148 research outputs found

    Epilepsy Risk Prediction Model for Patients With Tuberous Sclerosis Complex

    Get PDF
    BACKGROUND: Individuals with tuberous sclerosis complex are at increased risk of epilepsy. Early seizure control improves developmental outcomes, making identifying at-risk patients critically important. Despite several identified risk factors, it remains difficult to predict. The purpose of the study was to evaluate the combined risk prediction of previously identified risk factors for epilepsy in individuals with tuberous sclerosis complex. METHODS: The study group (n = 333) consisted of individuals with tuberous sclerosis complex who were enrolled in the Tuberous Sclerosis Complex Autism Center of Excellence Research Network and UT TSC Biobank. The outcome was defined as having an epilepsy diagnosis. Potential risk factors included sex, TSC genotype, and tuber presence. Logistic regression was used to calculate the odds ratio and P value for the association between each variable and epilepsy. A clinical risk prediction model incorporating all risk factors was built. Area under the curve was calculated to characterize the full model\u27s ability to discriminate individuals with tuberous sclerosis complex with and without epilepsy. RESULTS: The strongest risk for epilepsy was presence of tubers (95% confidence interval: 2.39 to 10.89). Individuals with pathogenic TSC2 variants were three times more likely (95% confidence interval: 1.55 to 6.36) to develop seizures compared with those with tuberous sclerosis complex from other causes. The combination of risk factors resulted in an area under the curve 0.73. CONCLUSIONS: Simple characteristics of patients with tuberous sclerosis complex can be combined to successfully predict epilepsy risk. A risk assessment model that incorporates sex, TSC genotype, protective TSC2 missense variant, and tuber presence correctly predicts epilepsy in 73% of patients with tuberous sclerosis complex

    Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus

    Get PDF
    Introduction: Oncolytic viruses show promise for treating cancer. However, to assess therapeutic efficacy and potential toxicity, a noninvasive imaging modality is needed. This study aimed to determine if insertion of the human sodium iodide symporter (hNIS) cDNA as a marker for non-invasive imaging of virotherapy alters the replication and oncolytic capability of a novel vaccinia virus, GLV-1h153. Methods: GLV-1h153 was modified from parental vaccinia virus GLV-1h68 to carry hNIS via homologous recombination. GLV-1h153 was tested against human pancreatic cancer cell line PANC-1 for replication via viral plaque assays and flow cytometry. Expression and transportation of hNIS in infected cells was evaluated using Westernblot and immunofluorescence. Intracellular uptake of radioiodide was assessed using radiouptake assays. Viral cytotoxicity and tumor regression of treated PANC-1tumor xenografts in nude mice was also determined. Finally, tumor radiouptake in xenografts was assessed via positron emission tomography (PET) utilizing carrier-free (124)I radiotracer. Results: GLV-1h153 infected, replicated within, and killed PANC-1 cells as efficiently as GLV-1h68. GLV-1h153 provided dose-dependent levels of hNIS expression in infected cells. Immunofluorescence detected transport of the protein to the cell membrane prior to cell lysis, enhancing hNIS-specific radiouptake (P < 0.001). In vivo, GLV-1h153 was as safe and effective as GLV-1h68 in regressing pancreatic cancer xenografts (P < 0.001). Finally, intratumoral injection of GLV-1h153 facilitated imaging of virus replication in tumors via (124)I-PET. Conclusion: Insertion of the hNIS gene does not hinder replication or oncolytic capability of GLV-1h153, rendering this novel virus a promising new candidate for the noninvasive imaging and tracking of oncolytic viral therapy

    A decade of letrozole: FACE

    Get PDF
    Third-generation nonsteroidal aromatase inhibitors (AIs), letrozole and anastrozole, are superior to tamoxifen as initial therapy for early breast cancer but have not been directly compared in a head-to-head adjuvant trial. Cumulative evidence suggests that AIs are not equivalent in terms of potency of estrogen suppression and that there may be differences in clinical efficacy. Thus, with no data from head-to-head comparisons of the AIs as adjuvant therapy yet available, the question of whether there are efficacy differences between the AIs remains. To help answer this question, the Femara versus Anastrozole Clinical Evaluation (FACE) is a phase IIIb open-label, randomized, multicenter trial designed to test whether letrozole or anastrozole has superior efficacy as adjuvant treatment of postmenopausal women with hormone receptor (HR)- and lymph node-positive breast cancer. Eligible patients (target accrual, N = 4,000) are randomized to receive either letrozole 2.5 mg or anastrozole 1 mg daily for up to 5 years. The primary objective is to compare disease-free survival at 5 years. Secondary end points include safety, overall survival, time to distant metastases, and time to contralateral breast cancer. The FACE trial will determine whether or not letrozole offers a greater clinical benefit to postmenopausal women with HR+ early breast cancer at increased risk of early recurrence compared with anastrozole

    Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases

    Get PDF
    BACKGROUND: For its low cost and ease of handling, the mouse remains the preferred experimental animal for preclinical tests. To avoid the interaction of the animal immune system, in vivo antibiotic pharmacodynamic studies often employ cyclophosphamide (CPM) to induce neutropenia. Although high doses (350–450 mg/kg) are still used and their effects on mouse leukocytes have been described, a lower dose (250 mg/kg) is widely preferred today, but the characteristics and applicability of this approach in outbred mice have not been determined. METHODS: Fifteen female ICR mice were injected intraperitoneally with 150 and 100 mg/kg of CPM on days 1 and 4, respectively. Blood samples (~160 μL) were drawn from the retro-orbital sinus of each mouse on days 1, 4, 5, 6, 7 and 11. Leukocytes were counted manually and the number of granulocytes was based on microscopic examination of Wright-stained smears. The impact of neutropenia induced by this method was then determined with a variety of pathogens in three different murine models of human infections: pneumonia (Klebsiella pneumoniae, Streptococcus pneumoniae, Staphylococcus aureus), meningoencephalitis (S. pneumoniae), and the thigh model (S. aureus, Escherichia coli, Bacteroides fragilis). RESULTS: The basal count of leukocytes was within the normal range for outbred mice. On day 4, there was an 84% reduction in total white blood cells, and by day 5 the leukopenia reached its nadir (370 ± 84 cells/mm(3)). Profound neutropenia (≤10 neutrophils/mm(3)) was demonstrated at day 4 and persisted through days 5 and 6. Lymphocytes and monocytes had a 92% and 96% decline between days 1 and 5, respectively. Leukocytes recovered completely by day 11. Mice immunosupressed under this protocol displayed clinical and microbiological patterns of progressive and lethal infectious diseases after inoculation in different organs with diverse human pathogens. CONCLUSION: A CPM total dose of 250 mg/kg is sufficient to induce profound and sustained neutropenia (<10 neutrophils/mm(3)) at least during 3 days in outbred mice, is simpler than previously described methods, and allows successful induction of infection in a variety of experimental models

    Focal Distribution of Hepatitis C Virus RNA in Infected Livers

    Get PDF
    Background: Hepatitis C virus (HCV) is a plus-strand RNA virus that replicates by amplification of genomic RNA from minus strands leading to accumulation of almost one thousand copies per cell under in vitro cell culture conditions. In contrast, HCV RNA copy numbers in livers of infected patients appear to be much lower, estimated at a few copies per cell. Methodology/Principal Findings: To gain insights into mechanisms that control HCV replication in vivo, we analyzed HCV RNA levels as well as expression of interferon beta (IFNb) and several interferon stimulated genes (ISGs) from whole liver sections and micro-dissected subpopulations of hepatocytes in biopsy samples from 21 HCV-infected patients. The results showed that intrahepatic HCV RNA levels range form less than one copy per hepatocyte to a maximum of about eight. A correlation existed between viral RNA levels and IFNb expression, but not between viral RNA and ISG levels. Also, IFNb expression did not correlate with ISGs levels. Replication of HCV RNA occurred in focal areas in the liver in the presence of a general induction of ISGs. Conclusion/Significance: The low average levels of HCV RNA in biopsy samples can be explained by focal distribution of infected hepatocytes. HCV replication directly induces IFNb, which then activates ISGs. The apparent lack of a correlation between levels of IFNb and ISG expression indicates that control of the innate immune response during HCV infection

    Novel Small-Molecule Inhibitors of Hepatitis C Virus Entry Block Viral Spread and Promote Viral Clearance in Cell Culture

    Get PDF
    Combinations of direct-acting anti-virals offer the potential to improve the efficacy, tolerability and duration of the current treatment regimen for hepatitis C virus (HCV) infection. Viral entry represents a distinct therapeutic target that has been validated clinically for a number of pathogenic viruses. To discover novel inhibitors of HCV entry, we conducted a high throughput screen of a proprietary small-molecule compound library using HCV pseudoviral particle (HCVpp) technology. We independently discovered and optimized a series of 1,3,5-triazine compounds that are potent, selective and non-cytotoxic inhibitors of HCV entry. Representative compounds fully suppress both cell-free virus and cell-to-cell spread of HCV in vitro. We demonstrate, for the first time, that long term treatment of an HCV cell culture with a potent entry inhibitor promotes sustained viral clearance in vitro. We have confirmed that a single amino acid variant, V719G, in the transmembrane domain of E2 is sufficient to confer resistance to multiple compounds from the triazine series. Resistance studies were extended by evaluating both the fusogenic properties and growth kinetics of drug-induced and natural amino acid variants in the HCVpp and HCV cell culture assays. Our results indicate that amino acid variations at position 719 incur a significant fitness penalty. Introduction of I719 into a genotype 1b envelope sequence did not affect HCV entry; however, the overall level of HCV replication was reduced compared to the parental genotype 1b/2a HCV strain. Consistent with these findings, I719 represents a significant fraction of the naturally occurring genotype 1b sequences. Importantly, I719, the most relevant natural polymorphism, did not significantly alter the susceptibility of HCV to the triazine compounds. The preclinical properties of these triazine compounds support further investigation of entry inhibitors as a potential novel therapy for HCV infection

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV

    Get PDF
    The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar vertical bar(vertical bar eta cm vertical bar) <0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.Peer reviewe

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity &gt; 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
    corecore