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Abstract: Multiple sclerosis (MS) is a chronic demyelinating condition characterized by plaques
in the white matter of the central nervous system that can be detected using magnetic resonance
imaging (MRI). Many deep learning models for automated MS detection based on MRI have been
presented in the literature. We developed a computationally lightweight machine learning model for
MS diagnosis using a novel handcrafted feature engineering approach. The study dataset comprised
axial and sagittal brain MRI images that were prospectively acquired from 72 MS and 59 healthy
subjects who attended the Ozal University Medical Faculty in 2021. The dataset was divided into
three study subsets: axial images only (n = 1652), sagittal images only (n = 1775), and combined axial
and sagittal images (n = 3427) of both MS and healthy classes. All images were resized to 224 × 224.
Subsequently, the features were generated with a fixed-size patch-based (exemplar) feature extraction
model based on local phase quantization (LPQ) with three-parameter settings. The resulting exemplar
multiple parameters LPQ (ExMPLPQ) features were concatenated to form a large final feature vector.
The top discriminative features were selected using iterative neighborhood component analysis
(INCA). Finally, a k-nearest neighbor (kNN) algorithm, Fine kNN, was deployed to perform binary
classification of the brain images into MS vs. healthy classes. The ExMPLPQ-based model attained
98.37%, 97.75%, and 98.22% binary classification accuracy rates for axial, sagittal, and hybrid datasets,
respectively, using Fine kNN with 10-fold cross-validation. Furthermore, our model outperformed
19 established pre-trained deep learning models that were trained and tested with the same data.
Unlike deep models, the ExMPLPQ-based model is computationally lightweight yet highly accurate.
It has the potential to be implemented as an automated diagnostic tool to screen brain MRIs for white
matter lesions in suspected MS patients.
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1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease characterized
by demyelination and axonal loss in central nervous system neurons of the brain, spine,
and optic nerves [1] that affects approximately 2.8 million people worldwide [2]. There are
secular trends of increasing disease incidence and prevalence that are non-homogeneously
distributed across populations due to complex gene-gene and gene-environmental interac-
tions and increasing incidence among females. Uncertainties regarding the ascertainment
of MS diagnosis and censoring of survival data after diagnosis may confound accurate
estimations of incidence and prevalence rates, respectively [3]. Notwithstanding this,
it remains indisputable that MS has exacted high economic costs on the healthcare sys-
tems of both developed [4] and low- to middle-income countries [5]. The main drivers of
healthcare resource utilization are the costs of disease-modifying therapies (DMTs) and
the non-medical costs associated with the management of chronic disability in the early
and advanced stages of the disease, respectively [4,5]. While patients and their families
frequently bear the costs of non-medical interventions, these interventions are nevertheless
associated with increased long-term medical and total societal costs [4]. This underscores
the need for early diagnosis and intervention with DMTs, which can potentially control
disease progression [1,6,7] and have been shown to be cost-effective in improving patients’
quality of life [8]. This provides ample justification and motivation for the ongoing quest
for more sensitive and accurate methods of MS diagnosis.

There is no single pathognomonic clinical or laboratory finding that can secure a defini-
tive diagnosis of MS. Rather, the diagnosis is made based on consensus clinical, imaging,
and laboratory criteria [1,6]. The 2017 McDonald criteria [9] define typical clinical signs and
symptoms as well as lesions on magnetic resonance imaging (MRI) [10] that manifest in
time and space, which can be combined with auxiliary examination findings (cerebrospinal
fluid examination, visual and somatosensory evoked potentials) to establish the diagnosis
of MS. Of note, MRI plays an instrumental role in the identification and localization of
characteristic demyelinating plaques in the white matter of the brain and spine that consti-
tute the pathological basis of MS and underpin its neurological presentations [10–12]. In
particular, T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI [13] offers the
optimal contrast-to-noise image signal properties for sensitive detection of plaque lesions
and is routinely performed for anatomical MRI screening of the central nervous system
in suspected cases of MS [12]. Interpretation of MRI images requires experts to manually
scrutinize multiple contiguous image sections for the presence of white matter lesions,
with care being taken to distinguish MS plaques from lesions associated with diseases
that present with similar symptoms, e.g., ischemic gliosis and central nervous system
vasculitis [14–16]. MS plaques are hyperintense in T2 sequence, oval-round shaped, at
least 3 mm in size, with asymmetric distribution. The typical location of MS plaques is as
follows: (1) periventricular: adjacent to the lateral ventricles; (2) juxtracortical and cortical:
localized to U fibers; (3) infratentorial: located unilaterally or bilaterally paramedian adja-
cent to the brain stem, cerebellum, and 4th ventricle; (4) spinal cord: cervical and thoracic
localized, shorter than two vertebral segments, axially wedge-shaped, sagittal cigarette
shaped, localized in peripherally located posterior and lateral columns [12]. The process of
clinical scan reading is time-intensive, fatiguing, and susceptible to intra- and inter-observer
variability. These limitations provide an opportunity for harnessing the power of artificial
intelligence (AI) for screening large numbers of MRI images to detect MS, which can be
posed as a problem of classifying images with and without white matter lesions [17]. AI
mimics human intelligence to perform tasks and can progressively attain higher accuracy
by collecting more information [18]. These desirable traits have spurred the adoption of
AI methods in many healthcare applications, which can potentially ease the workload of
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medical and paramedical personnel. To this end, AI has been used for computer-aided MS
diagnosis [19,20] and prognostication of disease progression [19,20]. Accurate AI-enabled
MS detection promises earlier diagnosis and treatment initiation with DMTs, better disease
surveillance, and more efficient utilization of healthcare resources. However, questions
remain about the reliability and practicality of AI-enabled MS detection.

Some MS detection studies presented in the literature are given below.
Storelli et al. [21] analyzed the MRIs of 373 MS patients using a CNN model and

attained accuracy rates of 83.3%, 67.7%, and 85.7% for clinical, cognitive, and combined
clinical plus cognitive diagnoses, respectively. The parameter values and optimization
methods used in the CNN architecture negatively affected the classification results. Ali-
jamaat et al. [22] proposed a method that incorporated a two-dimensional discrete Haar
wavelet transform and CNN to study the MRIs of 38 patients and 20 healthy individuals
and attained sensitivity, specificity, precision, and accuracy of 99.14%, 98.89%, 99.43%,
and 99.05%, respectively, in their experiments. Oliveira et al. [23] proposed a method for
measuring plaque volume using MRIs from four different datasets. Their proposed method
achieved 99.69%, 98.51%, 98.51%, and 99.85% accuracy, precision, sensitivity, and specificity.
Narayana et al. [24] studied T1, T2, and FLAIR MRIs of 489 healthy and 519 MS patients.
Using the Vgg16+FCN network structure, they attained 72%, 70%, and 70% sensitivity,
specificity, and accuracy. Barquero et al. [25] studied MRIs of 124 MS patients. Using a Rim-
Net CNN architecture, they attained 62.3%, 75.8%, 95.1%, and 93.8% F1-score, sensitivity,
specificity, and accuracy. Ye et al. [26] used diffusion-based spectrum imaging techniques
to study the MRIs of 38 MS patients. Using a deep neural network, they attained 97.3%,
99.1%, 97.3%, and 93.4% F1-score, sensitivity, specificity, and accuracy. Vogelsanger and
Federau [27] studied a large dataset of 1855 healthy MRIs, 2910 MRIs from 616 MS patients,
and 639 MRIs from 625 leukoencephalopathy patients attained precision and recall rates
of 92% and 89%, respectively. Shrwan and Gupta [28] studied the MRIs of 38 MS patients
using a 2D-CNN network and attained 99.55%, 99.15%, and 99.15% accuracy, precision,
and recall, respectively. Afzal et al. [29] used 127 scans from the Medical Image Computing
and Computer-Assisted Intervention 2016 and International Symposium on Biomedical
Imaging 2015 datasets in their study. In their segmentation study, they attained 67%, 48%,
and 90% dice similarity coefficient, sensitivity, and precision. Afzal et al. [30] conducted
two experiments using MRIs of 21 MS patients using a CNN network model and attained
83.3% and 100% accuracy rates in the first and second experiments, respectively.

The datasets in the studies presented above [22,28–30] are small. In Storelli et al. [21]
and Narayana et al. [24], the dataset is large, but has a low accuracy rate. In [21–28,30],
computational complexity is high. With our work on an accurate MS detection model, we
attempt to address some of the issues and problems raised above. Our solution took the
form of a reliable machine learning model for classifying FLAIR images of the brain into MS
and non-MS classes accurately. To this end, we created a novel exemplar feature engineering
algorithm based on local phase quantization (LPQ), which we named exemplar multiple
parameters LPQ (ExMPLPQ). The model was created by fusing ExMPLPQ with a machine
learning algorithm and training and testing it on a prospectively acquired brain MRI data
set. The model comprised four phases: (1) brain MRI image segmentation; (2) exemplar
feature extraction using LPQ; (3) feature selection using iterative neighborhood component
analysis (INCA); and (4) classification using shallow k-nearest neighbor (kNN) classifier.
The contributions of our work are as follows:

• A prospective brain MRI dataset was collected to train and test the proposed ExMPLPQ
model. The dataset has been made publicly available.

• The handcrafted ExMPLPQ model attained over 97% classification accuracy on the
study dataset. In addition, our results for MS detection were demonstrably superior
to 19 state-of-the-art pretrained methods, which included transfer learning and deep
learning models.
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2. Materials and Methods

This section describes the study dataset, proposed method, including feature extraction
and classification process.

2.1. Materials

The study dataset comprised axial and sagittal FLAIR MRI images of the brain that
were prospectively acquired from 72 MS and 59 non-diseased “healthy” male and female
patients who attended the Ozal University Medical Faculty in 2021. The institutional ethics
committee had approved the study. Medical experts read the FLAIR image sections. From
the 72 MS patients, 1441 axial and sagittal brain image sections containing identifiable MS
lesions were assigned to the MS class; and from the 59 non-diseased patients, 2016 axial and
sagittal images sections with normal appearance, i.e., without white matter lesions, were
assigned to the healthy class (Table 1). For binary classification into MS vs. healthy, three
study data subsets comprising axial only (n = 1652) and sagittal only (n = 1775) (Figure 1),
and combined axial and sagittal images were created (n = 3427) (Table 1). The dataset
can be downloaded at: https://www.kaggle.com/datasets/buraktaci/multiple-sclerosis
(accessed on 7 April 2022).

Table 1. The attributes of the MRI dataset used.

Male, n Female, n Total, n Age, Years Number of
MRI Images, n

MS-Axial 21 51 72 28.4 ± 5.66 650
MS-Sagittal 21 51 72 28.4 ± 5.66 761
Healthy-Axial 27 * 30 * 57 * 29.5 ± 8.32 1002
Healthy-Sagittal 29 * 20 * 49 * 27.4 ± 6.48 1014

* There is an overlap of subjects in the healthy class, which comprises 29 males and 30 females.

Figure 1. Example axial and sagittal FLAIR MRI sections in healthy and multiple sclerosis (MS)
classes. Note the presence of hyperintense lesions in the brain’s white matter in the latter.

2.2. Transfer Learning-Based Feature Engineering Model

The ExMPLPQ model combines desirable properties of feature extraction based on
exemplar and multiple parameters. LPQ [31], a popular textural feature extractor, was
deployed to generate textural features. These were fed to an INCA selector to select the top

https://www.kaggle.com/datasets/buraktaci/multiple-sclerosis
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discriminative features. A kNN classifier [32] was employed for MS vs. non-MS classes
(Figure 2).

Figure 2. ExMPLPQ flow diagram.

The pseudocode of the proposed method was presented in Algorithm 1.

Algorithm 1. Detailed flow of the ExMPLPQ technique

Input: The used MS dataset with 3.427 MRIs.
Output: Results.
00: Load MS dataset
01: for k = 1 to 3427 do
02: I = MS(k); Image reading from MS dataset
03: Reshape image into 224 × 224 sized image
04: X(k,1:768) = [lpq(I,3) lpq(I,5) lpq(I,7)]
05: for i = 1 to 224 step by 32 do
06: for j = 1 to 224 step by 32 do
07: exm = res(i:i+31,j:j+31,1)
08: X(k, counter * 768+1:(counter+1) * 768) = [lpq(exm,3)

lpq(exm,5) lpq(exm,7)]
09: end for j
10: end for i
11: Extract the 50th feature vector using the resized images.
12: Merge the generated feature vectors to create the final feature vector.
13: end for k
14: Apply INCA to generated features.
15: Forward the selected features to kNN classifiers.
16: Obtain predict values



Appl. Sci. 2022, 12, 4920 6 of 13

The processing steps of the ExMPLPQ algorithm are described below.
Step 1: Read each image from the collected MRI study data subsets.
Step 2: Resize each MRI image to 224 pixels × 224 pixels.
Step 3: Divide each resized image into 49 (=7 × 7) 32 × 32 sized patches/exemplars.

Ext = Im(ii + 32× (i− 1), jj + 32× (j− 1)), i ∈ {1, 2, . . . , 7}, j ∈ {1, 2, . . . , 7},
t ∈ {1, 2, . . . , 49}, ii ∈ {1, 2, . . . , 32}, jj ∈ {1, 2, . . . , 32} (1)

where Ext represents the tth fixed-size patch with size 32 × 32, and Im is the resized image
with size 224 × 224.

Step 4: Generate features by applying the LPQ feature extractor function.

f eat1 = LPQ
(
Ext, 3× 3

)
, t ∈ {1, 2, . . . , 49} (2)

f eat2 = LPQ
(
Ext, 5× 5

)
(3)

f eat3 = LPQ
(
Ext, 7× 7

)
(4)

ft = conc( f eat1, f eat2, f eat3) (5)

where f eat represents LPQ features generated by deploying LPQ(., .) function with blocks
of varying sizes; and conc(., ., .) concatenation function. Each of the three f eat has 256 fea-
tures, which are concatenated to form ft with a length of 768.

f eat1 = LPQ(Im, 3× 3), t ∈ {1, 2, . . . , 49} (6)

f eat2 = LPQ(Im, 5× 5) (7)

f eat3 = LPQ(Im, 7× 7) (8)

f50 = conc( f eat1, f eat2, f eat3) (9)

Step 5: Extract the 50th feature vector using the resized images.
Step 6: Merge the generated feature vectors ( f ) to create the final feature vector.

f tv = (j + 768× (i− 1)), j ∈ {1, 2, . . . , 768}, i ∈ {1, 2, . . . , 50} (10)

where f tv represents the final feature vector with a length of 38,400 (=768 × 50) generated
from each MRI image.

The next processing steps involve the INCA feature selection function, during which
the algorithm selects 403, 716, and 944 features for the axial, sagittal, and hybrid MRI study
data subsets, respectively.

Step 7: Calculate indexes sorted by applying the neighborhood component analysis
(NCA) [33] selector.

ind = ψ( f tv, y) (11)

where ψ represents the NCA feature selection function; ind, indexes qualified according to
distinctiveness; and y, actual labels.

Step 8: Apply iterative feature selection using the calculated indexes (ind). Moreover,
loss values of each selected feature vector deploying the kNN classifier. In this work,
901 feature vectors (the used iteration range is from 100 to 1000) have been selected, and
kNN calculates each feature vector’s loss/misclassification rate to choose the best/optimal
feature vector. This process is given in below.

li = κ( f tv(:, ind(t)), y, k f ), t ∈ {1, 2, . . . , i + 99}, i ∈ {1, 2, . . . , 901} (12)

where li represents the loss value of the selected ith feature vector; and κ, the kNN classifier.
κ incorporates three parameters: feature vector, actual output (y), and validation (k f ). In
this work, k f is chosen as 10-fold cross-validation.
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Step 9: Select the best feature vector using the calculated loss values in Step 8.

[mini, idx] = min(l) (13)

f inal = f tv(:, ind(g)), g ∈ {1, 2, . . . , idx + 99} (14)

where f inal represents the selected best feature vector; mini are the minimum loss
values; and idx, are the indexes of these (minimum) values. In these equations (see
Equations (13) and (14)), the index (idx) of the feature vector with has a maximum classi-
fication ratio. In Equation (13), the index of the best feature vector is calculated, and this
feature vector (final) is selected using Equation (14).

In the last step, classification is performed.
Step 10: Classify the chosen final feature vector ( f inal) by deploying a shallow kNN

algorithm, Fine kNN [34], using 10-fold cross-validation. Of note, Fine kNN has been
used for loss/misclassification rate calculations during INCA feature selection and binary
classification. The hyperparameters were set to k is one; distance function, Spearman; and
voting, none.

As can be seen from these 10 steps above, the proposed local phase quantization-based
MR image classification is a parametric method. The used parameters in this work are
tabulated in Table 2.

Table 2. The used parameters.

Step Parameter

Exemplar division 32 × 32 sized patches have been used. To generate features
from local areas.

LPQ

This step was used to extract textural features with variable
parameters (we have used 3, 5, and 7 parameters). Therefore,
this feature extractor is named MPLPQ. The prime purpose of
this feature extractor is to use the effectiveness of the LPQ by
using variable parameters.

Feature concatenation

The proposed model extracts 768 features from each patch
and raw image. In our architecture, 50 (=49 + 1) feature
vectors have been created, and each feature vector has
768 features. Therefore, the created feature vector has 38,400
(=768 × 50) features.

INCA Loop range: from 100 to 1000
Loss vector: kNN

Classification using kNN
k: 1
Distance: Spearman
Voting: None

As shown in Table 2, our proposed architecture is mimicked by a deep model, but we
have used a handcrafted features-based model. We have selected the size of the patch as
32 × 32 to extract features from local areas, and we have used an effective feature extractor.
This feature extractor generates textural features from both the space and frequency domain.
Moreover, it uses parameters. We have used three parameters to use the effectiveness of
them together.

3. Performance Analysis

MATLAB 2021b was used to implement the ExMPLPQ model algorithms. The imple-
mentation was structured with a set of modular functions (main, pre-processor (exemplar
division function), Inception local phase quantization (ILPQ), INCA, and kNN). The model
was trained and tested with three study data subsets comprising axial images only, sagit-
tal images only, and combined axial and sagittal images. The model performance was
compared against 19 pre-trained models, in which kNN was deployed as a classifier, and
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the classification was repeated 100 times for each pre-trained model. The ExMPLPQ algo-
rithm possessed low computational complexity and was executed on a desktop personal
computer with Windows 10.1 pro-OS, 11th generation Intel i9 processor, 32 GB memory,
and 1.5 TB hard disk without parallel processing or graphics processing. Standard per-
formance metrics—precision, sensitivity, specificity [35,36], F1-score, accuracy, Matthew’s
correlation coefficient (MCC) [35,36]—were used to evaluate ExMPLPQ as well as the
19 pre-trained models.

4. Results

Our model attained excellent binary classification performance with >97% accuracy
and >95% performance across all standard evaluation metrics (Table 3), as well as relatively
low rates of misclassification in all three study data subsets (Figure 3).

Table 3. Calculated performance results (%) per classifier used.

Data
Subset Accuracy Sensitivity Specificity Precision F-Score MCC

Axial 98.37 96.46 99.60 99.37 97.89 96.59
Sagittal 97.75 95.01 99.80 99.72 97.31 95.46
Hybrid 98.22 96.39 99.50 99.27 97.81 96.34

Figure 3. Confusion matrices for binary classification using Fine kNN classifier.

The proposed model was run 100 times for axial, sagittal, and hybrid data using a Fine
kNN classifier with 10-fold cross-validation. The mean ± standard deviations are tabulated
in Table 4.

Table 4. The general classification results (%) using a Fine kNN classifier with 10-fold cross-
validation ± standard deviations.

Data
Subset Accuracy Sensitivity Specificity Precision F-Score MCC

Axial 98.35 ± 0.02 96.45 ± 0.03 99.59 ± 0.01 99.36 ± 0.02 97.88 ± 0.02 96.58 ± 0.04
Sagittal 97.74 ± 0.019 95.00 ± 0.044 99.79 ± 0.054 99.71 ± 0.075 97.30 ± 0.024 95.45 ± 0.03
Hybrid 98.20 ± 0.06 96.38 ± 0.06 99.49 ± 0.06 99.26 ± 0.04 97.80 ± 0.05 96.32 ± 0.012

MCC refers to Matthew’s correlation coefficient.

5. Discussion

Since the 2000s, deep learning AI techniques have become very popular for diverse ap-
plications due to their high performance [37–39]. They have been applied in the biomedical
field with notable success [40–43]. Some of these algorithms can veritably be implemented
in the clinical environment as medical decision support systems to assist physicians and/or
paramedical personnel. Unfortunately, deep learning models are computationally intensive
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and demand high time costs for parameter tuning. This study proposed a computationally
lightweight machine learning model with handcrafted feature engineering for diagnosing
MS on FLAIR brain images. The performance of the proposed model was compared with
the results of 19 pre-trained models, including deep learning and transfer learning models,
that were also trained and tested on a common prospectively acquired brain FLAIR MRI
dataset comprising three subsets of images in different orientations. Fixed-sized patches
with a size of 32 × 32 have been used to extract deep features using transfer learning. After
extracting features from individual images in the study data subsets using the ExMPLPQ
algorithm and the 19 pre-trained models, kNN classifier with 10-fold cross-validation was
used to perform binary classification of the input images into MS vs. non-MS classes. The
proposed ExMPLPQ attained excellent performance with >97% accuracy across all three
study data subsets (Table 2). In contrast, the accuracy results after 100 classification runs
of the 19 pre-trained models, which incorporated between 1.24 million and 144 million
parameters, were all inferior to our model (Table 4). Among the 19 pre-trained models,
Efficient b0 had the highest accuracy rates of 93.69%, 90.26%, and 93.22% for the axial,
sagittal, and hybrid images, respectively. In contrast, GoogleNet attained the lowest corre-
sponding accuracy rates of 84.49%, 82.02%, and 85.62. Table 5 shows comparative results
(classification accuracies) for transfer learning methods.

Table 5. Means ± standard deviations of accuracy results attained by the19 comparator pre-trained
models after 100 classification runs using Fine kNN classifier with 10-fold cross-validation.

Number Pre-Trained Model Axial
Accuracy

Sagittal
Accuracy

Hybrid
Accuracy

1 GoogleNet [44] 84.49 ± 0.53 82.02 ± 0.58 85.62 ± 0.35
2 DarkNet53 [45] 87.79 ± 0.47 86.49 ± 0.63 88.02 ± 0.32
3 Inceptionv3 [46] 89.06 ± 0.48 82.47 ± 0.62 88.19 ± 0.33
4 NasnetLarge [47] 86.20 ± 0.41 81.63 ± 0.52 88.22 ± 0.30
5 NasnetMobile [47] 87.48 ± 0.34 82.41 ± 0.56 88.56 ± 0.30
6 VGG19 [48] 87.80 ± 0.60 83.03 ± 0.56 88.58 ± 0.37
7 VGG16 [48] 88.54 ± 0.45 84.78 ± 0.54 88.79 ± 0.31
8 Resnet101 [49] 88.76 ± 0.47 85.86 ± 0.51 88.90 ± 0.32
9 Inceptionresnetv2 [50] 90.10 ± 0.38 84.18 ± 0.55 89.42 ± 0.27
10 AlexNet [51] 87.38 ± 0.57 84.57 ± 0.51 89.77 ± 0.34
11 ShuffleNet [52] 90.25 ± 0.54 86.25 ± 0.54 90.12 ± 0.35
12 Resnet50 [49] 90.81 ± 0.51 88.33 ± 0.46 90.15 ± 0.35
13 Xception [53] 91.35 ± 0.44 86.15 ± 0.51 90.24 ± 0.28
14 Resnet18 [49] 91.50 ± 0.42 85.77 ± 0.48 90.45 ± 0.32
15 Darknet19 [45] 89.90 ± 0.51 85.61 ± 0.54 90.57 ± 0.31
16 MobileVnet2 [54] 91.08 ± 0.46 85.70 ± 0.50 91.15 ± 0.31
17 DenseNet201 [55] 91.88 ± 0.53 87.75 ± 0.50 91.81 ± 0.30
18 SqueezeNet [56] 90.76 ± 0.53 86.42 ± 0.49 91.89 ± 0.32
19 Efficient b0 [57] 93.69 ± 0.45 90.26 ± 0.39 93.22 ± 0.28

We performed a non-systematic review of the literature on methods related to the auto-
mated classification of MS, are summarized in Table 5. Most of the methods in the literature
relied on deep learning, especially convolutional neural network (CNN) models, to attain
high classification results. In contrast, we presented a handcrafted feature-engineering
machine learning model for detecting MS on brain MRI. Our ExMPLPQ model attained
over 97% binary classification accuracy on all three study data subsets. Only Wang et al. [58]
attained a higher classification performance than our model, but their dataset had fewer
subjects. In addition, they applied data augmentation on their dataset and used a deep
learning model to attain the high classification performance [58], which increased the
model’s computational complexity. In contrast, our ExMPLPQ algorithm achieved high
classification performance with low computational complexity.
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Table 6 tabulated that our model attained superior classification results than other
previously presented state-of-art methods. The salient points of the proposed ExMPLPQ
algorithm are discussed in below.

Table 6. Comparison with other state-of-the-art MS brain MRI classification methods.

Study Method Dataset Subjects Results, %

Plati et al. [59]

Typographic error-based
feature extraction,
oversampling based feature
selection and classification

78 records, 51 with
EDSS 0–3.5, 18 with
EDSS 4.0–5.0, 10 with
EDSS 5.5–10.0

30 MS

Accuracy 94.87, *TP rate for
low class 90.40, *TP rate for
medium-class 94.20, *TP rate
for high class 100.00

Wang et al. [58] CNN with 14 layers eHealth Lab and clinic 38 MS, 26 healthy Accuracy 98.77, Sensitivity
98.77, Specificity 98.76

Eitel et al. [60]

CNN pretrained on
Alzheimer’s
neuroimaging initiative
dataset

Clinic 76 MS, 71 healthy Accuracy 87.04, AUC 96.08

Calimeri et al. [61] Graph neural network Clinic 90 MS Specificity 82, F1-Score 80

Marzullo [62] Graph CNN Clinic 90 MS Specificity 92, F1-Score 92

Our model ExMPLPQ Clinic 72 MS, 59 healthy

Axial: Accuracy 98.37,
Sensitivity 96.46,
Specificity 99.60
Sagittal: Accuracy 97.75,
Sensitivity 95.01.
Specificity 99.80
Hybrid: Accuracy 98.22,
Sensitivity 96.39,
Specificity 99.50

*TP: true positive rate.

Benefits:

• A new brain MRI dataset comprising three study data subsets was prospectively
acquired to train and test the model. This dataset has been made publicly available.

• By design, the ExMPLPQ model exploited the advantages of both exemplar and
multiple parameters for feature extraction.

• The best features were automatically selected for each of the three binary classification
problems using INCA.

• ExMPLPQ attained over 97% accuracies for all study data subsets.
• ExMPLPQ attained better classification performance compared with 19-pre-trained

CNNs. Of note, more than a million parameters were required to be assigned/optimized
using the deep learning models, which increased their time complexity considerably.

• The ExMPLPQ algorithm has a low time complexity of approximately O(n log n).
• The base architecture of ExMPLPQ is parametric and is amenable to modification and

optimization to create new models using variable patch sizes and updating of feature
extractors, feature selectors, and classifiers.

Limitations:

• The dataset was new, which precluded direct comparison with extant methods in the
literature. Nevertheless, the common dataset was used to test the ExMPLPQ model
and 19 comparator deep learning techniques, which demonstrated superior results for
our model.

• Only MS patients admitted to one hospital during one year (2021) were included in
the study.

• Patients with less than 9 MS lesions on brain MRIs were excluded from the study.
• Patients with poor MRI image quality and motion artifacts were excluded from

the study.
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• Patients under 18 years of age were excluded from the study.

6. Conclusions

In this research we show that a handcrafted computer vision model is highly accurate
for detecting MS based on brain MRI images. The proposed model used LPQ with three
3 × 3, 5 × 5, and 7 × 7 overlapping blocks to extract features from resized brain images
and fixed-size patches. The proposed ExMPLPQ was able to detect MS plaques from
brain MRI with high accuracy automatically and is computationally lightweight. It has
the potential to be implemented in clinics where it supports high-throughput screening of
brain MRI images in suspected MS cases. In future works, we hope to acquire larger brain
MRI datasets to train and test our model, including MRIs from patients with other diseases,
e.g., migraine and vasculitis, that may mimic MS. In addition, more efficient deep learning
and handcrafted approaches can be combined with the current model, resulting in more
effective learning.
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