685 research outputs found

    Motion Analysis during Sabot Opening Process

    Get PDF
    For FSAPDS projectile, the trajectory and stability are dependent on different forces indifferent phases of the motion. During the first phase gravity, aerodynamic drag along withpropellant gas force affect the motion. The motion is influenced by shock wave and mechanicalforce in sabot opening phase and the effect of time lag during opening of sabots also forms partof this work

    Modelling of Shockwave Force and its Effect during Sabot Discard Process

    Get PDF
    The dynamical motion of a FSAPDS projectile is affected due to the propellant gas force, aerodynamic, gravity along with mechanical force, and shockwave forces. In the sabot opening process, the mechanical action takes place and the sabot gets separated due to the shockwave force. In external mechanical action of sabot separation, the maximum stretch of the spring defines the end of third phase of motion. In this paper the motion of the projectile and its stability during this phase has been presented. The time delay in the sabot opening affects the stability of the projectile is discussed with the help of modified stability parameter

    Application of nonlinear methods to discriminate fractionated electrograms in paroxysmal versus persistent atrial fibrillation

    Get PDF
    Background and Objective: Complex fractionated atrial electrograms (CFAE) may contain information concerning the electrophysiological substrate of atrial fibrillation (AF); therefore they are of interest to guide catheter ablation treatment of AF. Electrogram signals are shaped by activation events, which are dynamical in nature. This makes it difficult to establish those signal properties that can provide insight into the ablation site location. Nonlinear measures may improve information. To test this hypothesis, we used nonlinear measures to analyze CFAE. Methods: CFAE from several atrial sites, recorded for a duration of 16 s, were acquired from 10 patients with persistent and 9 patients with paroxysmal AF. These signals were appraised using non-overlapping windows of 1-, 2- and 4-s durations. The resulting data sets were analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). The data was also quantified via entropy measures. Results: RQA exhibited unique plots for persistent versus paroxysmal AF. Similar patterns were observed to be repeated throughout the RPs. Trends were consistent for signal segments of 1 and 2 s as well as 4 s in duration. This was suggestive that the underlying signal generation process is also repetitive, and that repetitiveness can be detected even in 1-s sequences. The results also showed that most entropy metrics exhibited higher measurement values (closer to equilibrium) for persistent AF data. It was also found that Determinism (DET), Trapping Time (TT), and Modified Multiscale Entropy (MMSE), extracted from signals that were acquired from locations at the posterior atrial free wall, are highly discriminative of persistent versus paroxysmal AF data. Conclusions: Short data sequences are sufficient to provide information to discern persistent versus paroxysmal AF data with a significant difference, and can be useful to detect repeating patterns of atrial activation

    An accurate multiple sclerosis detection model based on exemplar multiple parameters local phase quantization: ExMPLPQ

    Get PDF
    Multiple sclerosis (MS) is a chronic demyelinating condition characterized by plaques in the white matter of the central nervous system that can be detected using magnetic resonance imaging (MRI). Many deep learning models for automated MS detection based on MRI have been presented in the literature. We developed a computationally lightweight machine learning model for MS diagnosis using a novel handcrafted feature engineering approach. The study dataset comprised axial and sagittal brain MRI images that were prospectively acquired from 72 MS and 59 healthy subjects who attended the Ozal University Medical Faculty in 2021. The dataset was divided into three study subsets: axial images only (n = 1652), sagittal images only (n = 1775), and combined axial and sagittal images (n = 3427) of both MS and healthy classes. All images were resized to 224 × 224. Subsequently, the features were generated with a fixed-size patch-based (exemplar) feature extraction model based on local phase quantization (LPQ) with three-parameter settings. The resulting exemplar multiple parameters LPQ (ExMPLPQ) features were concatenated to form a large final feature vector. The top discriminative features were selected using iterative neighborhood component analysis (INCA). Finally, a k-nearest neighbor (kNN) algorithm, Fine kNN, was deployed to perform binary classification of the brain images into MS vs. healthy classes. The ExMPLPQ-based model attained 98.37%, 97.75%, and 98.22% binary classification accuracy rates for axial, sagittal, and hybrid datasets, respectively, using Fine kNN with 10-fold cross-validation. Furthermore, our model outperformed 19 established pre-trained deep learning models that were trained and tested with the same data. Unlike deep models, the ExMPLPQ-based model is computationally lightweight yet highly accurate. It has the potential to be implemented as an automated diagnostic tool to screen brain MRIs for white matter lesions in suspected MS patients

    ASEAN and the Dynamics of Resistance to Sovereignty Violation:The Case of the Third Indochina War (1978–1991)

    Get PDF
    This article investigates the history of ASEAN’s relationship to external intervention in regional affairs. It addresses a specific question: What was the basic cause of the success of ASEAN resistance to the Vietnamese challenge to ASEAN’s sovereignty from 1978-1991? ASEAN’s history is understood in terms of a realist theoretical logic, in terms of the relationship between an ASEAN state with the most compelling interests at stake in a given issue, which I call a ‘vanguard state,’ and selected external powers. Using the Third Indochina War (1978–1991) as a case study, this article contends that ASEAN’s ability to resist violations to the sovereignty of Thailand from a Soviet-backed Vietnam is a consequence of high interest convergence between Thailand, and a designated external power, China

    Holographic Uniformization

    Full text link
    We derive and study supergravity BPS flow equations for M5 or D3 branes wrapping a Riemann surface. They take the form of novel geometric flows intrinsically defined on the surface. Their dual field-theoretic interpretation suggests the existence of solutions interpolating between an arbitrary metric in the UV and the constant-curvature metric in the IR. We confirm this conjecture with a rigorous global existence proof.Comment: 52 pages, 3 figure

    Superstrings with Intrinsic Torsion

    Get PDF
    We systematically analyse the necessary and sufficient conditions for the preservation of supersymmetry for bosonic geometries of the form R^{1,9-d} \times M_d, in the common NS-NS sector of type II string theory and also type I/heterotic string theory. The results are phrased in terms of the intrinsic torsion of G-structures and provide a comprehensive classification of static supersymmetric backgrounds in these theories. Generalised calibrations naturally appear since the geometries always admit NS or type I/heterotic fivebranes wrapping calibrated cycles. Some new solutions are presented. In particular we find d=6 examples with a fibred structure which preserve N=1,2,3 supersymmetry in type II and include compact type I/heterotic geometries.Comment: 58 pages, LaTeX; v2: New section on solutions including an example with N=3 supersymmetry and discussion of heterotic compactifications. Details on conventions and references added. v3: added an explicit example of non-integrable product structure in Appendix C; some typos fixe

    Deformations of nearly Kähler instantons

    Get PDF
    We formulate the deformation theory for instantons on nearly Kähler six-manifolds using spinors and Dirac operators. Using this framework we identify the space of deformations of an irreducible instanton with semisimple structure group with the kernel of an elliptic operator, and prove that abelian instantons are rigid. As an application, we show that the canonical connection on three of the four homogeneous nearly Kähler six-manifolds G/H is a rigid instanton with structure group H. In contrast, these connections admit large spaces of deformations when regarded as instantons on the tangent bundle with structure group SU(3)

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore