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Abstract

Motivation: Proteins often recognize their interaction partners on the basis of short linear motifs

located in disordered regions on proteins’ surface. Experimental techniques that study such motifs

use short peptides to mimic the structural properties of interacting proteins. Continued develop-

ment of these methods allows for large-scale screening, resulting in vast amounts of peptide se-

quences, potentially containing information on multiple protein-protein interactions. Processing of

such datasets is a complex but essential task for large-scale studies investigating protein-protein

interactions.

Results: The software tool presented in this article is able to rapidly identify multiple clusters of se-

quences carrying shared specificity motifs in massive datasets from various sources and generate

multiple sequence alignments of identified clusters. The method was applied on a previously pub-

lished smaller dataset containing distinct classes of ligands for SH3 domains, as well as on a new,

an order of magnitude larger dataset containing epitopes for several monoclonal antibodies. The

software successfully identified clusters of sequences mimicking epitopes of antibody targets, as

well as secondary clusters revealing that the antibodies accept some deviations from original epi-

tope sequences. Another test indicates that processing of even much larger datasets is computa-

tionally feasible.

Availability and implementation: Hammock is published under GNU GPL v. 3 license and is freely

available as a standalone program (from http://www.recamo.cz/en/software/hammock-cluster-pep

tides/) or as a tool for the Galaxy toolbox (from https://toolshed.g2.bx.psu.edu/view/hammock/ham

mock). The source code can be downloaded from https://github.com/hammock-dev/hammock/

releases.

Contact: muller@mou.cz

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Molecular interactions between proteins occur ubiquitously in cells

and play central roles in most biological processes. These inter-

actions are often mediated by short linear motifs located in dis-

ordered regions on the surface of one of the interacting partners

(Dinkel et al., 2013). The functional and evolutionary importance of

this kind of interaction is substantial (Kim et al., 2014). To investi-

gate linear motif-mediated binding interactions, several experimen-

tal methods utilize short peptides to mimic structural properties of

interacting proteins. Libraries containing very large numbers of such

short peptide sequences can be generated easily and used to discover

interaction preferences of proteins. These methods include phage

display (Bratkovič, 2009) or other display-based methods, as well as

technologies utilizing peptide microarrays (Halperin et al., 2010;

Legutki et al., 2010; Stiffler et al., 2007).

Such high-throughput methods are capable of generating huge

amounts of data. The identification of true binding motifs within

large datasets is a challenging task for several reasons. First, binding

motifs are typically short and weak (Andreatta et al., 2012), second,

experimental origin of the data imposes the possibility of fair level

of noise and most remarkably, multiple binding motifs are often

contained within the data. The occurrence of more than one motif

may be caused by true poly-specificity of the target, as well as by ex-

perimental imperfections. In the case of phage display, two main

issues may occur. The first problematic phenomenon is nonspecific

adsorption of phages to surfaces that were used to immobilize target

proteins, and the second issue is caused by differences in phages’

propagation capabilities—phages may be selected on the basis of

their growth capacity, rather than their binding affinity to the target

(Derda et al., 2011; Huang et al., 2011).

With low-cost high-throughput methods, such as Next-

Generation sequencing of phage display libraries, it is possible to ob-

tain up to millions of unique peptide sequences (Matochko et al.,

2012). It is therefore reasonable to think of even more complicated

experiments, aiming to discover multiple binding specificities of pro-

tein complexes or even whole mixtures of proteins at once. Such an

experimental setup would mean an even greater number of true

motifs to be identified and, generally, much more data to be

processed, demanding not only better sensitivity but also adequate

computational efficiency of methods employed.

Significant effort has already been put into the development of

software methods for peptide data processing. Part of these tools

aim to process problem-specific data, e.g. to predict binding targets

of MHC molecules. These approaches utilize various techniques,

including hidden Markov models (HMMs, Noguchi et al., 2002),

Gibbs sampling (Nielsen et al., 2004) and artificial neural networks

(Nielsen and Lund, 2009). It has been shown that domains interact-

ing with short peptides are often poly-specific, which leads to correl-

ations between residue positions of recognized motifs (Gfeller et al.,

2011). Therefore, even for a single recognition domain, it is neces-

sary to capture these correlations, which can be done either directly,

with the use of, e.g. artificial neural networks (Andreatta et al.,

2011), or indirectly, by describing one motif with correlated

positions by several motifs with uncorrelated positions (Gfeller et

al., 2011). The second approach is implemented in tools using mul-

tiple position-weight matrices (also known as position-specific scor-

ing matrices) to represent multiple specificity profiles obtained by

various techniques, e.g. mixture model optimization (Kim et al.,

2011) or Gibbs sampling (Andreatta et al., 2012). These tools try to

be versatile and allow for peptide data from any biological source to

be processed, but may require some prior data knowledge, such as

the number of clusters to identify.

Although tools mentioned above perform well on smaller data-

sets of up to thousands of sequences, they have not been designed to

process datasets orders of magnitude larger. In this article, we ad-

dress this issue by introducing Hammock, a novel software tool for

peptide sequence clustering. Hammock uses profile HMMs for pre-

cise computational representation of sequence motifs and is based

on the idea of progressive cluster growth. The three key properties

of this approach are (i) the ability to process very large datasets,

(ii) the ability to identify multiple distinct motifs within one dataset

and (iii) versatility, as no limits are put on the origin of the data, and

no prior data knowledge is required.

2 Methods

Hammock performs several clustering steps to identify clusters of se-

quences sharing a motif and generate a multiple sequence alignment of

each cluster. As noise often occurs, the result also contains a set of (un-

aligned) sequences not belonging to any cluster. Hammock utilizes

HMMs to efficiently represent whole clusters of sequences at once and

makes use of modern multicore processors, as all steps are parallelized.

The algorithm is based on the idea of progressive cluster growth.

At first, small clusters of highly similar sequences are identified,

while sequences not belonging to any cluster form a set called the se-

quence pool. Next, two alternating steps are performed iteratively:

the cluster extension step, in which sequences from the pool are in-

serted into clusters, and the cluster merging step, in which whole

clusters are compared and merged. As the extension and merging

steps are repeated, sequence-cluster and cluster-cluster similarity re-

quirements are gradually relaxed. This leads to progressive motif

discovery. At the beginning, sequence differences within a cluster

are minor, and most positions are highly conserved. Later, when

more sequences are added, less conserved positions emerge and se-

quences carrying appropriate residues on conserved positions, but

possibly different residues on other positions, are allowed to join the

cluster. The idea of progressive cluster growth is similar to principles

used in tools aiming to identify distantly related sequences in a data-

base, such as PSI-BLAST (Altschul, 1997) and jackhmmer from the

Hmmer package (Finn et al., 2011). The key differences between

these tools and Hammock are (i) Hammock starts the iterative pro-

cedure from multiple clusters, so it performs multiple database (the

sequence pool) searches in parallel; (ii) Hammock starts the iterative

procedure from clusters of sequences, not from a single sequence

and (iii) Hammock performs the merging step. Figure 1 shows the

workflow of the algorithm.

2.1 Steps of the algorithm
2.1.1 Pre-processing

Input data may contain multiplicities; therefore, a set of unique se-

quences is generated first. However, the number of times each

unique sequence occurred is preserved and forms part of the final

output. Moreover, Hammock supports the concept of sequence

labels. Each occurrence of a sequence may optionally have a label

associated, so that the information on how many times each unique

sequence occurred with each label is available. The motivation for

sequence labels is to offer the possibility of structuring datasets. A

label may, e.g. constitute one selection or amplification round of a

phage display experiment, in which phages were sequenced in

several phases of the experiment.

2.1.2 Initial greedy clustering

Initial clustering step identifies rather small groups of very similar

sequences. To reduce computational complexity, a greedy

10 A.Krejci et al.
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incremental algorithm is employed. The approach is similar to algo-

rithms used in tools for database complexity reduction (Li et al.,

2001). Sequences are first sorted by some criteria (copy number, al-

phabetic or random) and the first sequence becomes the representa-

tive of the first cluster. Starting from the second sequence, each

sequence is compared to all current representatives. It then joins the

cluster containing the most similar representative, if this similarity

reaches a pre-defined threshold. Otherwise, it becomes the represen-

tative of a new cluster. To compute a similarity score, limited align-

ment without inner gaps and with limited maximal number of

trailing gaps is performed. A substitution matrix is used to compute

alignment scores.

2.1.3 Cluster selection and alignment

Initial clustering results in a number of rather small clusters. Only a

portion of this set is used in the next steps and the decision which

clusters to use is based on their size. Remaining clusters are not

treated as clusters any more and from this point on, sequences con-

tained in them form the sequence pool.

Multiple sequence alignments of all selected clusters are gener-

ated using limited alignments produced by greedy clustering.

2.1.4 Cluster extension

In this step, each cluster is represented with a profile HMM, which

is then used to search the sequence pool for similar sequences and

any sequences identified are added into an appropriate cluster.

Hmmer (Finn et al., 2011) is used for both HMM construction

(hmmbuild routine) and sequence search (hmmsearch routine).

Local alignments are performed. Inserted sequences must be added

into multiple sequence alignments. Clustal Omega (Sievers et al.,

2011) is used for this purpose. To increase resulting MSA quality,

sequences are aligned to complete MSA one by one, starting from

the sequence with the highest similarity score.

2.1.5 Cluster merging

As the initial greedy clustering step is quite restrictive, some clusters

may be very similar to each other. During the merging step, groups

of similar clusters are identified and merged into one larger cluster.

Local HMM-HMM alignment routine provided by HH-suite

(Soding, 2004) is used to measure cluster-cluster similarity.

The cluster merging step is a bottom-up hierarchical clustering

process, where clusters are progressively merged. Starting from a set

of clusters S, clustering scheme works as follows:

First, all versus all comparisons are performed. Cluster pairs hav-

ing score above a pre-defined threshold are inserted into a list Q.

Iterative process then starts—cluster pair ðCk;ClÞ with the highest

score is removed from Q, along with any other pairs containing Ck

or Cl. Ck and Cl are removed from S and merged into a new cluster

Cn, which is inserted into S. Cn is compared with all the other clus-

ters in S and any resulting pairs having the score above the threshold

are inserted into Q. This process is repeated until there are no cluster

pairs in Q.

The hierarchic clustering algorithm runs in HðN2Þ and guaran-

tees optimal results by merging only the most similar cluster pair in

every step. It also ensures that no cluster pair with similarity score

above the threshold is left unmerged.

2.1.6 Cluster merging heuristic speedup

A heuristic approach may be applied to speed the merging step up.

The idea lies in pre-identification of groups of potentially similar

clusters. The cluster merging algorithm is then applied only within

these groups.

To identify such groups, the algorithm re-uses the information

computed in the previous cluster extension step. For every cluster, a

set of (distantly) similar sequences satisfying a separate, pre-defined

similarity threshold is computed. If the sets of sequences distantly

similar to clusters A and B have non-empty overlap, A and B are

marked as directly similar. The transitive closure of direct similarity

relation is called indirect similarity, i.e. clusters X and Y are indir-

ectly similar, if there are some clusters L1;L2:::Lm such that X is dir-

ectly similar to L1, L1 is directly similar to L2 etc. and Lm is directly

similar to Y. A group of potentially similar clusters is then defined as

such group where every cluster is indirectly similar to each other.

The cluster merging algorithm is performed within each group of

potentially similar clusters. Although resulting time complexity stays

the same, time requirements are typically reduced for two reasons:

First, some groups of potentially similar clusters may contain one

cluster only, for which no comparisons will be performed. Second,

as the merging routine runs in quadratic time, the computation

benefits from the division into subgroups. On the other hand, this

approach no longer guarantees optimal results and may lead to less

clusters being merged, compared with the full cluster merging

routine.

2.1.7 Iterating the extension and merging steps

The extension and merging steps are repeated (three times by de-

fault). As the heuristic merging speedup may lead to less clusters

being merged, complete cluster merging procedure is performed in

the last round, when there are less clusters and therefore time re-

quirements are reduced.

2.2 Cluster diversity control
In every step, HMM match states are by default defined as align-

ment columns having less than 5% gaps and minimal information

content of 1.2. For clusters not to become too diverse, a minimal

number of HMM match states (4 by default) is maintained. The

total number of positions and the number of inner gaps in clusters’

multiple sequence alignments are also limited. If two clusters are

about to be merged or a sequence is about to be inserted into a

Fig. 1. Hammock algorithm workflow. After the extraction of unique se-

quences, Hammock uses fast greedy clustering algorithm to identify initial

cluster cores. The extension step adds more sequences into clusters and the

merging step merges several clusters into one. The extension and merging

steps are alternated several times with similarity requirements gradually

relaxed. After the last merging step, resulting clusters and sequences not be-

longing to any cluster are reported

Hammock: peptide clustering 11
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cluster, but the resulting cluster would not satisfy these constraints,

the insertion or merging is not performed. These checks assure that

no cluster can become overly diverse in any step.

2.3 Implementation
Hammock is implemented on the Java platform. External programs

(Clustal Omega, Hmmer, HH-suite) are compiled separately and

called from within the Java code as external processes.

2.4 Galaxy implementation
To offer a GUI and server functionality, a XML wrapper was cre-

ated to allow Hammock to be used as a tool in the Galaxy toolbox

(Giardine, 2005; Goecks et al., 2010). The wrapper also ensures

easy installation by automatically downloading all external compo-

nents from online sources.

3 Results

Hammock was used to process two datasets of different sizes and

complexities. Another collection of large, both real and simulated

datasets was utilized to investigate computation time requirements.

To maintain consistency, we present results obtained by runs with

default parameters. To visualize multiple sequence alignments of re-

sulting clusters, we use sequence logos generated by WebLogo 3.4

(Crooks, 2004) throughout the article. Only alignment columns con-

taining less than 50% gaps are shown.

3.1 Human SH3 domain
This rather small dataset comprises 2457 sequences from a phage

display experiment, and it was previously used in two studies aiming

for the development of peptide clustering and multiple specificity

identification tools (Andreatta et al., 2012; Kim et al., 2011). It con-

tains sequences binding to Src SH3 domain, which is known to

possess binding specificities of both class I SH3 domains (motif

[R/K]xxPxxP) and class II SH3 domains (motif PxxPx[R/K]). Apart

from sequences carrying these motifs, the dataset also contains

noise.

Hammock successfully identified two clusters, each consisting of

sequences carrying a binding motif corresponding to canonical motif

of one SH3 domain class. With default parameters, these are the

only clusters reported in final results. Class I cluster contains 1738

sequences, class II cluster 415 sequences and 304 sequences were

not assigned to any cluster. Sequence logos of these clusters are

shown in Figure 2.

3.2 Monoclonal antibodies
To investigate the tool’s performance on a more complex dataset, a

phage display experiment examining three monocolonal antibodies

(CHIP 3.1, EEV1-2.1 and DO.1) was performed. Three rounds of

selection and two rounds of amplification were performed, and

phages were sequenced after each round of selection or amplifica-

tion using Illumina HiSeq instrument. In total, 74 041 unique se-

quences were obtained. The total sequence copy number was

389 873. Sequences were divided into 15 groups (three selection and

two amplification groups for each of three antibodies). See

Supplementary Section S2 for experimental design details.

The motivation for sequencing after each round of selection or

amplification lies in the effort to detect experimental artifacts and

understand the whole process of the phage display experiment. It

was shown that some phages may evince nonspecific binding to sur-

faces used for immobilization of target molecules, while others may

possess exceptional ability to amplify in bacteria. These two catego-

ries of phages are then present in the data, regardless of their actual

binding affinity to target molecules. In terms of sums of se-

quence copy numbers, clusters consisting of sequences binding non-

specifically should be significantly increased in size in selection

rounds for all antibodies. Clusters housing sequences of phages with

exceptional amplification ability should be increased in size in all

amplification rounds. On the contrary, cluster diversity (i.e. the

number of unique sequences within a cluster) is expected to decrease

gradually, as each round of both selection and amplification elimin-

ates several non-binding or non-amplifying clones.

The dataset was clustered using Hammock with default param-

eters, which resulted in 74 clusters, together containing 14 421

(19.5% of the dataset) unique sequences with the copy number sum

of 316 119 (81.1% of the dataset). There are 14 clusters containing

each at least 1% of the dataset’s copy number sum and these to-

gether contain 81.9% of all sequences contained in clusters. A heat-

map visualizing the sums of copy numbers of sequences in each

category for each of 14 largest clusters is shown in Figure 3. For de-

tailed information on all 74 clusters, see Supplementary Table S1.

The heatmap shows four major groups of cluster category pro-

files. Three groups evince the behavior expected for true binders to a

single antibody—majority of sequences occur in categories corres-

ponding to a single antibody, and relative cluster sizes are signifi-

cantly increased in selection rounds. Each of these groups contains

one large cluster and several smaller secondary clusters. According

to the heatmap, cluster 4 should contain sequences binding to CHIP

3.1, cluster 21 binders to EEV1-2.1 and cluster 2 binders to DO.1.

On the contrary, the fourth group containing large cluster 1 and

four smaller clusters evince the behavior expected for sequences

with exceptional ability to multiply—large amounts of sequences

appear in categories corresponding to all antibodies and cluster

size is significantly increased in amplification rounds. Sequence

logos of the major cluster and one secondary cluster (the closest one

according to row correlation) for each of four groups are shown in

Figure 4.

Sequence logos of clusters 2, 4 and 21 show strong sequence

similarity to regions of actual targets of examined antibodies (listed

Fig. 2. Sequence logos of resulting clusters carrying the SH3 domain binding

motifs. Cluster carrying class I motif (top) contains 1738 sequences, and clus-

ter carrying class II motif (bottom) contains 415 sequences

12 A.Krejci et al.
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in Table 1). This fact confirms that these clusters contain sequences

actually binding the antibodies and so that the motifs correspond to

antibody epitopes. In the case of DO.1, independent studies are

available, confirming that cluster 2 carries the actual sequence of the

epitope (Stephen et al., 1995; Vojtesek et al., 1992). Moreover, sec-

ondary clusters 10, 6 and 40 possess similar motifs, which means

that these clusters contain sequences that mimic the same epitope.

Sequence differences between the main and secondary clusters sug-

gest that the antibodies are able to tolerate small deviations from the

epitope sequences of their actual targets. Clusters having category

profiles with lower correlation to main clusters 2, 4 and 21 also

evince lower levels of sequence similarity. See Supplementary Table

S2 for complete matrix of correlations and Supplementary Figure S1

for complete list of sequence logos of the 14 largest clusters.

The sequence logo of cluster 1 shows no significant sequence

similarity to the target of any antibody. It mainly consists of a single

sequence ALWPPNLHAWVP, which occurs in 56 758 copies and

therefore occupies 92% of cluster 1. It constitutes 14.5% of the

whole dataset, and it is the most popular sequence of all, which con-

firms that this sequence has exceptional ability to multiply. Clusters

having a high correlation of category profiles to the profile of cluster

1 possess no significant sequence similarity to cluster 1. This fact

suggests that exceptional ability to multiply is not based on one se-

quence motif and even completely different sequences may evince

this kind of behavior.

The diversity of the clusters (i.e. the number of unique sequences

within a cluster) is the highest in the first selection rounds. For a ma-

jority of clusters, the differences between the numbers of unique se-

quences in the first selection rounds between different antibodies are

minor, which indicates that the efficiency of the first round of selec-

tion was rather low. Cluster diversity generally decreases in later se-

lection rounds, as expected. Amplification rounds always cause a

big drop in cluster diversity, while in some cases, the diversity is

slightly increased by the subsequent selection round. This observa-

tion is in agreement with the assumption of significant differences in

phage propagation capabilities. After the amplification round,

several over-amplified clones fill most of the sequencing capacity,

while less popular clones become undetectable at given sequencing

depth. The subsequent selection round substantially decreases the

number of copies of over-amplified clones and thus allows for the

detection of less frequent clones, if still present. See Supplementary

Figure S2 for the heatmap of diversity of the 14 largest clusters.

The sequence composition of almost all of the clusters follows

the power law pattern - there are a few sequences with very high

copy number and many sequences with low copy number. This pat-

tern is also evident within the dataset as a whole. This finding is in

agreement with previous findings of Derda et al. (2011) and

Matochko et al. (2012), who state that the distribution of sequence

copy numbers in phage display experiments is far from linear.

The category profiles of sequences within some clusters are not

totally homogenous, which suggests that such clusters contain some

noise. For example, in some cases, a sequence evincing the behavior

expected for phages with exceptional ability to multiply is contained

within a cluster the overall category profile of which falls into the

category of true binders. This suggests that the sequence similarity

of such sequence to the rest of the cluster is rather random and is

not connected with any similarity in binding preferences. As these

cases are quite rare, such low level of noise does not significantly af-

fect the overall properties of the identified clusters. If more noise of

this kind appears in some dataset, we suggest the user to use stricter

parameters for cluster merging and extension.

3.3 Comparison with existing tools
To compare Hammock with the two tools mentioned before (MUSI

and the Gibbs sampling tool), both the datasets were processed by

Fig. 4. Sequence logos of clusters from four groups of category profiles. For

each group, the largest cluster and the cluster closest to it (in terms of cat-

egory profile correlation) are displayed. Based on expected behavior, group

(a) corresponds to sequences binding to DO.1, group (b) to sequences bind-

ing to CHIP 3.1, group (c) to sequences with exceptional ability to multiply

and group (d) to sequences binding to EEV1-2.1

Table 1. Epitopes corresponding to cluster sequence logos

Group Antibody Target protein Epitope location Epitope seq.

(a) DO-1 p53 20–25 SDLWKL

(b) CHIP 3.1 CHIP 265–273 GHFDPVTRS

(d) EEV1-2.1 HSP90-alpha 535–541 KEFEGKT

Locations and sequences of putative epitopes for each antibody are listed.

The locations are stated in amino acid counts from the N-terminus. Sequence

logos of corresponding clusters carry strong sequence similarity to these re-

gions of the original antibody targets.

Fig. 3. A heatmap of sequence occurrences in all categories for 14 of the larg-

est clusters. Each row represents a category profile corresponding to one

cluster (cluster ids are listed on the right side) and each column represents

one category. There are 15 categories—three antibodies, for each antibody

three selection rounds (S1, S2 and S3) and two amplification rounds (A1, A2).

The heatmap is normalized for category. A row dendrogram is generated on

the basis of row correlation [the distance between rows v1 and v2 is

1� corðv1; v2Þ], where cor is the Pearson correlation coefficient). Four major

groups of category profiles [(a), (b), (c) and (d)] are highlighted
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all of the tools on the same high-end desktop computer (AMD-FX

9370 8-core CPU, 4.4 GHz, 32GB RAM, Linux Mint 17).

As the measure of clustering quality, we use the Kullback–

Leibler divergence (KLD) as defined in Andreatta et al. (2012). We

state KLD calculated over both match states as defined in Hammock

and over all MSA positions. See Supplementary Section S1 for pre-

cise definition and formulas used.

For the SH3 dataset, the results of all runs were fairly consistent.

All the tools identified the two clusters representing class I and class

II domain motifs, sequence logos of corresponding clusters are very

similar. Hammock removed the most sequences from dataset (304),

while achieving the highest KLD.

For the antibodies dataset, the Hammock parameters were left at

default values (which means to search for up to 250 clusters), MUSI

was set to search for up to 100 clusters (�m 100 option) and the

Gibbs sampling tool was run three times, set to use the trash cluster

and to start from 2, 10 and 100 clusters, respectively.

Here, the differences in run times and results were substantial.

While Hammock finishes in under 3 min, both the other tools need

hours to finish, with the Gibbs sampling tool only being able to fin-

ish within 72 h when starting from 100 clusters. The differences in

the quality of clustering results were also large. MUSI failed to re-

port any useful information, as it puts all the 74 041 sequences in

one extremely diverse cluster. The Gibbs sampling tool reported 100

clusters, but the overall KLD of this system was low compared with

the result reported by Hammock, which was therefore superior in

both the quality of the results and run time.

Hammock removes more sequences from the result than the

other tools. While this is not so significant for the (relatively clean)

SH3 dataset, in case of the (very noisy) antibodies dataset, the differ-

ence is huge. Therefore, it is reasonable to think of using Hammock

as a de-noising tool, i.e. to process a dataset with Hammock and use

the results as an input for another tool. This approach was tested on

both datasets. In case of the SH3 dataset, pre-filtering improves the

quality of the results of both the tools, but neither of them achieves

the KLD of Hammock alone. For the antibodies dataset, MUSI still

fails to provide meaningful results and places all the sequences into

one cluster, but the quality of the results obtained by the Gibbs sam-

pling tool is competitive to Hammock and when the number of

clusters reported by Hammock (74) is used as initial number of clus-

ters for the Gibbs sampling tool, the KLD of the result is even

slightly higher. This suggests that in some cases, Hammock may be

used to remove noise and estimate optimal number of clusters prior

to the use of some other, resource-heavy algorithm. The results of all

the runs are summarized in Table 2.

3.4 Performance testing
Two large peptide datasets were used to test Hammock’s time re-

quirements. Both come from phage display experiments and contain

sequences 12 amino acids long. The first is a pseudorandom dataset

generated from the monoclonal antibodies dataset mentioned ear-

lier. It contains both original sequences and sequences in which ran-

dom amino acid substitutions were introduced, with respect to

overall amino acid frequencies. The second dataset comes from the

work of Matochko et al. (2012).

Random subsets of various sizes up to 106 unique sequences

were sampled from both datasets and processed by Hammock. The

same desktop computer as in previous section was used. All param-

eters were left at default values except for cluster core selection after

greedy clustering. Five percent of largest clusters were selected for

further clustering in every dataset (the default is 2.5% with the max-

imum of 250 clusters).

Run times are shown in Figure 5. Times are fairly data depend-

ent, run times for pseudorandom dataset are shorter. We assume

that this is caused by the lack of real motifs and therefore lower

complexity of this dataset.

4 Discussion

We presented Hammock—a software tool for short peptide se-

quence clustering. The tool is able to cluster large amounts of data

containing noise and to produce multiple sequence alignments of re-

sulting clusters. The main motivation to create Hammock was to

provide the ability of processing datasets originating from large-

scale screening of combinatorial peptide libraries, such as phage dis-

play. Nevertheless, the tool is universal and no limits are put on the

origin or format of processed data (Hammock accepts input in three

formats including fasta) and no prior data knowledge, such as the

Table 2. A summary of the results obtained by running Hammock, MUSI and the Gibbs sampling tool on the SH3 and the antibodies

datasets

Dataset Sequences Tool Params Time No. of clusters No. of sequences KLD match KLD all

SH3 2457 Hammock -t 8 17 s 2 2153 28.165 24.858

SH3 2457 Gibbs -trash 39 min 3 s 2 2450 25.151 22.369

SH3 2457 MUSI 17 s 2 2456 20.96 19.89

Antibodies 74 041 Hammock -t 8 2 min 35 s 74 14 421 17.897 17.635

Antibodies 74 041 Gibbs -trash >72 h — — — —

Antibodies 74 041 Gibbs -trash -g 10 >72 h — — — —

Antibodies 74 041 Gibbs -trash -g 100 14 h 13 min 53 s 100 74 040 12.622 11.335

Antibodies 74 041 MUSI -m 100 8 h 20 min 1 s 1 74 041 0.0 3.22

SH3 filtered 2153 Gibbs 27 min 36 s 2 2153 26.865 23.94

SH3 filtered 2153 MUSI 25 s 2 2152 23.57 23.25

Antibodies filtered 14 421 Gibbs >72 h — — — —

Antibodies filtered 14 421 Gibbs -g 10 4 h 19 min 27 s 10 14 421 10.47 12.215

Antibodies filtered 14 421 Gibbs -g 100 21 min 6 s 89 14 421 18.863 17.427

Antibodies filtered 14 421 Gibbs -g 74 30 min 45 s 68 14 421 18.78 17.81

Antibodies filtered 14 421 MUSI -m 100 2 min 25 s 1 14 421 0 2.97

Runs of MUSI and the Gibbs sampling tool on these two datasets pre-filtered by Hammock are also stated. Columns are (from the left): dataset name, the num-

ber of unique sequences in the dataset, tool name, additional tool parameters, run time, number of clusters in the result, number of unique sequences in the result,

KLD calculated over MSA columns defined as match stated by Hammock and KLD calculated over all MSA columns.
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number of clusters to identify, is needed. Therefore, Hammock is ap-

plicable for a range of other data sources, such as variable regions of

lymphocyte receptors or viral proteins. It accepts virtually any set of

peptide sequences as input.

We performed a pilot large-scale phage display experiment

which shows the way future experiments based on combinatorial

peptide libraries could take. We demonstrated that Hammock is

capable of processing data originating from such an experiment and

provide valuable biological insights, even when the data contain

noise. We also demonstrated Hammock’s time requirements on

datasets of various sizes.

Compared with existing tools, Hammock is much faster and can

process datasets orders of magnitude larger, while it achieves the

best quality of clustering results. Another difference is that with de-

fault parameters, Hammock may remove many sequences from the

result, if they do not fit any cluster well. This feature is beneficial in

the case of large and noisy datasets and can be utilized by using

Hammock as a de-noising tool. On the other hand, in the case of

small and clean datasets containing subtle sequence motifs only, this

behavior may not be desired. It can be changed by parameter tuning,

but we estimate that for such cases, some of more computationally

intensive methods, such as Gibbs sampling, may be more suitable.

There are a number of parameters allowing the user to influence

clustering results. In this article, Hammock was shown to perform

well with default parameters, but parameter tuning will often be

desirable to accommodate the diverse nature of input data and the

diverse spectrum of biological questions that require answering. If a

strong motif and less noise is present in the dataset, or coarse-

grained clustering is desired, cluster merging and extension thresh-

olds should be lowered. If a large number of small and specialized

clusters is needed, thresholds should be increased.

Hammock comes as a standalone program, as well as a tool for

the Galaxy toolbox. Galaxy provides a GUI, server functionalities

and also an online storage called the Galaxy tool shed (Blankenberg

et al., 2014), which allows any Galaxy server administrator or local

instance user to install Hammock with all its dependencies just by

virtually one click. The Galaxy implementation makes Hammock

more user-friendly and allows for broad community of non-expert

users to use it easily.

In conclusion, Hammock satisfies the need for extremely large

peptide datasets to be processed and thus allows for novel types of

experiments based on data from various sources to be performed.

The user-friendly Galaxy implementation gives the possibility to use

this tool to a broad spectrum of potential users.
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