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The purpose of this study is to examine the fractal dynamics of day ahead electricity prices by using parametric
and semi parametric approaches for each time zone in a multi-time tariff setting in the framework of bidding
strategies, market efficiency and persistence of exogenous shocks. We find that that electricity prices have long
term correlation structure for thefirst and third time zones indicating thatmarket participants bid hyperbolically
and not at their marginal costs, market is not weak form efficient at these hours and exogenous shocks to change
themean level of prices will have permanent effect and be effective. On the other hand, for the second time zone
wefind that price series does not exhibit long termmemory. Thisfinding suggests theweak formefficiency of the
market in these hours and that market participants bid at their marginal costs. Furthermore this indicates that
exogenous shocks will have temporary effect on electricity prices in these hours. These findings constitute an
important foundation for policymakers andmarket participants to develop appropriate electricity price forecasting
tools, market monitoring indexes and to conduct ex-ante impact assessment.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recentyearsmost electricitymarketshavebeenrestructuredand in this
setting, energy-basedfinancial products and electricity price analysis become
substantially important for both policymakers andmarket participants. After
the famousCaliforniablackout in2000, a significant increase in thenumberof
studies on price forecastingwas observed. Preliminary studies focused on the
basic characteristics of electricity differed from those of financial assets,
namely; non-storability, seasonality and inelasticity of supply/demand
(Geman and Roncoroni, 2006; Lucia and Schwartz, 2002; Sensfuss et al.,
2008; Simonsen et al., 2004; Zachmann, 2008). Following studies focus
on spikes, causing asymmetry in the underlying distribution;
nonstationarity and mean reversion (Haugom et al., 2011; Janczura
et al., 2013; Knittel and Roberts, 2005; Simonsen, 2003; Weron and
Przybylowicz, 2000).
irely those of the authors and do
e affiliated with.
ss Administration at Bilkent

ji.gov.tr (E. Avci-Surucu),
v.tr (D. Akgul).
Considering security of supply, another crucial feature of electricity is
the intraday volatility arising from demand fluctuations during the course
of the day. Regulatory authorities usually oblige the system operators to
adopt multi-time tariff mechanisms in order to manage peak-time volatili-
ty. In these tariff settings, different rates are applied for the consumption at
defined time zones during the day. The bills of the subscribers under this
setting are arranged by considering their consumptions at the defined
time zones and the rates for these time zones with the aim of shifting the
load from peak time to off-peak time and thereby enable the end user to
manage his energy costs and allow generators to operate efficiently. This
situation results in different incentives on generators side. Generators,
with the ability offlexible offering, tend to adoptdifferent bidding strategies
at super peak, peak and off-peak times.

Studies on analysing dynamics of day ahead prices ignore the
different characteristics of time zones in multi-time tariff settings and
consider the daily average prices.1 However daily average prices do
not capture the microstructure of the day ahead market since level of
1 For a comprehensive overview, see Huisman et al. (2007), Eydeland and Wolyniec
(2003) and Bunn and Karakatsani (2003).
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2 For details, see Chen and Lee, 2007; Gil-Alana et al., 2010; Peraire and Belbuta, 2012;
Apergis and Tsoumas, 2012.

3 For details, see http://ec.europa.eu/dgs/energy_transport/evaluation/activites/doc/
reports/energie/intelligent_energy_ex_ante_en.pdf
https://ec.europa.eu/energy/intelligent/files/doc/2011_iee2_programme_ex_ante_en.pdf
http://www.oecd.org/dac/povertyreduction/38978856.pdf

http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPSIA/0,,contentMDK:
20477296~pagePK:148956~piPK:216618~theSitePK:490130,00.html.
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mean reversion and volatility structure are not constant throughout the
day (Huisman et al., 2007). Other studies consider hourly prices as a
stack and ignore the fact that day ahead electricity prices are
determined a day before the trading day for all 24 hours, that is traders
cannot update their information set hourly. Under this setting, informa-
tion set is not constant throughout the day and updates over the days.
Applying a classic time series approach to hourly day ahead prices can
be misleading from a statistical point of view. Huisman et al. (2007)
model each hour as a separate time series through a panel datamethod-
ology and find the mean reversion of day ahead prices is significantly
lower over the super-peak hours (18:-22:00). Thus prices are less pre-
dictable in these hours. Moreover they show there exists clear blocks
of cross-sectional correlation between specific hours. The first block ap-
pears in 24:00 – 06:00, second block shows up through 6:00 to 19:00
and also there is very high correlation between specific two adjacent
hours (between hours 20 and 21; between hours 15 and 16).
These findings reveal the different dynamics in hourly prices but similar
characteristics in each time zone.

There are also emerging studies of applied mathematics in the
field of electricity pricing and market modelling, especially, by
the use of game theory, stochastic differential equations and math-
ematics supported data mining (Vasin, 2014; Vasin et al., 2013).
However the literature on electricity price analysis focuses mostly
on the features of autocorrelation, stochasticity and nonlinearity.
Only a small number of studies analyse the presence and quantifi-
cation of fractality (long term correlation structure) and very few
of them relate these findings to basic financial concepts; namely
multi-time tariff mechanism, market efficiency, bidding structure
or policy development.

Accurate measurement of fractality is crucial for correct statistical
inference and forecast uncertainty (Lildholdt, 2000). There are three
reasons stimulating this fact. First, ignoring the long memory property
in a series can lead to confidence intervals for a process mean that are
too optimistic by orders of magnitude. Second, there are many impor-
tant economic time series exhibiting long term correlation structure
(Beran, 1994). Moreover the potential for spurious regressions of
stationary variables depend on the level of fractal noise (Tsay and
Chung, 2000).

Economic intuition of the presence of long memory structure in
electricity prices is important on several fronts. First, if electricity prices
are nonstationary in levels, shocks to electricity prices will have only
transitory effects. On the other hand, if electricity prices are stationary,
shocks to electricity prices will have permanent effects. The nature of
a shock has implications for transmission of that shock from electricity
prices to other sectors of the economy. If shocks to electricity prices
are permanent, then the probability of transmission of such a shock to
other sectors of the economy, where energy prices have a substantial
impact on expenditures, would be higher than the probability of
transmission of a transitory shock.

Secondly, the presence of fractal noise in electricity prices can be
used to capture the bidding strategies of market participants. In
restructured electricity markets, the probability of setting the price
each hour is not the same for all market participants, mostly because
they have different marginal costs. Each hour, the market clearing
price is determined by just one generator, called the marginal gener-
ator, whose bid is at the intersection of the supply and demand
curves. Generators whose bids are higher in the merit order curve
are called inframarginal generators. Each generator knows only
the past market prices and their own bids. In this setting, the
inframarginal generators’ strategy is to not bid higher than the mar-
ginal generator’s bid (Sapio, 2004).Thus, they observe and analyse
past prices and offer their current bids according to past information.
For off-peak hours, if marginal generators bid at their marginal costs,
then there is no fractal noise. This observation allows for testing of
firms’ bidding behaviour based on marginal cost structures. For peak
hours, if there exists a long-term correlation in prices, we can suggest
that marginal generators use the prices of the day and week before,
which means applying hyperbolic bidding rules. Moreover this obser-
vation is contrary to Fama’s (1970) weak-form efficient market
hypothesis (WEMH), which assumes the absence of long-term corre-
lation between price increments for any time scale. If markets are
weak-form efficient, then market participants cannot earn excess
profits in the presence of trading rules based on past prices or returns
(Eoma et al., 2008; Farmer et al., 2006; Mun et al., 2008). Such a
WEMH can be tested using historical data through short- and long-
range correlations (Couillard and Davison, 2005; Lillo and Farmer,
2004).

Thirdly; considering the persistence of a series, the presence and de-
gree of long term correlation structure have policy implications.2 Persis-
tence is a measure of the speed at which a series returns to its mean
level after a shock. In the context of this paper, a shock can be a new
policy design/regulation or the introduction of an innovation to the
market. In this sense, when the degree of persistence is small, a
shock tends to have more temporary effects. In the case of electricity
prices, deviating from the mean level of the price is not easy. It is
more costly and difficult to permanently affect electricity prices
when persistence is low. On the other hand, if the degree of persis-
tence is high, a shock tends to have a more long-lasting effect. Thus,
the degree of persistence of electricity prices makes a difference in
the effectiveness of energy policies/regulations. Therefore results of
this study can be an input for regulatory bodies and policy makers
to make evidence-based ex-ante policy impact analysis which has re-
cently been a popular approach used by UNDP, EU, OECD and World
Bank.3

In this paper, our aim is to investigate fractal phenomena in level
electricity prices for each time zone separately. We focus on the es-
sential statistical properties of fractal noise and identify appropriate
instruments for measuring fractality in day ahead electricity prices.
Our paper contributes to the literature firstly by comprehensively
discussing the theoretical characteristics of a fractal pattern and
demonstrating the crucial steps of a fractal analysis approach adapted
to capture the dynamics of electricity prices. We employ both para-
metric and semiparametric methods to benefit from their different
statistical properties. Secondly, prior studies have focused on hourly
price differences or daily average price differences rather than on
level prices. This first differencing approach is a natural fit for most
financial assets because of their nonstationary dynamics. However,
this property may not exist for electricity prices depending on the
maturity of the market, the time interval, the technology mix and
other contaminating factors. For instance; markets with low diversity
of generation, low maturity or non-reservoir hydro dependence may
experience many spikes which can affect the evaluation of the long
memory differencing parameter based on returns. As stated by
Uritskaya and Uritsky (2015) using level prices is more consistent
with the original formulation of the parametric long memory estima-
tion methods, like DFA. Thus, studies on long memory for level prices
can provide useful information to improve existing models and to as-
sess limitations on prediction. Lastly, previous studies have investigat-
ed either daily average or hourly prices. However, Alvarez-Ramirez
and Escarela-Perez (2010) and Erzgraber et al. (2008) show that
fractal properties of electricity price vary over time. Accordingly we
introduce a new time unit based on time zones in a multi-time tariff
mechanism considering the fact that electricity market participants
have different incentives, risk management and forecasting

http://ec.europa.eu/dgs/energy_transport/evaluation/activites/doc/reports/energie/intelligent_energy_ex_ante_en.pdf
http://ec.europa.eu/dgs/energy_transport/evaluation/activites/doc/reports/energie/intelligent_energy_ex_ante_en.pdf
https://ec.europa.eu/energy/intelligent/files/doc/2011_iee2_programme_ex_ante_en.pdf
http://www.oecd.org/dac/povertyreduction/38978856.pdf
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPSIA/0,,contentMDK:20477296~pagePK:148956~piPK:216618~theSitePK:490130,00.html
http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPSIA/0,,contentMDK:20477296~pagePK:148956~piPK:216618~theSitePK:490130,00.html
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approaches for each time zone. With respect to this fact we expect
different levels of predictability of prices, efficiency of the market,
bidding structures of market participants and permanence of shocks
for each time zone.

For this studywe use a data set from Turkey where exists three time
zones (Ti); T1 (day): 6:00 – 17:00, T2 (peak): 17:00 – 22:00 and T3
(night): 22:00 – 6:00. There have been few empirical studies focusing
on the statistical and fractal properties of electricity prices in Turkey be-
cause of the relative youth of electricity market restructuring. There are
only two emerging studies on forecasting electricity prices of Turkey;
Yıldırım et al. (2012) and Hayfavi and Talasli (2014). On the other
hand Turkey has experienced the longest and most extensive “black
out” on 31March2015 in thehistory of the Turkish Republic. This recent
experience4 has revealed the importance of bidding structures in elec-
tricity markets and implementing hedging strategies. Thus we expect
a rapid increase in the number studies on electricity price analysis and
forecasting about the Turkish electricity market.
2. Literature review on the fractal dynamics of electricity prices

Fractal noise has been found inmost scientific fields, including phys-
ics, finance, biology and psychology (Chen et al., 1997; Hausdorf and
Peng, 1996) and is still a hot topic (Erfani and Samimi, 2009; Barunik
and Kristoufek, 2010; Bailie and Morano, 2012; Yerlikaya-Ozkurt et al.,
2014; Uritskaya and Uritsky, 2015 ). It is intermediate between white
noise and brownnoise andhas both stability and adaptability properties
(Bak et al., 1987). Different approaches to capture fractality exist. How-
ever, statistical characteristics of some nonfractal noise can resemble
fractal noise, which may result in incorrect classification. Therefore,
proper measurement of fractality in applied research is very difficult.
One of the main objectives in measuring fractality is distinguishing be-
tween fractal and nonfractal noise for diagnostic checking (Stadnitski,
2012).

Fractality of electricity prices has been the subject of a number of
recent studies. Pioneer studies mostly attempt to detect the unit root in
a series through analysing the long memory differencing parameter.
Some of them use level electricity prices to investigate the unit root in
their series and show that the characteristics of electricity prices are
very different from those of financial assets (Atkins and Chen, 2002; De
Vany and Walls, 1999; Leon and Rubia, 2001; Rypdal and Lovsleten,
2013); most of them consider the characteristics of the electricity prices
similar to financial assets and use returns as the main variable in
their modelling and their results demonstrate that nonstationarity in
electricity prices differs with respect to market and time framework
(Norouzzadeh et al., 2007; Simonsen, 2003; Weron, 2002; Weron and
Przybylowicz, 2000). Another branch of the literature focus on compar-
ing several electricity markets in Europe and US based on their degree
of long memory (Alvarez-Ramirez and Escarela-Perez, 2010; Koopman
et al., 2007; Koopman et al., 2007; Park et al., 2006) and mainly find
that the prices are nonstationary and that in some of them fractional
differencing exists.
4 Turkey has experienced the longest andmost extensive blackout on 31March 2015 in
the history of the Turkish Republic. Turkish Transmission system collapsed for 10 hours
due to positioning of generation plants mostly on the eastern part of Turkey. Nevertheless
the basic reason is the formation of merit order curve and lack of management initiative.
During the winter 2015 Turkey had high precipitation and thus the level of reservoirs be-
came very high. On 30March 2015 , that is the dayMOC(Merit Order Curve)was planned
for 31 March 2015; the operators recognize that most of the hydro power enter the merit
order curve, became marginal generators ( as defined in the manuscript; marginal gener-
ators are the oneswhose bid at the intersection of the supply and demand curves and thus
determining the hourly market clearing price) and natural gas plants mostly located near
the Marmara region stay out of the MOC due to their relatively high marginal generation
costs. Operators responsible for the realization of the merit order curve ignore the geo-
graphical location of the hydro plants and accept / realize the output of the hourly MOCs
for the next day to generate electricity at lower prices. On March 31, the electricity trans-
mission system collapsed due to the unbalancement in the transmission lines.
The literature most similar in spirit to ours are the ones focusing on
testing basic finance theories through using long memory correlation
structures. Uritskaya and Serletis (2008) compare the market efficien-
cies in Alberta and Mid-C markets using detrended fluctuation analysis
and spectral exponents. Sapio (2004) finds that long term correlation
structure exists in electricity prices and that can be explained bybidding
strategies of market participants. He notes that institutional setting is
very important in shaping participants’ behaviour and illuminates the
relationship between bidding rules and ways of processing past infor-
mation. In terms of considering time of the day, Erzgraber et al.
(2008) study long-term memory in the Nord Pool market and find the
memory parameter varies greatly with respect to the time of the day.

3. Background

3.1. Deregulated electricity markets

In deregulated electricity markets, there exist different pricing
mechanisms. In the context of this paper we consider the uniform
price auction in which market participants submit supply and demand
curves for each hour where themarket clearing price is the equilibrium
price. In this type of auction all suppliers and demanders receive and
pay the same respective prices. To ensure supply security, there also
exists a real-time balancing market. Thus, market participants adopt
different bidding strategies according to potential profit opportunities
(Dosi and Egidi, 1991; Friedman, 1998; Mazzucato, 2000).

3.2. Electricity market in Turkey

Turkish Day Ahead Electricity Market (GOP) is an emerging spot
market which is executed by Market Financial Settlement Centre
(PMUM), where generators and demanders submit hourly supply and
demand curves and PMUM determines the hourly market clearing
price (PTF). GOP was established for ensuring the market participants
balancing their portfolio in addition to bilateral contracts and providing
the system operator with a balanced system; and is used for power
trading and balancing activities one day before the physical delivery of
electricity. Participation to the GOP is voluntary. GOP gives permission
to hourly, block and flexible bids.

In order to deliver market participants risk-hedging opportunities,
trading of electricity future contracts has been launched within the
Turkish Derivatives Exchange as of 26 September 2011. Attempts to
establish an energy exchange has come up with result and Power
Exchange (EPİAŞ) has launched on 1 Sept 2015. EPİAŞ has been
operating the day ahead and intraday markets; and Borsa İstanbul
(BİST) has the operating right of the derivatives market.

3.3. Propositions

Proposition 1. If marginal generators bid at their marginal costs, then the
off-peak price does not display a fractal pattern.

The off-peak hour strategy for generators is to bid at marginal cost
(Von der Fehr and Harbord, 1993). If generators use the off-peak
strategy andmarginal cost is constant, then marginal generators are as-
sumed to have no long-term memory since their own cost information
is constant. This situation is also an indicator for Fama’s weak-form
efficient market hypothesis. If the electricity market is efficient in
weak form for each time zone, then prices should not have a
long-term correlation structure. Hence, current prices cannot be
predicted by using information on past prices.

Proposition 2. If marginal generators use hyperbolic bidding rules, then
the peak-load price should be represented by a long memory process and
the day ahead market will not be efficient in weak form.



Fig. 1. Raw periodogram of hourly prices from 00:00 on December 1, 2011, to 24:00 on April 15, 2014 with bandwidth 0,000134.
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The peak-hour strategy for generators is to bid above marginal cost
(Sapio, 2004), since the risk of not being selected is low due to high
demand. Thus, at peak load, marginal generators are assumed to give
hyperbolically decaying weights to information by considering past
electricity prices.

Proposition 3. If shocks to electricity prices are permanent, then the price
series for each time zone should exhibit the long memory property.

The presence of fractal patterns in each time zone has important im-
plications for public policy design and effectiveness. First, given the
strong influence of the energy sector on other sectors of the economy,
if shocks to electricity prices are permanent, then such “innovations”
may be transmitted to other sectors of the economy as well as to
macroeconomic variables. Second, the fractal dynamics of electricity
prices are crucial to the design and the effectiveness of public policies.
In particular, if electricity prices exhibit long-term correlation structure,
then related public policies will tend to have long-lasting effects. In
contrast, if electricity prices do not suggest a fractal pattern, then such
policies will have only transitory effects (Apergis and Tsoumas, 2012;
Gil-Alana et al., 2010; Lean and Smyth, 2009; Pereira and Belbute,
2012).
5 It was first introduced by Hurst (1951) in hydrological analysis. For both white and
brown noises the Hurst coefficient (H) is 0.5; for fractal noise, H= 1. The differencing pa-
rameter is another fractal parameter, proposed by Granger and Joyeux (1980) and
Hosking (1981, 1984). They show that if -0.5 b d b 0.5, then the process is covariance sta-
tionary and the moving average coefficients decay at a relatively slow hyperbolic rate
compared with the stationary and invertible autoregresssive moving average (ARMA)
process (Bailie et al., 1996). If 0 b d b 0.5, then the process is stationary with a finite long
memory property. If 0.5 ≤ d ≤1, then the series is nonstationary (Beran, 1994; Brockwell
and Davis, 2002). The power exponent is determined by examining the spectral density
function, which describes the amount of variance accounted for by each frequency that
can be measured. The analysis of power distribution represents the analysis of variance
(ANOVA) in theway that the overall process variance is divided into variance components
due to independent cycles of different length (Stadnitski, 2012). If the power spectrumof a
set of data is plotted on a log-log scale, the logarithmic power function of fractal noise is
expected to follow a straight line with slope -1 for pink noise. The scaling exponent (α)
represents the self-similarity of pink noise and fractality can be expressed by the following
power low: F (n) ∝ nα with α=1. Ifα is 1.5, then the process is brown noise. To summa-
rize, the theoretical parameter values of pink noise are d = 0.5, β = 1, α = 1 and H =1
(Warner, 1998).
4. Data

The data used in this study consists of day ahead prices from 00:00
on December 1, 2011 (establishment of the GOP), through 24:00 on
April 15, 2014 from the electricity market in Turkey, taken from the
Independent Electricity System Operator (TEIAS). This gives us 857
observations for each time zone.

Most studies on analysing fractal dynamics of spot electricity
prices take the daily average of hourly prices or returns. We thor-
oughly examine this approach by analysing the spectral density of
hourly level electricity prices as illustrated in Fig. 1 in which the
most dominant cycles are observed to be approximately 8, 12, 24
and 48 hours. Thus, we propose to use average price of each time
zone i (PTF_Ti) since 1) we do not want to lose information about
the microstructure of day ahead prices, as would be the case were
we to use daily averaging 2) previous studies considering each hour
separately concludes that there exists a block-structured cross-
correlation structure between specific hours referring to the time
zones 3) taking average with respect to each time zone is more intuitive
in the sense that electricitymarket participants have different incentives
and bidding strategies for each time zone.

Logarithm of PTF_Ti (LNPTF_Ti) are presented in Fig. 2 and its
descriptive statistics is illustrated in Table 1.
5. Methodology and results

5.1. Fractal parameters

The main characteristic of a fractal noise is to remain similar when
viewed at different scales of time or space. This implies the following
statistical properties: 1) a hyperbolically decaying ACF and 2) a specific
relation between frequency (f) and size (S) of process variation. Hurst
(H), differencing (d), power exponent (β) and scaling exponent (α)
are the most commonly used fractal parameters. The Hurst coefficient
is the probability that an event in a process is followed by a similar
event, which measures the intensity of long-range dependence in a
time series.5

Broadly we can classify the differencing parameter estimation
methods into two groups; parametric and semiparametric. In the para-
metric fractal analysis methods all the parameters are simultaneously
estimated mostly through a likelihood function. Within the second
group of estimators a periodogram based approach is used (Geweke
and Porter-Hudak, 1983; Reisen, 1994; Robinson, 1995).

5.2. Fractal analysis approach

As a general fractal analysis strategy, it is important to remember
that none of the fractal parameter estimation procedures mentioned
below is superior to the others (Stadnitski, 2012). Simulation studies
on fractal analysis have demonstrated that the performance of the var-
ious methods depends very much on aspects such as the complexity of
the underlying process or the parameterizations (Stadnytska and
Werner, 2006). As a result, comprehensive strategies are required to



Fig. 2. Panel 1: Time series plot of LNPTF_T1 fromDecember 1, 2011, to April 15, 2014. Panel 2: Time series plot of LNPTF_T2 fromDecember 1, 2011, to April 15, 2014. Panel 3: Time series
plot of LNPTF_T3 from December 1, 2011, to April 15, 2014. Note: LNPTF_Ti is the logarithm of average price of time zone i.
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correctly estimate fractality parameters. Firstly it is very important to
distinguish between stationary and nonstationary processes since
some fractal analysis approaches have stationarity assumption or are
Table 1
Descriptive statistics of the data.

LNPTF_T1 LNPTF_T2 LNPTF_T3

# of observ. 867 867 867
Mean 5.095 5.067 4.787
Min 4.029 4.22 3.268
Max 7.06 6.215 5.336
Std. dev. 0.1995 0.1591 0.2491
Skewness 0.277 -0.1777 -1.46
Kurtosis 18.18 8.764 7.742
JB 8330.139*** 1204.967*** 1120.507***
ARCH(10) 389.2607*** 498.3533*** 480.2928***
Q(20) 1433.03*** 3497.096*** 1918.531***
Q2(20) 1362.056*** 3408.895*** 2087.08**

JB is the value of the Jarque-Bera statistic of the price residuals. Q(20) and Q2(20) are
Ljung-Box statistics for the price residuals and the squared price residuals for up to
20th-order serial correlation, respectively. *** indicates rejection of the null hypothesis
at the 1% significance level. ** indicates rejection of the null hypothesis at the 5% signifi-
cance level. * indicates rejection of the null hypothesis at the 10% significance level.
Note: LNPTF_Ti is the logarithm of average price of time zone i.
more efficient for stationary processes. Traditionally, researchers chose
the differencing parameter, d, as an integer (generally 1) to guarantee
that the resulting differenced series is a stationary process. In our fractal
analysis approach , we propose to check the unit root by a combination
of PP and KPSS tests as suggested in (Baillie et al., 1996) and look for in-
dication of fractality since unit root tests often lack the power to distin-
guish between a truly nonstationary (I(1)) series and a stationary series
with a structural break. If the combination of unit root tests indicate
fractal behaviour then visual detection methods can be used to ensure
the existence of longmemory in the data. After getting afirst impression
of long memory characteristics of the data visually, one can use appro-
priate parametric and semiparametric long memory estimation
methods to find the degree of fractality in the data.

5.2.1. Unit root tests
There are three unit root tests commonly used to test the stationarity

of a process: 1) theAugmentedDickey-Fuller (ADF) test, 2) the Phillips–
Peron (PP) test and 3) the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test. ADF (Dickey and Fuller, 1979, 1981) and PP (Phillips, 1987; Phillips
and Perron, 1988) test the null hypothesis d= 1 against d= 0. Howev-
er, Schwert (1987) noted that when the true generating process is an
I(1) process with a large negative moving average coefficient, the



Table 2
Unit root tests for logarithm of level prices with and without a trend.

LNPTF_T1 LNPTF_T2 LNPTF_T3

KPSS (without trend) 0.7402*** 0.4598*** 1***
PP (without trend) -427.7706*** -231.5554*** -240.9871***
KPSS (with trend) 0.1159*** 0.245*** 0.4859***
PP (with trend) -16.37*** -11.59*** -11.96***

*** indicates rejection of the null hypothesis at the 1% significance level. ** indicates
rejection of the null hypothesis at the 5% significance level. * indicates rejection of the
null hypothesis at the 10% significance level. Note: LNPTF_Ti is the logarithm of average
price of time zone i.
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performance of the ADF and PP tests is poor, due to their rejecting a unit
root too often in favour of an I(0) stationary process. Thus, if we wish to
test stationarity as a null and have strong priors in its favour, employing
the ADF test may not be useful (Baillie et al., 1996). An empirical series
with d close to 0.5 will probably be misclassified as nonstationary. In
contrast, the KPSS test assumes that process is stationary (H0: d = 0)
(Kwiatkowski et al., 1992).

Therefore, we use a combination of the PP andKPSS tests allowing us
to determine the four possible outcomes of the series (Baillie et al.,
1996): 1) if the PP is significant and the KPSS is not, then the data are
probably stationary with d ∈ (0;0.5)—strong evidence of a covariance
stationary process; 2) if the PP is insignificant and the KPSS is significant,
then the data may indicate having brown noise—a strong indicator of a
unit root, i.e., an I(0) process; 3) if neither the PP nor the KPSS is
significant, then the data are insufficiently informative regarding the
long memory of the process; and 4) if both the PP and the KPSS are
significant, then the data are not well described as either an I(1) or an
I(0) process—d ∈ (0; 1).

Table 2 presents the unit root tests for logarithmof level priceswith-
out/with a trend. In Table 2, the p-values ppp b0.01 and pKPSS b0.01 are
Fig. 3. Autocorrelation function of LNPTF_Ti and square of LNPTF_Ti for 28
observed for the analysed series, indicating that the electricity price
averages for each time zone are not well described as either an I(1) or
an I(0) process which means the differencing parameter, d, is not an
integer but between 0 and 1.

5.2.2. Visual detection of long term correlation structure
The second step in our proposed fractal analysis approach is to

visually examine the rate of the series’ autocorrelation function and
logarithmic power spectrum. For fractal series, we expect a slower
hyperbolic decay of autocorrelations in autocorrelation function (ACF)
(Beran, 1994). Fig. 3 illustrate the ACF of the LNPTF_Ti and squared-
prices for each time zone. There is a slow decay of the autocorrelations,
and they are positive and significant even at high lags, which is an
indicator of the finite long memory typical of fractal noise. Only weekly
seasonality (lags 7, 14, 28) appears in the data, which means that
considering the average price of each time zone eliminates most of the
intraday seasonality problem in both level prices and volatility.

Fig. 4 presents the autocorrelations of first differenced price series.
After taking the first differences of the series, most of the autocorrela-
tions at different lags are negative, which is an indicator of over
differencing. This plot confirms the observation made above regarding
the existence of long term correlation structure in level prices. As a re-
sult we use level electricity prices instead of first differenced prices for
the following reasons: 1) the results presented in Table 2, Figs. 3 and 4
provide evidence that the price series do not contain a unit root and
would be over differenced if we used the first differenced series which
is an indicator for fractal behaviour; 2) in a statistical sense, level prices
are more informative than differenced prices; 3) in the case of electric-
ity, there are in fact no actual returns (as a result of first differencing)
because of the nonstorability of electricity; and 4) the Hurst coefficient
might be biased due to the expected antipersistence of the first
differenced series.
lags Note: LNPTF_Ti is the logarithm of average price of time zone i.



Fig. 5. Rescaled range analysis result of LNPTF_T2 Note: LNPTF_T2 is the logarithm of average price of time zone 2.

Fig. 4. Autocorrelation function of first differenced LNPTF_Ti. Note: LNPTF_Ti is the logarithm of average price of time zone i.

Table 3
Hurst coefficient estimates using R/S analysis.

LNPTF_T1 LNPTF_T2 LNPTF_T3
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However, studies show that the sample ACF should not be used as
the only visual tool to detect fractality. Agiakoglu and Newbold (1992)
have shown that a substantial part of the slow decaying pattern can
originate from the slow rate of convergence of the sample mean. Thus
we also useRescaled range (R/S) and Power spectral density (PSD) anal-
yses to ensure the existence of fractality in our data. Mandelbrot and
Van Ness (1968) and Mandelbrot and Wallis (1969) extended Hurst’s
study and proposed R/S analysis. In a log-log R/S plot, if the slope of
the straight line is more than 0.5, then the series has a long memory
property. If the slope is less than 0.5, the series is antipersistent. R/S sta-
tistic can detect long memory in highly non-Gaussian time series with
large skewness and kurtosis (Mandelbrot and Wallis, 1969). It has
been pointed out by Lo, 1991 that R/S analysis can be affected by non-
stationarities and spurious short-term correlations. In this study we
employ the R/S procedure suggested by Beran (1994), Taqqu and
Teverovsky (1998) and Taqqu et al. (1995). Fig. 5. illustrates the R/S
analysis result of average electricity prices for time zone T2.6

The slopes are far from 0.5, which is an indicator of longmemory. To
eliminate the sample size problem of R/S analysis, we investigate the
electricity price data with least absolute deviation (LAD) regression in-
tegrated into the aforementioned procedure to get a robust estimate
of the long memory parameter. The results using LAD regression are
presented in Table 3 and are similar to those of least square (LS) regres-
sion.We can conclude that the longmemory parameter estimates found
by R/S analysis are robust to outliers in the data.

PSD analysis is a periodogram based visualization technique which
uses various data transformations such as detrending or filtering. The
6 Since the appearance of the figures for the other time zones are similar, they are omit-
ted from the text.
performance of PSD estimators thus depends greatly on the manipulations
employed (Delignières et al., 2006; Stadnitski, 2012). If the negative slope is
approximately 1 then this is an indicator for long memory. In addition to
ACF and R/S, we apply PSD analysis to see if there is a difference between

the results of trended and detrended data. The negative slopes (β̂ PSD) are
nearly1 forall series. The logarithmicpowerspectrumof theseries ispresent-
ed in Fig. 6 and seems to be compatible with the long memory property.

5.2.3. Fractal parameter estimation for conditional mean
Lastly, after visual detection of long term correlation structure byACF,

R/S and PSD analysis, we ensure the existence and degree of fractality
with respect to each time zone by using parametric and semi-
parametric estimation methods. In this paper we estimate the differenc-
ing parameter for the conditional mean through Geweke–Porter-Hudak
(GPH), Sperio estimator (FDSperio), localWhittle estimator (FDWhittle),
Detrended Fluctuation Analysis (DFA) and Autoregressive Fractionally
IntegratedMoving Average (ARFIMA).We adopt thesemethods to ben-
efit from their different statistical properties; namely GPH’s common
usage and comparability with the literature, FDSperio’s usage of
smoothed periodogram function instead of spectral density function,
FDWhittle’s parametric efficiency and consistency, DFA’s performance
for nonstationary series and ARFIMA’s efficiency for series consisting
R/S estimate with LS 0.7616651 0.8390152 0.8172537
R/S estimate with LAD 0.75644 0.83083 0.8309385

Note: LNPTF_Ti is the logarithm of average price of time zone i.



Fig. 6. Results of PSD analysis of all series. Logfreq denotes the logarithmic power spectrum of the series. Note: LNPTF_Ti is the logarithm of average price of time zone i.
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both long and shortmemory characteristics.Weuse Taqqu et al.(1995)’s
algorithm to estimate GPH, Reisen (1994) and Taqqu and
Teverovsky(1998) algorithms to estimate FDSperio and FDWhittle
correspondly. Besides we utilize Peng et al. (1994)’s algorithm to esti-
mate DFA and fast and accurate algorithm of Haslett and Raftery
(1989a, 1989b) to estimate d in ARFIMA.

The GPH, the oldest periodogram-based semiparametric estimator,
is introduced by Geweke and Porter-Hudak (1983). The GPH estimator
is based on the regression equation, using the periodogram function as
an estimate of the spectral density (Geweke and Porter-Hudak, 1983;
Lobato and Robinson, 1996; Robinson, 1994; Taqqu et al., 1995).

The FDSperio is also a periodogram-basedmethod andwas proposed
in order to improve the GPH estimator. It takes advantage of the Reisen
(1994) algorithm to estimate the fractal parameter d in the ARFIMA
(p,d,q) model. It is based on the regression equation, using the
smoothed periodogram function as an estimate of the spectral density.

The FDWhittle is one of the most commonly used parametric
periodogram-based Whittle estimators. It was proposed byWhittle (1953)
and modified by Künsch (1987), Robinson (1995b) and Taqqu and
Teverovsky (1998). One of the advances of theWhittle Estimator is that it is
consistent and asymtotically normal for nonstationary and unit root cases
(Phillips andShimotsu, 2004).Whittle'smethodfits theparameters of a spec-
ified spectral density function(SDF)model to data byoptimizing an appropri-
ate function using an estimate of the SDF for an input time series.

Another method we use to detect long memory is DFA which was
proposed by Peng et al. (1994) based on the relationship F(n) ∝ nα.
DFA analysis performs better for detecting the long memory property
in nonstationary series.7 Hu et al. (2001) focus on the effect of trends
on DFA, while Kristoufek (2010) examines finite sample properties
7 See Grech and Mazur (2005) for a discussion of the statistical properties of old and
new techniques in detrended fluctuation analysis of time series.
and confidence intervals of DFA. In DFA, if there is a straight line with
slope 0.5, then the series is white noise. If the slope is greater than 0.5,
then the series is persistent. If the slope is less than 0.5, then the series
is antipersistent. We apply the DFA estimator on both the trended and
detrended data to investigate the effects of trends on detecting long
memory.

ARFIMA is the most frequently used parametric method with the
ability to estimate the short- and long-memory parameters jointly
(Reisen et al., 2001; Sowell, 1992b). Its main disadvantages are that
it is valid only for stationary series and needs a sufficiently large sample
size for acceptablemeasurement accuracy (Stadnitski, 2012; Stadnytska
and Werner, 2006). Its validness only for stationary series can lead to
situations where nonstationary processes are classified as having long
memory. The exact maximum likelihood (EML) method introduced by
Sowell (1992a), the conditional sum of squares (CSS) approach pro-
posed by Chung (1996) and the approximate method likelihood
(AML) method introduced by Haslett and Raftery (1989a, 1989b) are
commonly used to estimate the fractional differencing parameter in
ARFIMA models.

Semiparametric estimates (PSD, DFA and HurstSpec) are convert-
ed to d̂ to make the comparison of results clearer, and illustrated in
Table 4. The estimates range from 0.4 to 0.7 depending on the tariff
zone, except for those of the DFA. The interpretation of fractal
dynamics is clearer for time zones T1 and T3 since the range of the
parameters is between 0.4 and 0.6 for most of the estimators. Howev-
er, the fractal estimates for time zone T2 are in the critical region
between fractional integration and nonstationarity. We take the first
difference of the T2 series for the sake of eliminating the potential
nonstationarity in that series. As illustrated in Table 5, the T2 series
does not exhibit long memory after taking the first difference,
which indicates that electricity prices in time zone T2 do not have
long memory.



Table 4
Long memory tests for log prices in converted measures.

LM MEASURES

Vrb. DFA FDSperio FDGPH FDWhittle HurstSpec ModR/S

LNPTF_T1 Pt 0.5278 0.4692 0.5020 0.4145 0.5991 1.9054*
Pt2 0.5199 0.4569 0.4983 0.3959 0.5929 1.9164*

LNPTF_T2 Pt 0.6893 0.6675 0.5292 0.5240 0.5956 1.8218
Pt2 0.6846 1.1847 0.5341 0.5140 0.6020 1.8141

LNPTF_T3 Pt 0.5652 0.4489 0.4991 0.5643 0.5756 2.2477**
Pt2 0.5788 0.4637 0.5203 0.5725 0.5876 2.2541**

*** indicates rejection of the null hypothesis at the 1% significance level. ** indicates rejec-
tion of the null hypothesis at the 5% significance level. * indicates rejection of the null hy-
pothesis at the 10% significance level. Note: LNPTF_Ti is the logarithm of average price of
time zone i.

Table 6
Estimation results of the ARFIMA models.

LNPTF_T1
(0, ξ, 0)

LNPTF_T3
(1, ξ, 0)

μ 5.083 4.7942
α1 - 0.3310
ξ 0.4090*** 0.3202***
ln(L) 361.7459 292.3939
AIC -716.7280 -571.2623
Skewness 0.3864 -1.162
Kurtosis 24.83 8.649
JB 17214.27*** 1345.054***
Q(20) 305.0713*** 106.1891***
Q2(20) 114.704*** 83.5265***
ARCH(10) 95.7151*** 70.3495***

Notes: μ is the time series mean. ξ is the fractional differencing parameter. ln(L) is the
value of the maximized Gaussian likelihood. JB is the value of the Jarque-Bera statistic of
the price residuals. Q (20) and Q2(20) are Ljung-Box statistics for the price residuals and
the squared price residuals for up to 20th-order serial correlation, respectively. *** indi-
cates rejection of the null hypothesis at the 1% significance level. ** indicates rejection of
the null hypothesis at the 5% significance level. * indicates rejection of the null hypothesis
at the 10% significance level. LNPTF_Ti is the logarithm of average price of time zone i.
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The deficiency of the semiparametric methods is to overestimate
fractality in time series that contain both long- and short-range compo-
nents. Due to larger biases, the precision of semiparametric methods is
distinctly inferior to that of the ARFIMAapproaches. Since the values ob-
tained for T1 and T3 are all smaller than 0.6, the preceding analyses do
not allow rejecting the hypothesis of fractality for the T1 and T3 series.
Therefore, ARFIMA analysis appears to be appropriate for the T1 and T3
series. The comparison of different ARFIMA models is analysed using
Akaike information criteria (AIC); a summary of the results is presented
in Table 6. T1 and T3 exhibit the long-term memory property using
models ARFIMA (0, 0.4090, 0) and ARFIMA (1, 0.3202, 0) respectively.
In summary, the time zones defined in the multi-time tariff mechanism
are found to have different fractal dynamics.

5.2.4. Fractal parameter estimation for conditional variance
Studies by De Lima and Crato (1994), Ding et al. (1993) and Harvey

(1993) all reported the apparent presence of long memory in the auto-
correlations of squared returns of various financial asset prices. Long
memory in volatility is an indicator of uncertainty and risk (Barkoulas
et al., 2000; Kasman and Torun, 2007; Kasman et al., 2009; Ural and
Kücüközmen, 2011). There are different approaches to measure the
long memory in volatility. Some of the previous studies use the square
of the returns of assets as an artificial variable and apply semiparametric
methods to this variable to find the fractal parameter for process
volatility. However, as noted by Wright (2002), the fractal parameter
d is underestimated when using this approach. Thus we use the para-
metric fractionally integrated generalized autoregressive conditionally
heteroskedastic (FIGARCH) estimator introduced by Baillie et al.
(1996) to eliminate the deficiency of using square of the returns.
Estimation results are illustrated in Table 7. Among the FIGARCH
models, we chose for consideration the one with the lowest AIC. The
volatility of T1 and T2 does not seem to exhibit longmemorywith signif-
icant (approximately 1) d estimates, which indicates that there is an
I(1) process in volatility and that the T3 series has a long memory
property in volatility.

6. Concluding Remarks

We empirically investigate three propositions considering the
presence of long-term correlation in day ahead electricity prices for
each time zone in a multi-time tariff setting. The results obtained
Table 5
Long memory tests for diff-LNPTF_T2 prices in converted measures.

LM MEASURES

Vrb. DFA FDSperio

DIFF_LNPTF_T2 Pt 0.1181902 -0.2073319

Notes: DIFF_LNPTF_T2 is the first differenced LNPTF_T2. LNPTF_Ti is the logarithm of average p
provide new information on the fractal behaviour of electricity prices
considering different time zones. We have reached the following main
conclusions:

6.1. Analysing the fractal dynamics of electricity prices is very complicated
because of the unique characteristics of electricity, and requires elaborate
strategies

Numerous procedures have been developed for estimating the
fractal parameters β, α, H and d. Approaches aimed at detecting long
memory in the conditional mean and variance have been developed in-
dependently of each other; however, long-term correlation structure is
often observed in both the conditional mean and variance. Thus, we
investigated the presence of the long memory property in both the
conditional mean and variance for each time zone. Moreover the crucial
steps of a fractal analysis approach customized to capture electricity
price dynamics are demonstrated elaborately.

6.2. Considering time zones in electricity price analysis is very intuitive and
important

Our results suggest that the fractal dynamics of electricity prices are
different for each time zone. Long-memory parameters are found to be
significantly different from zero for the conditional mean, indicating
long-term dependence for time zone 1. This confirms the proposition
that at peak load, marginal generators may give hyperbolically decaying
weights to information by considering the prices of a day/week before.
We also show that the T3 price series has a long memory property in
both level and volatility. T2 price series, however, does not have long
memory in either level or volatility. It is nonstationary but mean
reverting.

6.3. Implications of the propositions can be different for each time zone

Positive and significant fractional differencing coefficients of themean
for the T1 series suggest that marginal generators exhibit hyperbolic
FDGPH FDWhittle HurstSpec ModR/S

-0.3668577 -0.4716051 -0.3855214 1.0462

rice of time zone i.



Table 7
Estimation results of the FIGARCH models.

LNPTF_T1 LNPTF_T2 LNPTF_T3

FIGARCH
(1,d,0)

FIGARCH
(1,d,0)

FIGARCH
(1,d,1)

μ = C 5.1150*** 5.1043*** 4.8463***
ω = A 0.0099*** 0.0038*** 0.0077***
α1 -0.1427*** -0.1626*** 0.1183***
β1 - - 0.5209***
d 0.9905*** 0.9496*** 0.4772***
ln(L) 378.39 581.95 170.94
AIC -748.798 -1155.913 -331.8805
BIC -729.7378 -1136.853 -308.0553
Skewness -0.7593 -0.5102 -0.8601
Kurtosis 5.652 7.274 5.615
JB 337.3517*** 697.3718*** 353.96***
Q(20) 1026.547*** 1689.58*** 956.45***
Q2(20) 188.5044*** 8.1472 15.2484
ARCH(10) 84.6719*** 3.3638 5.9687

Notes: μ is the time series mean. d is the fractional differencing parameter. ln(L) is the
value of the maximized Gaussian likelihood. JB is the value of the Jarque-Bera statistic of
the price residuals. Q (20) and Q2(20) are Ljung-Box statistics for the price residuals and
the squared price residuals for up to 20th-order serial correlation, respectively. *** indi-
cates rejection of the null hypothesis at the 1% significance level. ** indicates rejection of
the null hypothesis at the 5% significance level. * indicates rejection of the null hypothesis
at the 10% significance level. LNPTF_Ti is the logarithm of average price of time zone i.
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information processing, which supports Proposition 1. Further, since
there exists long-term correlation structure, future prices are predictable
from past prices, and the market is not efficient in weak form in the T1
time zone. This structure also indicates that exogenous shocks/innova-
tions can have permanent effects on prices. Thus, the effectiveness of
price policies for T1 is expected to be high.

Interpretation of the long-term correlation structure is different for
the T3 time zone, where the demand for and price of electricity is low.
In this time zone, only the base load power plants (thermal, hydroelec-
tric plants without dams, and renewable) offer to the market. To rank
along the merit order curve, base load power plants are expected to
offer at their marginal costs. Since demand is uncertain, participants
face a trade-off between submitting a high but risky bid, and a safer
but potentially less profitable low bid. If marginal generators bid at
their marginal costs, they are expected not to bid hyperbolically and
not to have long memory. However, we find that off-peak fractional
differencing coefficients are significantly greater than zero, which can
be taken as evidence that bidding above marginal cost occurs even
off-peak. This finding further suggests that the market is not efficient
in weak form and that future prices are predictable from past prices.
Moreover, exogenous shocks can have permanent effects on prices.

T2 is the peak-load time zone, where demand is very high and the
probability of not being on the merit order curve is very low, even for
high bids. Thus, at peak load, marginal generators would be expected
to give hyperbolically decaying weights to information by considering
the prices of a day/week before. However, our findings suggest that
the T2 price series does not display a long memory property in either
level prices or volatility. This finding suggests that marginal generators
do not consider past information in their bidding processes and offer
at their marginal costs. Further, since long-term correlation structure
does not exist, future prices are not predictable from past prices, and
the market is weak-form efficient in T2. This finding also indicates that
innovations to the market can have temporary effect for the T2 time
zone.

6.4. Suggestions for future research

Developing approaches more robust to skewed distributions for the
conditional mean would provide an opportunity on relaxing the
normality assumption. Developing new electricity market monitoring
indexes considering the time zones would result in interesting policy
implications. Furthermore considering the fractal dynamics of electricity
prices at different time scales, one would reduce the prediction confi-
dence intervals.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.eneco.2015.10.017.
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