380 research outputs found

    DIVERSITY OF MICROFUNGI ON FAGACEAE IN ULUDAG FORESTS

    Get PDF
    WOS: 000363091600042Forests ecosystems are sources of oxygen and wood products, also they prevent soil erosion, improve water and air quality, serve as homes for wildlife; and therefore, they preserve and increase biodiversity. Forests can host a diverse community of fungal species with various effects on their host trees. In this research, trees of Fagaceae family of Uludag forests of Bursa province were investigated between the years of 2002 and 2008. By microscopic examination we identified 38 microfungi species in 27 genera belongs to Ascomycota and 1 microfungus species in 1 genus belongs to Basidiomycota. The taxa belong to 15 families: Botryosphaeriaceae, Diaporthaceae, Diatrypaceae, Dothioraceae, Erysiphaceae, Gnomoniaceae, Incertae sedis, Melanconidaceae, Microstromataceae, Nectriaceae, Pseudovalsaceae, Rhytismataceae, Trichosphaeriaceae, Valsaceae and Xylariaceae. The distribution of species by trophic groups revealed a dominance of xylotrophic species. With this study, fungal diversity of Fagaceae family in Uludag forests was identified and included in the mycobiota of Turkey

    Bidding structure, market efficiency and persistence in a multi-time tariff setting

    Get PDF
    The purpose of this study is to examine the fractal dynamics of day ahead electricity prices by using parametric and semi parametric approaches for each time zone in a multi-time tariff setting in the framework of bidding strategies, market efficiency and persistence of exogenous shocks. We find that that electricity prices have long term correlation structure for the first and third time zones indicating that market participants bid hyperbolically and not at their marginal costs, market is not weak form efficient at these hours and exogenous shocks to change the mean level of prices will have permanent effect and be effective. On the other hand, for the second time zone we find that price series does not exhibit long term memory. This finding suggests the weak form efficiency of the market in these hours and that market participants bid at their marginal costs. Furthermore this indicates that exogenous shocks will have temporary effect on electricity prices in these hours. These findings constitute an important foundation for policy makers and market participants to develop appropriate electricity price forecasting tools, market monitoring indexes and to conduct ex-ante impact assessment. © 2015 Elsevier B.V

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Resistance to HSP90 inhibition involving loss of MCL1 addiction

    Get PDF
    YesInhibition of the chaperone heat-shock protein 90 (HSP90) induces apoptosis, and it is a promising anti-cancer strategy. The mechanisms underpinning apoptosis activation following HSP90 inhibition and how they are modified during acquired drug resistance are unknown. We show for the first time that, to induce apoptosis, HSP90 inhibition requires the cooperation of multi BH3-only proteins (BID, BIK, PUMA) and the reciprocal suppression of the pro-survival BCL-2 family member MCL1, which occurs via inhibition of STAT5A. A subset of tumour cell lines exhibit dependence on MCL1 expression for survival and this dependence is also associated with tumour response to HSP90 inhibition. In the acquired resistance setting, MCL1 suppression in response to HSP90 inhibitors is maintained; however, a switch in MCL1 dependence occurs. This can be exploited by the BH3 peptidomimetic ABT737, through non-BCL-2-dependent synthetic lethality

    Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1

    Get PDF
    The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2. This effect leads to reduced RNA synthesis and subsequently rapid downregulation of the short-lived anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) resulting in apoptosis induction in cancer cells. We show that genetic inhibition of Mcl-1 or CDK9 expression by siRNA is sufficient to mimic flavone-induced apoptosis. Pull-down and in silico docking studies demonstrate that wogonin directly binds to CDK9, presumably to the ATP-binding pocket. In contrast, wogonin does not inhibit CDK2, CDK4 and CDK6 at doses that inhibit CDK9 activity. Furthermore, we show that wogonin preferentially inhibits CDK9 in malignant compared with normal lymphocytes. Thus, our study reveals a new mechanism of anti-cancer action of natural flavones and supports CDK9 as a therapeutic target in oncology

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer

    Get PDF
    available in PMC 2011 February 3.MCL-1 has emerged as a major oncogenic and chemoresistance factor. A screen of stapled peptide helices identified the MCL-1 BH3 domain as selectively inhibiting MCL-1 among the related anti-apoptotic Bcl-2 family members, providing insights into the molecular determinants of binding specificity and a new approach for sensitizing cancer cells to apoptosis.National Institutes of Health (U.S.) (NIH award 5RO1GM084181)National Institutes of Health (U.S.) (NIH grant 5P01CA92625)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F31CA144566)Burroughs Wellcome Fund (Career Award

    Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets

    Get PDF
    Solution-processed quantum wells, also known as colloidal nanoplatelets (NPLs), are emerging as promising materials for colloidal optoelectronics. In this work, we report the synthesis and characterization of CdSe/CdTe core/crown NPLs exhibiting a Type-II electronic structure and Type-II specific optical properties. Here, based on a core-seeded approach, the CdSe/CdTe core/crown NPLs were synthesized with well-controlled CdTe crown coatings. Uniform and epitaxial growth of CdTe crown region was verified by using structural characterization techniques including transmission electron microscopy (TEM) with quantitative EDX analysis and X-ray diffraction (XRD). Also the optical properties were systematically studied in these Type-II NPLs that reveal strongly red-shifted photoluminescence (up to similar to 150 nm) along with 2 orders of magnitude longer fluorescence lifetimes (up to 190 ns) compared to the Type-I NPLs owing to spatially indirect excitons at the Type-II interface between the CdSe core and the CdTe crown regions. Photoluminescence excitation spectroscopy confirms that this strongly red-shifted emission actually arises from the CdSe/CdTe NPLs. In addition, temperature-dependent time-resolved fluorescence spectroscopy was performed to reveal the temperature-dependent fluorescence decay kinetics of the Type-II NPLs exhibiting interesting behavior. Also, water-soluble Type-II NPLs were achieved via ligand exchange of the CdSe/CdTe core/crown NPLs by using 3-mercaptopropionic acid (MPA), which allows for enhanced charge extraction efficiency owing to their shorter chain length and enables high quality film formation by layer-by-layer (LBL) assembly. With all of these appealing properties, the CdSe/CdTe core/crown heterostructures having Type-II electronic structure presented here are highly promising for light-harvesting applications
    corecore