107 research outputs found
Proteases Inhibition Assessment on PC12 and NGF Treated Cells after Oxygen and Glucose Deprivation Reveals a Distinct Role for Aspartyl Proteases
Hypoxia is a severe stressful condition and induces cell death leading to neuronal loss both to the developing and adult nervous system. Central theme to cellular death is the activation of different classes of proteases such as caspases calpains and cathepsins. In the present study we investigated the involvement of these proteases, in the hypoxia-induced PC12 cell death. Rat PC12 is a model cell line for experimentation relevant to the nervous system and several protocols have been developed for either lethal hypoxia (oxygen and glucose deprivation OGD) or ischemic preconditioning (IPS). Nerve Growth Factor (NGF) treated PC12 differentiate to a sympathetic phenotype, expressing neurites and excitability. Lethal hypoxia was established by exposing undifferentiated and NGF-treated PC12 cells to a mixture of N2/CO2 (93:5%) in DMEM depleted of glucose and sodium pyruvate for 16 h. The involvement of caspases, calpains and lysosomal cathepsins D and E to the cell death induced by lethal OGD was investigated employing protease specific inhibitors such as z-VAD-fmk for the caspases, MDL28170 for the calpains and pepstatin A for the cathepsins D and E. Our findings show that pepstatin A provides statistically significant protection from cell death of both naive and NGF treated PC12 cells exposed to lethal OGD. We propose that apart from the established processes of apoptosis and necrosis that are integral components of lethal OGD, the activation of cathepsins D and E launches additional cell death pathways in which these proteases are key partners
Epilepsie im Kindesalter: Wann kann die antiepileptische Therapie abgesetzt werden?: Eine Meinungsäußerung des Königsteiner Arbeitskreises
Abstract : The Königsteiner Arbeitskreis (KA) discussed the optimal timing of discontinuation of antiepileptic drugs (AE) in children. Because the controlled trials are rare and inconsistent it was decided to publish the results of the discussion and the approach of the KA members. In neonates AE are usually withdrawn within 2-12 weeks after the last seizure. In infantile spasms, vigabatrin is discontinued 6-12 and sulthiam 6-36 months after the cessation of spasms. After steroids the majority of the KA members continue AE for 2 years. For Rolandic epilepsy 1-3 seizurefree years seem to be sufficient to stop AE, even when focal spike waves persist. In symptomatic focal epilepsy the decision of discontinuation is influenced by the underlying disease. In absence epilepsy AE are discontinued after 2 years; whereas in myoclonic astatic epilepsy most members prefer 2-5 seizure-free years before AE are tapered. Agreement exists about the high risk of relapse after withdrawal of AE in juvenile myoclonic epilepsy and the majority of the members never stop AE in patients with this syndrome. Some KA members however, consider discontinuation after 2-3 seizure-free years. With respect to the rate of withdrawal, most members prefer a slow (3-12 months) tapering. Rapid (< 3 months) tapering is practised only by 2 KA members. The role of EEG for the decision of AE discontinuation is limited to some epileptic syndromes (i.e. absence epilepsy). The paper reflects the opinion of the KA and is not feasible as a guideline. The decision to discontinue AE is always an individual decision based on the underlying disease, the kind of epilepsy and the psychosocial circumstances of the patien
TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome
Corticotroph macroadenomas are rare but difficult to manage intracranial neoplasms. Mutations in the two Cushing’s disease mutational hotspots USP8 and USP48 are less frequent in corticotroph macroadenomas and invasive tumors. There is evidence that TP53 mutations are not as rare as previously thought in these tumors. The aim of this study was to determine the prevalence of TP53 mutations in corticotroph tumors, with emphasis on macroadenomas, and their possible association with clinical and tumor characteristics. To this end, the entire TP53 coding region was sequenced in 86 functional corticotroph tumors (61 USP8 wild type; 66 macroadenomas) and the clinical characteristics of patients with TP53 mutant tumors were compared with TP53/USP8 wild type and USP8 mutant tumors. We found pathogenic TP53 variants in 9 corticotroph tumors (all macroadenomas and USP8 wild type). TP53 mutant tumors represented 14% of all functional corticotroph macroadenomas and 24% of all invasive tumors, were significantly larger and invasive, and had higher Ki67 indices and Knosp grades compared to wild type tumors. Patients with TP53 mutant tumors had undergone more therapeutic interventions, including radiation and bilateral adrenalectomy. In conclusion, pathogenic TP53 variants are more frequent than expected, representing a relevant amount of functional corticotroph macroadenomas and invasive tumors. TP53 mutations associated with more aggressive tumor features and difficult to manage disease
Recommended from our members
Genome-wide association study identifies 30 loci associated with bipolar disorder.
Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder
Corticotroph tumor progression after bilateral adrenalectomy (Nelson’s syndrome):systematic review and expert consensus recommendations
Corticotroph tumor progression (CTP) leading to Nelson's syndrome (NS) is a severe and difficult-to-treat complication subsequent to bilateral adrenalectomy (BADX) for Cushing's disease. Its characteristics are not well described, and consensus recommendations for diagnosis and treatment are missing
Recommended from our members
Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2.
During gestation the developing human fetus is exposed to a diverse range of potentially immune-stimulatory molecules including semi-allogeneic antigens from maternal cells, substances from ingested amniotic fluid, food antigens, and microbes. Yet the capacity of the fetal immune system, including antigen-presenting cells, to detect and respond to such stimuli remains unclear. In particular, dendritic cells, which are crucial for effective immunity and tolerance, remain poorly characterized in the developing fetus. Here we show that subsets of antigen-presenting cells can be identified in fetal tissues and are related to adult populations of antigen-presenting cells. Similar to adult dendritic cells, fetal dendritic cells migrate to lymph nodes and respond to toll-like receptor ligation; however, they differ markedly in their response to allogeneic antigens, strongly promoting regulatory T-cell induction and inhibiting T-cell tumour-necrosis factor-α production through arginase-2 activity. Our results reveal a previously unappreciated role of dendritic cells within the developing fetus and indicate that they mediate homeostatic immune-suppressive responses during gestation
Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E–150°W)
Iron, phosphate and nitrate are essential nutrients for phytoplankton growth and hence their supply into the surface ocean controls oceanic primary production. Here, we present a GEOTRACES zonal section (GP13; 30-33oS, 153oE-150oW) extending eastwards from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170oW-150oW). The supply of dissolved iron into the upper ocean (<100m) from the atmosphere and vertical diffusivity averaged 11 ±10 nmol m-2 d-1. In the remote South Pacific Ocean (170oW-150oW) atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface-water nitrate concentrations averaged 5 ±4 nmol L-1 between 170oW and 150oW whilst surface-water phosphate concentrations averaged 58 ±30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux, in remote South Pacific waters. The deep water N:P ratio averaged 16 ±3 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
- …