31 research outputs found

    Validity of an Eye-Tracking Method for Capturing Auditory-Visual Cross-Format Semantic Priming

    Get PDF
    Semantic priming studies have great potential to improve understanding of lexical processing in people with aphasia. Traditional priming response tasks, such as lexical decision, cued shadowing, and naming, and techniques based on fMRI and ERPs, entail potential confounds that are especially critical in aphasia. Eye-tracking may help reduce such confounds. The validity of an eye-tracking method to capture semantic priming effects in an auditory-visual cross-format priming context was tested in adults without neurological disorders. Traditional priming responses were used for stimulus validation. Results support a pool of valid measures and protocol effectiveness. Further research including people with aphasia is warranted

    Research and clinical interactions with people from India with aphasia: A primer for North Americans

    Get PDF
    Developing cultural competence in interacting with people with aphasia representing varied racial, ethnic, and linguistic backgrounds is an important goal for all clinical and research aphasiologists. Asian Indians are one of the largest and fastest-growing ethnic minority groups to migrate to the North America, and have a higher incidence of stroke than most other immigrant populations. In this primer, we summarize key aspects of multilingual concerns, culture and etiquette as well as means of addressing cultural and linguistic differences when working with Asian Indians with aphasia, especially first-generation immigrants. Background material, helpful pointers, and resources for aphasiologists are provided

    Study of cardiac autonomic function in drug-naive, newly diagnosed epilepsy patients

    Get PDF
    Background: Epilepsy is associated with ictal autonomic dysfunction which may extend into the inter-ictal period. Antiepileptic drugs have often been blamed for cardiac autonomic dysfunction in epilepsy patients. In this study we have investigated cardiac autonomic parameters in order to evaluate autonomic functions of drug-naive epilepsy patients. METHOD: Twenty drug-naive patients (15 males and 5 females) with epilepsy, and an equal number of age and gender matched controls, were evaluated for short-term resting heart rate variability and conventional cardiovascular autonomic measurements. Results: The mean age of patients was 29.30 +/- 9.80 yrs (17-55 yrs), mean age at seizure onset was 19.70 +/- 9.15 yrs (3-40 yrs) and mean length of time since last seizure was 5.60 +/- 7.00 days (1-30 days). While there was no difference in the resting heart rate or conventional autonomic test parameters, time domain heart rate variability measurements showed a decreased percentage of R-R intervals of less than 50 ms and root mean square of R-R intervals in patients, when compared to controls. Frequency domain parameters showed a decreased total power (patients: 1,796.58 +/- 1,052.45 ms2; controls: 2,934.23 +/- 1,767.06 ms2, p = 0.008). Parameters indicative of decreased vagal tone, i.e. decreased high frequency power and increased low to high frequency ratio (patients: 1.69 +/- 0.94; controls: 1.14 +/- 0.64, p = 0.045), were observed among patients compared to controls. CONCLUSION: Subtle but definite cardiac autonomic dysfunction, especially in vagal tone, was identified in drug-naive, new-onset epilepsy patients. Seizures can cause long-term and often progressive cardiac autonomic dysfunction which may be independent of concomitant antiepileptic drugs

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    A Review of the Role of Auditory Evoked Potentials in Mild Traumatic Brain Injury Assessment

    No full text
    © The Author(s) 2019. Around 75% to 90% of people who experience a traumatic brain injury (TBI) are classified as having a mild TBI (mTBI). The term mTBI is synonymous with concussion or mild head injury (MHI) and is characterized by symptoms of headache, nausea, dizziness, and blurred vision. Problems in cognitive abilities such as deficits in memory, processing speed, executive functioning, and attention are also considered symptoms of mTBI. Since these symptoms are subtle in nature and may not appear immediately following the injury, mTBI is often undetected on conventional neuropsychological tests. Current neuroimaging techniques may not be sensitive enough in identifying the array of microscopic neuroanatomical and subtle neurophysiological changes following mTBI. To this end, electrophysiological tests, such as auditory evoked potentials (AEPs), can be used as sensitive tools in tracking physiological changes underlying physical and cognitive symptoms associated with mTBI. The purpose of this review article is to examine the body of literature describing the application of AEPs in the assessment of mTBI and to explore various parameters of AEPs which may hold diagnostic value in predicting positive rehabilitative outcomes for people with mTBI

    A Review of the Role of Auditory Evoked Potentials in Mild Traumatic Brain Injury Assessment

    No full text
    Around 75% to 90% of people who experience a traumatic brain injury (TBI) are classified as having a mild TBI (mTBI). The term mTBI is synonymous with concussion or mild head injury (MHI) and is characterized by symptoms of headache, nausea, dizziness, and blurred vision. Problems in cognitive abilities such as deficits in memory, processing speed, executive functioning, and attention are also considered symptoms of mTBI. Since these symptoms are subtle in nature and may not appear immediately following the injury, mTBI is often undetected on conventional neuropsychological tests. Current neuroimaging techniques may not be sensitive enough in identifying the array of microscopic neuroanatomical and subtle neurophysiological changes following mTBI. To this end, electrophysiological tests, such as auditory evoked potentials (AEPs), can be used as sensitive tools in tracking physiological changes underlying physical and cognitive symptoms associated with mTBI. The purpose of this review article is to examine the body of literature describing the application of AEPs in the assessment of mTBI and to explore various parameters of AEPs which may hold diagnostic value in predicting positive rehabilitative outcomes for people with mTBI

    Iron Supplements in Pregnancy

    No full text
    BackgroundIron deficiency is the most prevalent nutritional deficiency on the globe. In India, pregnant women are amongst the most vulnerable population for iron deficiency anaemia. Even though iron supplements are prescribed, the compliance to therapy is inconsistent. Since India has a predominant rural population, shortage of medical manpower and lack of healthcare facilities may contribute to poor compliance with therapy. Method  A controlled trial study was conducted with 140 pregnant women, from a rural area of J N Medical College, Belgaum, India. Direct observers were assigned as volunteers, who monitored consumption of oral iron supplementation tablets by pregnant women. The direct observer was a consenting adult from the same village. Detailed history and baseline investigations were done before the initiation of study and periodical assessment of haemoglobin levels were used to monitor progress. ResultsThe mean adherence rate and haemoglobin levels in the direct observers’ group were higher compared to the control group, across all visits. The mean haemoglobin value of participants in study group during 1st visit was 7.97 gm%, whereas in control group, it was 7.98 gm%; in the 2nd visit, mean haemoglobin level in the study group was 8.47 gm% and 8.18 gm% in the control group; in the 3rd visit, mean haemoglobin was 8.99 gm% in the study group and 8.42 gm% in control group. There was no statistical difference in the mean haemoglobin values between two groups in the first two visits. Although the mean haemoglobin values were similar on baseline investigations (1st visit), there was a difference of 0.30 gm% in 2nd visit and 0.57 gm% difference in the 4th Visit. The difference in haemoglobin values at 4th visit was statistically significant.ConclusionThe deployment of a direct observer, to monitor the administration of oral iron supplementation is feasible and helps to improve compliance with oral iron tablets
    corecore