499 research outputs found

    The Grizzly, November 16, 2023

    Get PDF
    Fantastic Strings Ensemble • Crossword • Celebration of Lights (In Photos) • A Conversation With Ursinus\u27 Archivist, Carolyn Weigel • Food Forest Continues to Grow • The Creative Collegeville Italian Bakery • From Opponent to Family Member: Natalie Mehl\u27s Journey • Ursinus Football Punches Their Ticket to the Postseasonhttps://digitalcommons.ursinus.edu/grizzlynews/2022/thumbnail.jp

    An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum

    Get PDF
    Rhizobia are recognized to establish N(2)-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO(3)(−)) or nitrite (NO(2)(−)) as sole nitrogen source. Unlike related bacteria that assimilate NO(3)(−), genes encoding the assimilatory NO(3)(−) reductase (nasC) and NO(2)(−) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO(3)(−) transporter, a major facilitator family NO(3)(−)/NO(2)(−) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO(3)(−)/NO(2)(−)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO(3)(−) assimilation and that growth with NO(3)(−), but not NO(2)(−) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO(3)(−) assimilation. Additional experiments reveal NasT is required for NO(3)(−)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO(3)(−)/NO(2)(−) reductase pathway

    The Kneeling Isometric Plantar Flexor Test: Preliminary Reliability and Feasibility in Professional Youth Football

    Get PDF
    Calf injuries are common in professional football; thus, the establishment of reliable and time-efficient methods of measuring the peak force capabilities of the plantar flexors with equipment that is accessible to football practitioners is valuable. In this study, we determined the preliminary reliability and feasibility of a new test, termed the kneeling isometric plantar flexion test (KIPFT), for footballers. Twenty-one male youth footballers (age = 17.8 ± 1.1 years, height = 182 ± 5 cm, weight = 77.6 ± 5.9 kg) from English League One football clubs completed three trials of the KIPFT on a wireless force plate at the end (2022–2023) and start (2023–2024) of the season. The within-session reliability of the peak force (relative to body weight) was good–excellent for both limbs and both occasions. On average, performance of the KIPFT took just over 1 min per limb and ~2 min to set up. The peak force values were larger for the non-dominant limbs only at the start versus the end of the season, but there were no between-limb differences. From these results, it was determined that (1) the KIPFT is feasible, (2) a minimum of 32 footballers would be required to establish its between-session reliability with ≥80% statistical power and (3) large-cohort normative data for the KIPFT may be best collected at the start of the football season

    Tobacco and alcohol cessation or reduction interventions in people with oral dysplasia and head and neck cancer:systematic review protocol

    Get PDF
    Abstract Background Head and neck cancers include malignancies of the mouth, larynx and oropharynx. Tobacco use and alcohol consumption are associated with increased risks of developing and dying from head and neck cancer. The aim of this review is to examine the effectiveness of smoking and alcohol cessation interventions on disease-related outcomes, quality of life and behavioural change in adults with head and neck cancer and oral dysplasia. Methods The Cochrane library, CINAHL, Embase, MEDLINE, PsycINFO and Web of Science databases will be searched for randomised controlled trials investigating the effects of smoking or alcohol interventions on patients with either head and neck cancer or oral dysplasia. The primary outcomes are disease-free survival and, for participants with oral dysplasia, malignant transformation to cancer. Secondary outcomes are disease recurrence and progression, quality of life and behavioural change. The quality of included studies will be assessed using the ‘Cochrane Collaborations tool for assessing risk of bias’. A qualitative synthesis of the results will be reported, and a meta-analysis of the outcome data conducted, where appropriate. Discussion This systematic review will identify the extent of the current research on smoking and alcohol cessation interventions in patients with head and neck cancer and oral epithelial dysplasia. The findings have the potential to inform which interventions have been successful and how future behavioural change interventions should be conducted within these populations. Systematic review registration PROSPERO CRD4201603823

    Detection of early sub-clinical lung disease in children with cystic fibrosis by lung ventilation imaging with hyperpolarized gas MRI

    Get PDF
    Hyperpolarised 3He ventilation-MRI, anatomical lung MRI, lung clearance index (LCI), low-dose CT and spirometry were performed on 19 children (6–16 years) with clinically stable mild cystic fibrosis (CF) (FEV1>−1.96), and 10 controls. All controls had normal spirometry, MRI and LCI. Ventilation-MRI was the most sensitive method of detecting abnormalities, present in 89% of patients with CF, compared with CT abnormalities in 68%, LCI 47% and conventional MRI 22%. Ventilation defects were present in the absence of CT abnormalities and in patients with normal physiology, including LCI. Ventilation-MRI is thus feasible in young children, highly sensitive and provides additional information about lung structure–function relationships

    ICTV Virus Taxonomy Profile: Ophioviridae

    Get PDF
    [EN] The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.Production of this summary, the online chapter and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA).Garcia, M.; Dal Bo, E.; Da Graca, JV.; Gago Zachert, SP.; Hammond, J.; Moreno, P.; Natsuaki, T.... (2017). ICTV Virus Taxonomy Profile: Ophioviridae. Journal of General Virology. 98(6):1161-1162. doi:10.1099/jgv.0.000836S1161116298

    Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: a modelling study

    Get PDF
    Background Enteric fever, a systemic infection caused by Salmonella enterica serovars Typhi and Paratyphi A, remains a major cause of morbidity and mortality in low-income and middle-income countries. Enteric fever is preventable through the provision of clean water and adequate sanitation and can be successfully treated with antibiotics. However, high levels of antimicrobial resistance (AMR) compromise the effectiveness of treatment. We provide estimates of the prevalence of AMR S Typhi and S Paratyphi A in 75 endemic countries, including 30 locations without data. Methods We used a Bayesian spatiotemporal modelling framework to estimate the percentage of multidrug resistance (MDR), fluoroquinolone non-susceptibility (FQNS), and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections for 1403 administrative level one districts in 75 endemic countries from 1990 to 2019. We incorporated data from a comprehensive systematic review, public health surveillance networks, and large multicountry studies on enteric fever. Estimates of the prevalence of AMR and the number of AMR infections (based on enteric fever incidence estimates by the Global Burden of Diseases study) were produced at the country, super-region, and total endemic area level for each year of the study. Findings We collated data from 601 sources, comprising 184 225 isolates of S Typhi and S Paratyphi A, covering 45 countries over 30 years. We identified a decline of MDR S Typhi in south Asia and southeast Asia, whereas in sub-Saharan Africa, the overall prevalence increased from 6·0% (95% uncertainty interval 4·3–8·0) in 1990 to 72·7% (67·7–77·3) in 2019. Starting from low levels in 1990, the prevalence of FQNS S Typhi increased rapidly, reaching 95·2% (91·4–97·7) in south Asia in 2019. This corresponded to 2·5 million (1·5–3·8) MDR S Typhi infections and 7·4 million (4·7–11·3) FQNS S Typhi infections in endemic countries in 2019. The prevalence of third-generation cephalosporin-resistant S Typhi remained low across the whole endemic area over the study period, except for Pakistan where prevalence of third-generation cephalosporin resistance in S Typhi reached 61·0% (58·0–63·8) in 2019. For S Paratyphi A, we estimated low prevalence of MDR and third-generation cephalosporin resistance in all endemic countries, but a drastic increase of FQNS, which reached 95·0% (93·7–96·1; 3·5 million [2·2–5·6] infections) in 2019. Interpretation This study provides a comprehensive and detailed analysis of the prevalence of MDR, FQNS, and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections in endemic countries, spanning the last 30 years. Our analysis highlights the increasing levels of AMR in this preventable infection and serves as a resource to guide urgently needed public health interventions, such as improvements in water, sanitation, and hygiene and typhoid fever vaccination campaigns. Funding Fleming Fund, UK Department of Health and Social Care; Wellcome Trust; and Bill and Melinda Gates Foundation

    Genetic Signature of Rapid IHHNV (Infectious Hypodermal and Hematopoietic Necrosis Virus) Expansion in Wild Penaeus Shrimp Populations

    Get PDF
    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a widely distributed single-stranded DNA parvovirus that has been responsible for major losses in wild and farmed penaeid shrimp populations on the northwestern Pacific coast of Mexico since the early 1990's. IHHNV has been considered a slow-evolving, stable virus because shrimp populations in this region have recovered to pre-epizootic levels, and limited nucleotide variation has been found in a small number of IHHNV isolates studied from this region. To gain insight into IHHNV evolutionary and population dynamics, we analyzed IHHNV capsid protein gene sequences from 89 Penaeus shrimp, along with 14 previously published sequences. Using Bayesian coalescent approaches, we calculated a mean rate of nucleotide substitution for IHHNV that was unexpectedly high (1.39×10−4 substitutions/site/year) and comparable to that reported for RNA viruses. We found more genetic diversity than previously reported for IHHNV isolates and highly significant subdivision among the viral populations in Mexican waters. Past changes in effective number of infections that we infer from Bayesian skyline plots closely correspond to IHHNV epizootiological historical records. Given the high evolutionary rate and the observed regional isolation of IHHNV in shrimp populations in the Gulf of California, we suggest regular monitoring of wild and farmed shrimp and restriction of shrimp movement as preventative measures for future viral outbreaks

    Organic electrode coatings for next-generation neural interfaces

    Get PDF
    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes
    • …
    corecore