1,983 research outputs found

    Water surface reinforcement effect in 3D printed polymer derived SiOC ceramics

    Get PDF
    In this work, PDC SiOC porous structures were fabricated using the stereolithography (SLA) 3D printing method with preceramic resin methylsiloxane. The printed structures were then sintered at 1000 °C for 1 h. Water treatment can help prevent the shrinkage and remove the unreacted resin. From the XRD and FT-IR results, the sintered ceramic is amorphous SiOC. The microstructures show that the printed structures have high geometric accuracy. The water reinforcement process produces smoother surfaces on the printed structures

    Cation exchange chromatography removes FXIa from a 10% intravenous immunoglobulin preparation

    Get PDF
    The presence of residual activated coagulation factor XI (FXIa) in some commercial intravenous immunoglobulin (IVIG) products has been identified as the root cause of a small number of thromboembolic events in patients who had received such therapy. Our objectives here were to design and evaluate the manufacturing process of GC5107, a 10% glycine-stabilized IVIG product, for its capacity to remove FXIa. The manufacturing process included a cation exchange chromatography (CEX) step, which employs a resin that binds immunoglobulin G (IgG) with high capacity. Procoagulant activity was assessed using Western blot analysis, enzyme-linked immunosorbent assay, thrombin generation assay, chromogenic FXIa assay, and non-activated partial thromboplastin time (NaPTT) assay. A spiking study in which large quantities of FXIa were added to samples before CEX chromatography was used to examine the robustness of the process to remove FXIa. Western blot and ELISA analyses demonstrated that residual FXIa remained in the intermediate manufacturing products until after CEX chromatography, when it was reduced to undetectable levels. The spiking study demonstrated that CEX chromatography removed >99% of FXI protein and reduced FXI activity to below detection limits, even in samples containing 158-fold greater FXIa levels than that of normal samples. Procoagulant activity in 9 consecutive lots of GC5107 was reduced to below the detection limits of the thrombin generation and chromogenic FXIa assays (<1.56 IU/ml and <0.16 IU/ml, respectively). The NaPTT of >250 s in all 9 lots indicated very low levels of procoagulant activity. We demonstrate that a novel 10% IVIG manufacturing process including CEX chromatography is a robust means of removing FXIa from the final preparation

    Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage

    Get PDF
    The human cathelicidin antimicrobial protein hCAP18, which includes the C-terminal peptide LL-37, is a multifunctional protein. As a possible approach to enhancing the resistance to plant disease, a DNA fragment coding for hCAP18/LL-37 was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein under the control of the cauliflower mosaic virus 35S promoter region. The construct was then introduced into Brassica rapa. LL-37 expression was confirmed in transgenic plants by reverse transcription-polymerase chain reaction and western blot analysis. Transgenic plants exhibited varying levels of resistance to bacterial and fungal pathogens. The average size of disease lesions in the transgenic plants was reduced to less than half of that in wild-type plants. Our results suggest that the antimicrobial LL-37 peptide is involved in wide-spectrum resistance to bacterial and fungal pathogen infection

    Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical complex on Korea’s northwest coast during the Korea-United States Air Quality study

    Get PDF
    The U.S. National Aeronautics and Space Administration in partnership with Korea’s National Institute of Environmental Research embarked on the Korea-United States Air Quality (KORUS-AQ) study to address air quality issues over the Korean peninsula. Underestimation of volatile organic compound (VOC) emissions from various large facilities on South Korea’s northwest coast may contribute to this problem, and this study focuses on quantifying top-down emissions of formaldehyde (CH₂O) and VOCs from the largest of these facilities, the Daesan petrochemical complex, and comparisons with the latest emission inventories. To accomplish this and additional goals discussed herein, this study employed a number of measurements acquired during KORUS-AQ onboard the NASA DC-8 aircraft during three Daesan overflights on June 2, 3, and 5, 2016, in conjunction with a mass balance approach. The measurements included fast airborne measurements of CH₂O and ethane from an infrared spectrometer, additional fast measurements from other instruments, and a suite of 33 VOC measurements acquired by the whole air sampler. The mass balance approach resulted in consistent top-down yearly Daesan VOC emission flux estimates, which averaged (61 ± 14) × 10³ MT/year for the 33 VOC compounds, a factor of 2.9 ± 0.6 (±1.0) higher than the bottom-up inventory value. The top-down Daesan emission estimate for CH₂O and its four primary precursors averaged a factor of 4.3 ± 1.5 (± 1.9) times higher than the bottom-up inventory value. The uncertainty values in parentheses reflect upper limits for total uncertainty estimates. The resulting averaged top-down Daesan emission estimate for sulfur dioxide (SO₂) yielded a ratio of 0.81–1.0 times the bottom-up SO₂ inventory, and this provides an important cross-check on the accuracy of our mass balance analysis

    Dietary Supplementation with Conjugated Linoleic Acid Plus n-3 Polyunsaturated Fatty Acid Increases Food IntakeBrown Adipose Tissue in Rats

    Get PDF
    The effect of supplementation with 1% conjugated linoleic acid and 1% n-3 long chain polyunsaturated fatty acids (CLA/n-3) was assessed in rats. Food intake increased with no difference in body weights. White adipose tissue weights were reduced whereas brown adipose tissue and uncoupling protein-1 expression were increased. Plasma adiponectin, triglyceride and cholesterol levels were reduced while leptin, ghrelin and liver weight and lipid content were unchanged. Hypothalamic gene expression measurements revealed increased expression of orexigenic and decreased expression of anorexigenic signals. Thus, CLA/n-3 increases food intake without affecting body weight potentially through increasing BAT size and up-regulating UCP-1 in rats

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting
    corecore