123 research outputs found

    Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung

    Get PDF
    Fibroblast growth factor-10 (FGF10) is a mesenchymal growth factor, involved in epithelial and mesenchymal interactions during lung branching morphogenesis. In the present work, FGF10 overexpression was transiently induced in a temporally and spatially restricted manner, during the pseudoglandular or canalicular stages of rat lung development, by trans-uterine ultrasound-guided intraparenchymal microinjections of adenoviral vector encoding the rfgf10 transgene. The morphologic and histologic classification of the resulting malformations were dependent upon developmental stage and location. Overexpression of FGF10 restricted to the proximal tracheobronchial tree during the pseudoglandular phase resulted in large cysts lined by tall columnar epithelium composed primarily of Clara cells with a paucity of Type II pneumocytes, resembling bronchiolar type epithelium. In contrast, FGF10 overexpression in the distal lung parenchyma during the canalicular phase resulted in small cysts lined by cuboidal epithelial cells composed of primarily Type II pneumocytes resembling acinar epithelial differentiation. The cystic malformations induced by FGF10 overexpression appear to closely recapitulate the morphology and histology of the spectrum of human congenital cystic adenomatoid malformation (CCAM). These findings support a role for FGF10 in the induction of human CCAM and provide further mechanistic insight into the role of FGF10 in normal and abnormal lung development.This project was in part funded by proceeds from the Ruth and Tristram C. Colket Jr. Chair in Pediatric Surgery (A.W.F.), and the Fundação para a Ciência e Tecnologia (POCI/SAUOBS/56428/2004). S.G. was supported by FCT grant ref. SFRH/BD/15260/2004

    Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion

    Get PDF
    In utero hematopoietic stem cell transplantation (IUHSCTx) can achieve mixed hematopoietic chimerism and donorspecific tolerance without cytoreductive conditioning or immunosuppression. The primary limitation to the clinical application of IUHSCTx has been minimal donor cell engraftment, well below therapeutic levels for most target diseases. Donor lymphocyte infusion (DLI) has been used in postnatal circumstances of mixed chimerism as targeted immunotherapy to achieve a graft-versus-hematopoietic effect and to increase levels of donor cell engraftment. In this report we demonstrate in the murine model that a combined approach of IUHSCTx followed by postnatal DLI can convert low-level, mixed hematopoietic chimerism to complete donor chimerism across full major histocompatibility complex barriers with minimal risk for graftversus-host disease (GVHD)

    Targeted gene transfer to fetal rat lung interstitium by ultrasound-guided intrapulmonary injection

    Get PDF
    In utero gene transfer to the developing lung may have clinical or research applications. In this study, we developed a new method for specifically targeting the fetal rat lung with adeno and lentiviral vectors encoding the enhanced green fluorescence protein (EGFP) marker gene at E15.5 using ultrasound biomicroscopy (UBM). Survival rate, morphometric parameters, viral biodistribution, and lung transduction efficiency were analyzed and compared to the intra-amniotic route of administration. Expression of EGFP started as early as 24 and 72 h after the injection of adenoviral and lentiviral vectors, respectively. Both vectors transduced lung parenchyma with gene expression limited to interstitial cells of the injected region, in contrast to intra-amniotic injection, which targeted the pulmonary epithelium. Expression of EGFP was most intense at E18.5 and E21.5 for adenoviral and lentiviral vectors, respectively. In contrast to lentivirus, adenoviral expression significantly declined until final analysis at 1 week of age. This study demonstrates the feasibility of targeting the fetal rat lung interstitium with viral vectors under UBM guidance during the pseudoglandular stage. This model system may facilitate in vivo studies of dynamic lung morphogenesis and could provide insight into the efficacy of prenatal gene transfer strategies for treatment of specific lung disorders.FCT Grant (SFRH/BD/15260/2004) on behalf of the FCT Grant POCI/SAU-OBS/56428/200

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Surgery in the human fetus: the future

    No full text
    Fetal surgery was born of clinical necessity. Observations by pediatric surgeons and neonatologists of neonates that were born with irreversible organ damage led to the conclusion that one possible approach to prevent this alteration of developmental physiology, was fetal surgical intervention. This led to experimental validation of the pathophysiology of specific fetal defects in animal models and to the development of techniques for their prenatal surgical correction. The demonstration in animal models that the correction of an anatomical defect could reverse the associated pathophysiology led to the first systematic application of fetal surgery at the University of California, San Francisco, in the early 1980s. Since that time, fetal surgery has been applied in only a few centres and has remained relatively limited in scope. Nevertheless, there has been a dramatic improvement in our ability to diagnose, select and safely operate on an expanding number of fetal anomalies. The purpose of this article is to briefly summarize the present status of fetal surgery and to speculate about what may be in store for the future. Inherent in such an effort is a definition of what constitutes fetal surgery. In this discussion I will take considerable latitude with the definition of what constitutes fetal surgery in the future, as it is my belief that technological progress in a number of areas will result in dramatic changes in the practice and perception of fetal surgery

    Genetic Therapy for the Fetus: A Once in a Lifetime Opportunity

    No full text
    corecore