19 research outputs found

    Frequency ratios of Sr, Yb and Hg based optical lattice clocks and their applications

    Get PDF
    This article describes the recent progress of optical lattice clocks with neutral strontium (87^{87}Sr), ytterbium (171^{171}Yb) and mercury (199^{199}Hg) atoms. In particular, we present frequency comparison between the clocks locally via an optical frequency comb and between two Sr clocks at remote sites using a phase-stabilized fibre link. We first review cryogenic Sr optical lattice clocks that reduce the room-temperature blackbody radiation shift by two orders of magnitude and serve as a reference in the following clock comparisons. Similar physical properties of Sr and Yb atoms, such as transition wavelengths and vapour pressure, have allowed our development of a compatible clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr clock. We also report on a Hg clock, which shows one order of magnitude less sensitivity to blackbody radiation, while its large nuclear charge makes the clock sensitive to the variation of fine-structure constant. Connecting all three types of clocks by an optical frequency comb, the ratios of the clock frequencies are determined with uncertainties smaller than possible through absolute frequency measurements. Finally, we describe a synchronous frequency comparison between two Sr-based remote clocks over a distance of 15 km between RIKEN and the University of Tokyo, as a step towards relativistic geodesy.Comment: 11 pages, 5 figures, invited review article in Comptes Rendus de Physique 201

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Optical-referenceless optical frequency counter with twelve-digit absolute accuracy

    No full text
    Abstract A simpler and more accurate measurement of absolute optical frequencies (AOFs) is very important for optical communications and navigation systems. To date, an optical reference has been needed for measuring AOFs with twelve-digit accuracy because of the difficulty in measuring them directly. Here, we focus on an electro-optics-modulation comb that can bridge the vast frequency gap between photonics and electronics. We demonstrate an unprecedented method that can directly measure AOFs to an accuracy of twelve digits with an RF frequency counter by simply delivering a frequency-unknown laser into an optical phase modulator. This could open up a new horizon for optical-referenceless optical frequency metrology. Our method can also simultaneously achieve a 100-fold phase-noise reduction in a conventional signal generator. This corresponds to an increase in the transmission speed of wireless communications of by about seven times

    Frequency measurement on the 5

    No full text
    corecore