93 research outputs found

    Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly

    Get PDF
    De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancementRamon y Cajal program RYC2014-15784, RETOS-MINECO SAF2016-76565-R, ERANET-Neuron JTC 2019 ISCIII AC19/00077 FEDER funds (to R.A.); RETOS-MINECO SAF2017-87928-R (to A.B.); an NIH grant (NS76637) and UTHSC College of Medicine funds (to S.J.T.); and NARSAD Independent Investigator Award and grants from the MINECO (CSD2008-00005, SAF2013-48983R, SAF2016-80895-R), Generalitat Valenciana (PROMETEO 2019/020)(to I.P.O.) and Severo-Ochoa Excellence Awards (SEV-2013-0317, SEV-2017-0723)Peer reviewe

    Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly

    Get PDF
    De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement

    PACAP-PAC1R modulates fear extinction via the ventromedial hypothalamus

    Full text link
    Exposure to traumatic stress can lead to fear dysregulation, which has been associated with posttraumatic stress disorder (PTSD). Previous work showed that a polymorphism in the PACAP-PAC1R (pituitary adenylate cyclase-activating polypeptide) system is associated with PTSD risk in women, and PACAP (ADCYAP1)-PAC1R (ADCYAP1R1) are highly expressed in the hypothalamus. Here, we show that female mice subjected to acute stress immobilization (IMO) have fear extinction impairments related to Adcyap1 and Adcyap1r1 mRNA upregulation in the hypothalamus, PACAP-c-Fos downregulation in the Medial Amygdala (MeA), and PACAP-FosB/ΔFosB upregulation in the Ventromedial Hypothalamus dorsomedial part (VMHdm). DREADD-mediated inhibition of MeA neurons projecting to the VMHdm during IMO rescues both PACAP upregulation in VMHdm and the fear extinction impairment. We also found that women with the risk genotype of ADCYAP1R1 rs2267735 polymorphism have impaired fear extinction

    Behavioral and Endocrine Consequences of Simultaneous Exposure to Two Different Stressors in Rats: Interaction or Independence?

    Get PDF
    Although behavioral and endocrine consequences of acute exposure to stressors have been extensively studied, little is known about how simultaneous exposure to two different stressors interacts to induce short- and long-term effects. In the present experiment we studied this interaction in adult male rats exposed to cat fur odor (impregnated cloth) or immobilization on boards either separately or simultaneously. We reasoned that exposure to the odor of a potential predator while immobilized, may potentiate its negative consequences as compared to exposure to only one of the stressors. Exposure to cat odor elicited the expected reduction of activity and avoidance of the area where the impregnated cloth was located. The endocrine response (plasma levels of ACTH and corticosterone, as a measure of the hypothalamic-pituitary-adrenal axis, HPA) was markedly greater after immobilization than after cat fur odor and no additive effects were found by simultaneous exposure to both stressors. Cat odor, but not immobilization, increased anxiety-like behavior as evaluated in the elevated plus-maze 7 days after the stressors, with no evidence of enhanced HPA activation. In addition, cat odor exposure resulted in long-lasting (8 days later) fear conditioning to the box containing a clean cloth, which was reflected by hypoactivity, avoidance of the cloth area and enhanced HPA activation. All these effects were similarly observed in rats exposed simultaneously to cat odor and immobilization. In rats only exposed to immobilization, only some weak behavioral signs of fear conditioning were found, but HPA activation in response to the context paired to immobilization was enhanced to the same extent as in cat odor-exposed animals, supporting a certain degree of endocrine conditioning. The present results did not reveal important behavioral interactions between the two stressors when animals experienced both simultaneously, whereas some interactions were found regarding HPA activation. Theoretical implications are discussed

    Synergistic Activation of Dopamine D1 and TrkB Receptors Mediate Gain Control of Synaptic Plasticity in the Basolateral Amygdala

    Get PDF
    Fear memory formation is thought to require dopamine, brain-derived neurotrophic factor (BDNF) and zinc release in the basolateral amygdala (BLA), as well as the induction of long term potentiation (LTP) in BLA principal neurons. However, no study to date has shown any relationship between these processes in the BLA. Here, we have used in vitro whole-cell patch clamp recording from BLA principal neurons to investigate how dopamine, BDNF, and zinc release may interact to modulate the LTP induction in the BLA. LTP was induced by either theta burst stimulation (TBS) protocol or spaced 5 times high frequency stimulation (5xHFS). Significantly, both TBS and 5xHFS induced LTP was fully blocked by the dopamine D1 receptor antagonist, SCH23390. LTP induction was also blocked by the BDNF scavenger, TrkB-FC, the zinc chelator, DETC, as well as by an inhibitor of matrix metalloproteinases (MMPs), gallardin. Conversely, prior application of the dopamine reuptake inhibitor, GBR12783, or the D1 receptor agonist, SKF39393, induced robust and stable LTP in response to a sub-threshold HFS protocol (2xHFS), which does not normally induce LTP. Similarly, prior activation of TrkB receptors with either a TrkB receptor agonist, or BDNF, also reduced the threshold for LTP-induction, an effect that was blocked by the MEK inhibitor, but not by zinc chelation. Intriguingly, the TrkB receptor agonist-induced reduction of LTP threshold was fully blocked by prior application of SCH23390, and the reduction of LTP threshold induced by GBR12783 was blocked by prior application of TrkB-FC. Together, our results suggest a cellular mechanism whereby the threshold for LTP induction in BLA principal neurons is critically dependent on the level of dopamine in the extracellular milieu and the synergistic activation of postsynaptic D1 and TrkB receptors. Moreover, activation of TrkB receptors appears to be dependent on concurrent release of zinc and activation of MMPs

    Deoxygedunin, a Natural Product with Potent Neurotrophic Activity in Mice

    Get PDF
    Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF −/− pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases

    Erratum: Author Correction: A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic (Nature human behaviour (2021) 5 8 (1089-1110))

    Get PDF

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Hiperprolactinemia en psicosis tempranas: ¿secundaria a estrés o a una regulación alterada de la secreción de prolactina? .

    No full text
    En la última década estudios previos han demostrado un aumento de las cifras de prolactina en pacientes con un primer episodio psicótico libres de tratamiento respecto a controles sanos. Aunque no existen mecanismos fisiopatológicos claros, existe la posibilidad de que se trate de una alteración secundaria al contexto estresante del debut psicótico. Alternativamente, los pacientes con un trastorno psicótico podrían sufrir una regulación anómala de la secreción de prolactina con un exceso de factores estimuladores o un defecto de los factores  inhibitorios. En la presente revisión narrativa se comentan diferentes posibles mecanismos fisiopatológicos implicados incluyendo el papel del estrés y la regulación de la secreción de prolactina en la vía tuberoinfundibular, que puede evaluarse clínicamente con pruebas funcionales endocrinológicas. Este conocimiento ofrece una oportunidad de investigar las causas de estas alteraciones y dilucidar los mecanismos implicados en la hiperprolactinemia en fases tempranas de psicosis
    corecore