deep Brain Stimulation in Parkinson’s disease: the role of
patients’ expectations. Parkinsonism Relat Disord 2019;66:207–11.

Geraedts VJ, Marinus J, Gouw AA, Mosch A, Stam CJ, van Hilten JJ, et al. Quantitative
EEG reflects non-dopaminergic disease severity in Parkinson’s disease. Clin
Neurophysiol 2018b;129(8):1748–55.

Geron A. Hands-on Machine Learning with Scikit-Learn & TensorFlow: Concepts,
Tools, and Techniques to build Intelligent Systems. Sebastopol, CA: O’Reilly
Media; 2017.

Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al.
Movement Disorder Society-sponsored revision of the Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing
results. Mov Disord 2008;23(15):2129–70.

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. 2nd ed. Springer, New York; 2009.

Hjorth B. Source derivation simplifies topographical EEG interpretation. Am J EEG
Technol 1980;20(3):121–32.

Huppert FA, Brayne C, Gill C, Paykel ES, Beardsall L. CAMCOG–a concise
neuropsychological test to assist dementia diagnosis: socio-demographic
determinants in an elderly population sample. Br J Clin Psychol
1995;34:529–41.

Klassen BT, Hentz JG, Shill HA, Driver-Dunckley E, Evidente VG, Sabbagh MN, et al.
Quantitative EEG as a predictive biomarker for Parkinson disease dementia.
Neurology 2011;77(2):118–24.

Koch M, Bäck T. Machine Learning for Predicting the Impact Point of a Low Speed
Vehicle Crash. In: 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA). p. 1432–7.

Koch M, Geraedts V, Wang H, Tannemaat MR, Bäck T. Automated Machine Learning
for EEG-Based Classification of Parkinson’s Disease Patients. In: 2019 IEEE
International Conference on Big Data. Los Angeles; 2019. p. 4845-52.

Koch M, Wang H, Bäck T. Machine Learning for Predicting the Damaged Parts of a
Low Speed Vehicle Crash. In: 13th International Conference on Digital
Information Management; 2018. p. 179-84.

Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. J Stat Softw
2010;36(11):1–13.

Lang AE, Houeto JL, Krack P, Kubu C, Lyons KE, Moro E, et al. Deep brain stimulation:
preoperative issues. Mov Disord 2006;21(Suppl 14):S171–96.
1048
Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al.
Diagnostic criteria for mild cognitive impairment in Parkinson’s disease:
Movement Disorder Society Task Force guidelines. Mov Disord 2012;27
(3):349–56.

Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep
brain stimulation with a constant-current device in Parkinson’s disease: an
open-label randomised controlled trial. Lancet Neurol 2012;11(2):140–9.

Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical
diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30(12):1591–601.

Richardson JTE. Measures of short-term memory: a historical review. Cortex
2007;43(5):635–50.

Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol 2017;8:557-.
Smeding HM, Speelman JD, Huizenga HM, Schuurman PR, Schmand B. Predictors of

cognitive and psychosocial outcome after STN DBS in Parkinson’s Disease. J
Neurol Neurosurg Psychiatry 2011;82(7):754–60.

Steyerberg EW. Validation in prediction research: the waste by data splitting. J Clin
Epidemiol 2018;103:131–3.

Tavenard R, Faouzi J, VandewieleG, Divo F, AndrozG,Holtz C, et al. Tslearn, Amachine
learning toolkit for time series data. J Mach Learn Res 2020;21(118):1–6.

Tombaugh TN. Trail Making Test A and B: normative data stratified by age and
education. Arch Clin Neuropsychol 2004;19(2):203–14.

Utianski RL, Caviness JN, van Straaten ECW, Beach TG, Dugger BN, Shill HA, et al.
Graph theory network function in parkinson’s disease assessed with
electroencephalography. Clin Neurophysiol 2016;127(5):2228–36.

Vakil E, Blachstein H. Rey Auditory-Verbal Learning Test: structure analysis. J Clin
Psychol 1993;49(6):883–90.

van der Heeden JF, Marinus J, Martinez-Martin P, van Hilten JJ. Evaluation of
severity of predominantly non-dopaminergic symptoms in Parkinson’s disease:
the SENS-PD scale. Parkinsonism Relat Disord 2016;25:39–44.

Wang H, Emmerich M, Bäck T. Cooling Strategies for the Moment-Generating
Function in Bayesian Global Optimization. 2018 IEEE Congress on Evolutionary
Computation (CEC); 2018. p. 1-8.

Wang H, Stein Bv, Emmerich M, Back T. A new acquisition function for Bayesian
optimization based on the moment-generating function. In: 2017 IEEE
International Conference on Systems, Man, and Cybernetics (SMC); 2017. p.
507-12.

Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, et al. Bilateral deep brain
stimulation vs best medical therapy for patients with advanced Parkinson
disease a randomized controlled trial. JAMA 2009;301(1):63–73.

Wechsler D. Wechsler memory scale. San Antonio, TX, US: Psychological
Corporation; 1945.

Yang K, van der Blom K, Bäck T, Emmerich M. Towards single- and multiobjective
Bayesian global optimization for mixed integer problems. AIP Conf Proc
2019;2070(1):020044.

Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr
Scand 1983;67(6):361–70.

http://refhub.elsevier.com/S1388-2457(21)00060-2/h0100
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0100
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0105
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0105
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0105
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0110
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0110
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0110
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0115
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0115
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0115
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0120
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0120
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0120
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0125
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0125
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0125
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0125
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0130
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0130
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0135
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0135
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0140
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0140
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0140
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0140
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0145
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0145
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0145
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0150
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0150
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0150
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0165
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0165
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0170
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0170
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0175
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0175
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0175
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0175
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0180
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0180
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0180
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0185
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0185
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0190
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0190
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0200
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0200
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0200
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0205
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0205
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0210
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0210
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0215
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0215
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0220
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0220
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0220
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0225
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0225
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0230
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0230
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0230
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0245
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0245
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0245
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0250
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0250
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0255
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0255
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0255
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0260
http://refhub.elsevier.com/S1388-2457(21)00060-2/h0260

	Machine learning for automated EEG-based biomarkers of cognitive impairment during Deep Brain Stimulation screening in patients with Parkinson’s Disease
	Introduction
	Methods
	Study participants
	EEG acquisition, pre-processing and analysis
	Group composition
	ML pipeline
	Application of the pipeline to EEG data
	Statistical analysis
	Data availability

	Results
	Patient characteristics
	ML pipeline performance
	Calibration

	Discussion
	Declaration of Competing Interest
	ack17
	Acknowledgements
	Funding sources
	Author contributions
	Disclosures
	Supplementary data
	References


