146 research outputs found

    Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum

    Get PDF
    BACKGROUND: Sulphadoxine-pyrimethamine has been abandoned as first- or second-line treatment by most African malaria endemic countries in favour of artemisinin-based combination treatments, but the drug is still used as intermittent preventive treatment during pregnancy. However, resistance to sulphadoxine-pyrimethamine has been increasing in the past few years and, although the link between molecular markers and treatment failure has not been firmly established, at least for pregnant women, it is important to monitor such markers. METHODS: This paper reports a novel sensitive, semi-quantitative and specific real-time PCR and melting curve analysis (MCA) assay using fluorescence resonance energy transfer (FRET) for the detection of DHPS-540, an important predictor for SP resistance. FRET/MCA was evaluated using 78 clinical samples from malaria patients and compared to PCR-RFLP. RESULTS: Sixty-two samples were in perfect agreement between both assays. One sample showed a small wild type signal with FRET/MCA that indicates a polyclonal infection. Four samples were not able to generate enough material in both assays to distinguish mutant from wild-type infection, six samples gave no signal in PCR-RFLP and five samples gave no amplification in FRET/MCA. CONCLUSION: FRET/MCA is an effective tool for the identification of SNPs in drug studies and epidemiological surveys on resistance markers in general and DHPS-540 mutation in particular

    Learning to Use Illumination Gradients as an Unambiguous Cue to Three Dimensional Shape

    Get PDF
    The luminance and colour gradients across an image are the result of complex interactions between object shape, material and illumination. Using such variations to infer object shape or surface colour is therefore a difficult problem for the visual system. We know that changes to the shape of an object can affect its perceived colour, and that shading gradients confer a sense of shape. Here we investigate if the visual system is able to effectively utilise these gradients as a cue to shape perception, even when additional cues are not available. We tested shape perception of a folded card object that contained illumination gradients in the form of shading and more subtle effects such as inter-reflections. Our results suggest that observers are able to use the gradients to make consistent shape judgements. In order to do this, observers must be given the opportunity to learn suitable assumptions about the lighting and scene. Using a variety of different training conditions, we demonstrate that learning can occur quickly and requires only coarse information. We also establish that learning does not deliver a trivial mapping between gradient and shape; rather learning leads to the acquisition of assumptions about lighting and scene parameters that subsequently allow for gradients to be used as a shape cue. The perceived shape is shown to be consistent for convex and concave versions of the object that exhibit very different shading, and also similar to that delivered by outline, a largely unrelated cue to shape. Overall our results indicate that, although gradients are less reliable than some other cues, the relationship between gradients and shape can be quickly assessed and the gradients therefore used effectively as a visual shape cue

    Texture variations suppress suprathreshold brightness and colour variations

    Get PDF
    Discriminating material changes from illumination changes is a key function of early vision. Luminance cues are ambiguous in this regard, but can be disambiguated by co-incident changes in colour and texture. Thus, colour and texture are likely to be given greater prominence than luminance for object segmentation, and better segmentation should in turn produce stronger grouping. We sought to measure the relative strengths of combined luminance, colour and texture contrast using a suprathreshhold, psychophysical grouping task. Stimuli comprised diagonal grids of circular patches bordered by a thin black line and contained combinations of luminance decrements with either violet, red, or texture increments. There were two tasks. In the Separate task the different cues were presented separately in a two-interval design, and participants indicated which interval contained the stronger orientation structure. In the Combined task the cues were combined to produce competing orientation structure in a single image. Participants had to indicate which orientation, and therefore which cue was dominant. Thus we established the relative grouping strength of each cue pair presented separately, and compared this to their relative grouping strength when combined. In this way we observed suprathreshold interactions between cues and were able to assess cue dominance at ecologically relevant signal levels. Participants required significantly more luminance and colour compared to texture contrast in the Combined compared to Separate conditions (contrast ratios differed by about 0.1 log units), showing that suprathreshold texture dominates colour and luminance when the different cues are presented in combination

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome

    Get PDF
    Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and ∌35,000 copies, respectively, or a combined ∌1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity

    Detailed Analysis of a Contiguous 22-Mb Region of the Maize Genome

    Get PDF
    Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∌1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    • 

    corecore