35 research outputs found

    Incidence and Predictors of Infections and All-Cause Death in Patients with Cardiac Implantable Electronic Devices: The Italian Nationwide RI-AIAC Registry

    Get PDF
    The incidence of infections associated with cardiac implantable electronic devices (CIEDs) and patient outcomes are not fully known. To provide a contemporary assessment of the risk of CIEDs infection and associated clinical outcomes. In Italy, 18 centres enrolled all consecutive patients undergoing a CIED procedure and entered a 12-months follow-up. CIED infections, as well as a composite clinical event of infection or all-cause death were recorded. A total of 2675 patients (64.3% male, age 78 (70-84)) were enrolled. During follow up 28 (1.1%) CIED infections and 132 (5%) deaths, with 152 (5.7%) composite clinical events were observed. At a multivariate analysis, the type of procedure (revision/upgrading/reimplantation) (OR: 4.08, 95% CI: 1.38-12.08) and diabetes (OR: 2.22, 95% CI: 1.02-4.84) were found as main clinical factors associated to CIED infection. Both the PADIT score and the RI-AIAC Infection score were significantly associated with CIED infections, with the RI-AIAC infection score showing the strongest association (OR: 2.38, 95% CI: 1.60-3.55 for each point), with a c-index = 0.64 (0.52-0.75), p = 0.015. Regarding the occurrence of composite clinical events, the Kolek score, the Shariff score and the RI-AIAC Event score all predicted the outcome, with an AUC for the RI-AIAC Event score equal to 0.67 (0.63-0.71) p < 0.001. In this Italian nationwide cohort of patients, while the incidence of CIED infections was substantially low, the rate of the composite clinical outcome of infection or all-cause death was quite high and associated with several clinical factors depicting a more impaired clinical status

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Automatic Dynamic Quantification of Oesophagus Position from Intra:cardiac Echocardiography During Atrial Fibrillation Ablation

    No full text
    Left atrium posterior wall (LAPW) is an essential target for transcatheter radiofrequency ablation (RFA) of atrial fibrillation (AF), but poses problems due to retro-atrial structures potentially damaged by RF. Intracardiac echocardiography (ICE) can be integrated with the 3D electro-anatomical map and can give unique real-time anatomical information about all closely-located peri-cardiac structures. The present study aimed to automatically detect dynamic oesophagus position and its spatial relationship from the LAPW by ICE during RFA. A fast algorithm based on the evaluation of gray-level intensity distribution in the image and was developed to detect distal and proximal oesophagus boundaries. The algorithm was tested in 15 ICE acquisitions. The detected oesophagus boundaries and those manually traced (MT) were compared and in 5 ICE sequences, dynamic tracking of proximal oesophagus boundary was performed. Mean analysis time was 4.5 sec/frame. Detected oesophagus wall positions were in good agreement with MT. Mean minimum dynamic distance between LAPW and oesophagus proximal wall during acquisition was 0.3\ub10.2mm (range: 0.0-0.6mm). This technique allows automated and accurate dynamic detection of LAPW and oesophagus position in ICE sequences. It represents a first step for dynamic quantification of oesophagus real-time position\u2019 changes and its distance from the LAPW to prevent oesophagus injuries

    β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo

    No full text
    The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested

    Oltre la dissincronia quali fattori determinano la risposta alla terapia di resincronizzazione cardiaca?

    No full text
    Although cardiac resynchronization therapy is currently used for treatment of refractory heart failure in patients with low ejection fraction and cardiac dyssynchrony, there is a substantial number of non-responders. This indicates that, in addition to cardiac dyssynchrony, there are other factors affecting response to cardiac resynchronization therapy. Pre-implant identification of these factors appears of crucial importance in order to finalize the resynchronization treatment to those patients who have the highest probability of a positive response. In this review the main non-dyssynchrony determinants of response to cardiac resynchronization therapy are presented and discussed

    NEUROPHYSIOLOGICAL EVIDENCE IN IDEA GENERATION: DIFFERENCES BETWEEN DESIGNERS AND ENGINEERS

    Get PDF
    AbstractThe paper describes the rigorous implementation of a validated methodological experimental protocol to divergent and convergent thinking tasks occurring in Design by neurophysiological means (EEG and eye-tracking). EEG evidence confirms the findings coherently to the literature. Interesting is the confirmation of such results through eye-tracking ones, and further evidence emerged. In particular, neurophysiological results in idea generation differ between designers and engineers. This study was supported by a multidisciplinary team, both for the neuropsychological and data analysis aspects
    corecore