791 research outputs found

    Evaluating patient education resources for supporting treatment decisions in latent tuberculosis infection

    Get PDF
    Objective: People with latent tuberculosis infection (LTBI) are required to make complex treatment decisions, which require an understanding of personal risk and associated benefits. However, many people with LTBI in the United Kingdom are at risk of low health literacy and can also experience language barriers, which can affect decision making. Patient education resources can support understanding but must meet the needs of the target population. The aim of this study was to evaluate the accessibility, readability and content of LTBI patient education resources. Design: Review and descriptive analysis of online LTBI patient education resources. Setting: UK-based online patient education resources. Method: We searched UK public health and charitable organisations for online LTBI patient education resources. Resources were evaluated in terms of accessibility (availability of translated versions); readability (Flesch–Kincaid Reading Ease [FKE], Flesch–Kincaid Grade Level [FKG] and Simplified Measure of Gobbledygook [SMOG]), theoretical content (Extended Common-Sense Model) and principles of shared decision making. Results: Seventeen out of 60 articles identified in the search met the prespecified criteria for inclusion. Translated materials were available for 7 of them. The overall mean ± SD readability scores and corresponding reading ages were FKE 63.51 ± 8.81 (13–15 years), FKG 9.14 ± 8.95 (13–15 years) and SMOG 8.27 ± 1.51 (13–14 years). No resources met Health Education England recommended readability levels for health-related information. Dimensions of cognitive representations of illness and treatment most commonly addressed included treatment control, cause and identity (symptom and label); no resources addressed emotional identity. Conclusion: Current and future LTBI patient education resources would benefit from greater consideration of the needs of non-English language speakers, readability and theoretical content to improve patient illness experience and support informed treatment decision making

    Internalized and Anticipated Stigmatization in Patients With Gout

    Get PDF
    OBJECTIVE: To investigate the relationship between stigma perception and demographic, clinical, and psychosocial variables. METHODS: A sample of 50 patients with gout and prescribed urate‐lowering medication (84% were males, mean serum urate 0.34 mmol/l) completed questionnaires on internalized and anticipated stigma, demographics, clinical gout‐related variables, and psychosocial variables (illness perceptions, illness‐related disability, illness‐related body satisfaction, intentional nonadherence). Serum urate level was obtained from the most recent blood test. RESULTS: In this sample, 26% experienced internalized stigma, 26% expected to be stigmatized by friends or family members, and 14% by health care workers. Univariate regression analyses showed that younger age, ethnicity other than New Zealand European, increased severity of gout pain, cognitive and emotional illness perceptions, greater illness‐related disability, and increased intentional nonadherence to urate‐lowering medication were associated with increased internalized and anticipated stigma. Younger age, emotional illness response, and intentional nonadherence were the only variables explaining incremental variance of the experience of anticipated stigma in a multivariate regression model. CONCLUSION: Internalized and anticipated illness‐related stigma was reported by a subgroup of patients with gout. The experience of stigma is associated with younger age, a negative emotional illness response, and intentions to not adhere with a medical treatment

    The International Olympic Committee framework on fairness, inclusion and nondiscrimination on the basis of gender identity and sex variations does not protect fairness for female athletes

    Get PDF
    The International Olympic Committee (IOC) recently published a framework on fairness, inclusion, and nondiscrimination on the basis of gender identity and sex variations. Although we appreciate the IOC's recognition of the role of sports science and medicine in policy development, we disagree with the assertion that the IOC framework is consistent with existing scientific and medical evidence and question its recommendations for implementation. Testosterone exposure during male development results in physical differences between male and female bodies; this process underpins male athletic advantage in muscle mass, strength and power, and endurance and aerobic capacity. The IOC's “no presumption of advantage” principle disregards this reality. Studies show that transgender women (male-born individuals who identify as women) with suppressed testosterone retain muscle mass, strength, and other physical advantages compared to females; male performance advantage cannot be eliminated with testosterone suppression. The IOC's concept of “meaningful competition” is flawed because fairness of category does not hinge on closely matched performances. The female category ensures fair competition for female athletes by excluding male advantages. Case-by-case testing for transgender women may lead to stigmatization and cannot be robustly managed in practice. We argue that eligibility criteria for female competition must consider male development rather than relying on current testosterone levels. Female athletes should be recognized as the key stakeholders in the consultation and decision-making processes. We urge the IOC to reevaluate the recommendations of their Framework to include a comprehensive understanding of the biological advantages of male development to ensure fairness and safety in female sports

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore