246 research outputs found

    Hammock:a hidden Markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets

    Get PDF
    Motivation: Proteins often recognize their interaction partners on the basis of short linear motifs located in disordered regions on proteins’ surface. Experimental techniques that study such motifs use short peptides to mimic the structural properties of interacting proteins. Continued development of these methods allows for large-scale screening, resulting in vast amounts of peptide sequences, potentially containing information on multiple protein-protein interactions. Processing of such datasets is a complex but essential task for large-scale studies investigating protein-protein interactions. Results: The software tool presented in this article is able to rapidly identify multiple clusters of sequences carrying shared specificity motifs in massive datasets from various sources and generate multiple sequence alignments of identified clusters. The method was applied on a previously published smaller dataset containing distinct classes of ligands for SH3 domains, as well as on a new, an order of magnitude larger dataset containing epitopes for several monoclonal antibodies. The software successfully identified clusters of sequences mimicking epitopes of antibody targets, as well as secondary clusters revealing that the antibodies accept some deviations from original epitope sequences. Another test indicates that processing of even much larger datasets is computationally feasible. Availability and implementation: Hammock is published under GNU GPL v. 3 license and is freely available as a standalone program (from http://www.recamo.cz/en/software/hammock-cluster-peptides/) or as a tool for the Galaxy toolbox (from https://toolshed.g2.bx.psu.edu/view/hammock/hammock). The source code can be downloaded from https://github.com/hammock-dev/hammock/releases. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Heart transplantation for cardiac light chain amyloidosis with subsequent autologous stem cell transplantation

    Get PDF
    AbstractOur report describes a case of 57-year-old man with manifest heart failure on the basis of cardiac amyloidosis, which was detected by endomyocardial biopsy. Due to the heart failure, the patient was unable to undergo myeloablative therapy. We changed our previous decision for conservative therapy of heart failure and the patient underwent heart transplantation. Autologous stem cell transplantation was performed 6 months later. After the successful stem cell transplantation, the serum free light chain lambda levels promptly decreased. One year later, their levels started again to increase. Chemotherapy was therefore initiated. The patient has now completed the seventh cycle of chemotherapy in good condition. The graft function is normal and the latest endomyocardial biopsy revealed no amyloid

    Capacity Planning and Production Scheduling for Aircraft Painting Operations

    Get PDF
    Long-term capacity planning and production scheduling present significant challenges for the aviation industry. Our research has integrated three different modeling methodologies to effectively forecast future demand for aircraft painting and then assess and manage the capacity that is needed to meet these requirements. First, an innovative forecasting approach was developed in which stochastic processes were used to model aircraft demand over a selected time interval. These demand forecasts were used as inputs to an integer programming model, which was used to find optimal monthly aircraft painting schedules. This approach supports for resource allocation that is based on optimal scheduling, rather than the existing heuristic-based methods. The optimal monthly schedules can then serve as inputs to a discrete event simulation model of the painting operation, which can be used to test the robustness of the optimal schedules under conditions of uncertain demand and processing times

    Probabilistic Methods for Long-Term Demand Forecasting for Aviation Production Planning

    Get PDF
    The aviation industry represents a complex system with low-volume high-value manufacturing, long lead times, large capital investments, and highly variable demand. Making important decisions with intensive capital investments requires accurate forecasting of future demand. However, this can be challenging because of significant variability in future scenarios. The use of probabilistic methods such as Brownian motion in forecasting has been well studied especially in the financial industry. Applying these probabilistic methods to forecast demand in the aerospace industry can be problematic because of the independence assumptions and no consideration of production system in these models. We used two forecasting models based on stochastic processes to forecast demand for commercial aircraft models. A modified Brownian motion model was developed to account for dependency between observations. Geometric Brownian motion at different starting points was used to accurately account for increasing variation. The modified Brownian motion and the geometric Brownian motion models were used to forecast demand for aircraft production in the next 20 years

    Next-generation sequencing of a combinatorial peptide phage library screened against ubiquitin identifies peptide aptamers that can inhibit the in vitro ubiquitin transfer cascade

    Get PDF
    Defining dynamic protein–protein interactions in the ubiquitin conjugation reaction is a challenging research area. Generating peptide aptamers that target components such as ubiquitin itself, E1, E2, or E3 could provide tools to dissect novel features of the enzymatic cascade. Next-generation deep sequencing platforms were used to identify peptide sequences isolated from phage-peptide libraries screened against Ubiquitin and its ortholog NEDD8. In over three rounds of selection under differing wash criteria, over 13,000 peptides were acquired targeting ubiquitin, while over 10,000 peptides were selected against NEDD8. The overlap in peptides against these two proteins was less than 5% suggesting a high degree in specificity of Ubiquitin or NEDD8 toward linear peptide motifs. Two of these ubiquitin-binding peptides were identified that inhibit both E3 ubiquitin ligases MDM2 and CHIP. NMR analysis highlighted distinct modes of binding of the two different peptide aptamers. These data highlight the utility of using next-generation sequencing of combinatorial phage-peptide libraries to isolate peptide aptamers toward a protein target that can be used as a chemical tool in a complex multi-enzyme reaction

    ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data.

    Get PDF
    Abstract Motivation The study of immunoglobulins and T cell receptors using next-generation sequencing has finally allowed exploring immune repertoires and responses in their immense variability and complexity. Unsurprisingly, their analysis and interpretation is a highly convoluted task. Results We thus implemented ARResT/Interrogate, a web-based, interactive application. It can organize and filter large amounts of immunogenetic data by numerous criteria, calculate several relevant statistics, and present results in the form of multiple interconnected visualizations. Availability and Implementation ARResT/Interrogate is implemented primarily in R, and is freely available at http://bat.infspire.org/arrest/interrogate/ Supplementary information Supplementary data are available at Bioinformatics online

    Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS

    Get PDF
    Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.This work was supported by Ministry of Health of the Czech Republic, grant no. 16-34272A; computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”. Analyses in Prague (JT, EF and MS) were supported by Ministry of Health, Czech Republic, grant no. 00064203, and by PRIMUS/17/MED/11. Analyses in the Monza (Centro Ricerca Tettamanti, SS, AG and GC) laboratory were supported by the Italian Association for Cancer Research (AIRC) and Comitato Maria Letizia Verga

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore