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Suprathreshold Brightness and Colour
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Abstract

Discriminating material changes from illumination changes is a key function of early
vision. Luminance cues are ambiguous in this regard, but can be disambiguated by
co-incident changes in colour and texture. Thus, colour and texture are likely to be
given greater prominence than luminance for object segmentation, and better
segmentation should in turn produce stronger grouping. We sought to measure the
relative strengths of combined luminance, colour and texture contrast using a
suprathreshhold, psychophysical grouping task. Stimuli comprised diagonal grids of
circular patches bordered by a thin black line and contained combinations of
luminance decrements with either violet, red, or texture increments. There were two
tasks. In the Separate task the different cues were presented separately in a two-
interval design, and participants indicated which interval contained the stronger
orientation structure. In the Combined task the cues were combined to produce
competing orientation structure in a single image. Participants had to indicate which
orientation, and therefore which cue was dominant. Thus we established the
relative grouping strength of each cue pair presented separately, and compared this
to their relative grouping strength when combined. In this way we observed
suprathreshold interactions between cues and were able to assess cue dominance
at ecologically relevant signal levels. Participants required significantly more
luminance and colour compared to texture contrast in the Combined compared to
Separate conditions (contrast ratios differed by about 0.1 log units), showing that
suprathreshold texture dominates colour and luminance when the different cues are
presented in combination.
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Introduction

Demonstrations such as the Adelson checker-shadow illusion [1] show that
humans are good at separating spatial changes in illumination from spatial
changes in reflectance — a process termed ‘layer decomposition’ — and thus
identifying, for example, the colours of surfaces irrespective of their illumination.
Kingdom [2] provides an extensive review of the layer decomposition process,
describing how it helps in the detection of object boundaries and in the
identification of material properties and the shapes of objects (for example, via
shape from shading). However, luminance changes (or ‘contrasts’ as often termed
here) are ambiguous in this regard, since they can arise from both material and
illumination changes. In order to determine whether a given luminance change
results from a material or illumination change our visual system must combine it
with other information, for example the fact that shadows tend to have soft edges
[3]. Other useful information comes from the relationships between luminance
changes and other, nearby, luminance [4, 5], colour [6-8], and texture [9—-11]
changes, as well as from the statistics of the image as a whole [12]. This knowledge
is most likely acquired through experience, though some of it might be innate.

Before proceeding, a quick note on terminology. We use the term ‘colour’ to
refer to the chromatic properties of a stimulus, ‘luminance’ for light intensity, and
‘texture’ for a surface with a dense array of luminance markings. Colour and
texture changes tend to be primarily material in origin, and hence less ambiguous
than luminance changes [2]. More specifically it is the relationship between
changes in colour and luminance [7, 13, 14] and changes in texture and luminance
[11, 15] that promotes the discriminability of material from illumination changes.
Such supra-threshold interactions occur despite the separability at detection
threshold between colour and luminance contrasts [16-23], and between texture
and luminance contrasts [24,25].

Although changes in colour do arise from illumination (e.g. a red sunset against
a blue sky; a blue shadow against a white surround), in natural scenes such
changes tend to be confined to the short wavelength (blue-yellow or violet-lime)
colour channel in primate vision [26]. Thus colour contrasts (particularly red-
green) are a reliable cue to material changes and hence object segmentation.
Colour contrasts also influence eye movements more than luminance contrasts in
a natural visual search task even when the target is achromatic [27]. We might
therefore expect changes in colour to dominate changes in luminance in grouping
tasks, as found by Kingdom, Bell, Gheoghiu, & Malkoc [28]. Similarly we might
expect some types of colour variation to dominate over others. For example, there
is some evidence that red-cyan variations, which uniquely stimulate one of the
two postreceptoral colour channels (see below) dominate over violet-lime
variations, which stimulate the other colour channel [29]. It may not be merely
coincidental that of the two types of colour variation, the red-cyan variations tend
to be least contaminated by shadows and shading [26, 30,31].

Like colour, some texture variations are linked to illumination changes. For
example, on a curved, shaded, textured surface changes in the local orientation of
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the markings may co-vary with the degree of shading. However, many texture
variations in natural scenes are uncorrelated with changes in illumination. Some
visual textures of course arise from variations in illumination. For example, when
a surface is physically rough, small shadows cast by local peaks will give rise to
visual texture, and the contrast of such textures will vary with the illumination,
being strongest for strong, oblique illuminants. However even these textures will
typically vary independently from coarser-scale illumination variations such as
shadows cast from other objects. Moreover, physically smooth surfaces are often
textured as a result of localised changes in reflectance, and these too will vary
independently from illumination. If such textured surfaces are matte, changes in
illumination are directly linked to changes in the luminance of individual texture
elements, and in the difference between light and dark elements such that their
contrast remains constant [11]. Conversely, a change in the contrast of a patterned
texture is a cue to a material change both in its own right and when paired with
luminance contrast [11, 15]. Thus, as with colour, modulations of the local
luminance contrast of a texture (texture contrast) both cue material changes, and
disambiguate the role of luminance changes. Therefore we might expect texture
contrast to dominate luminance contrast in a suprathreshold task such as that
used by Kingdom et al. [28]. On the other hand, Amano & Foster [27] found that
local luminance contrast (of which our texture cue might be considered a sub set)
did not influence eye movements in a visual search task as strongly as luminance
or colour. This might suggest that texture contrast will be less potent as a
grouping/segmentation cue than either colour or luminance.

Here we test for supra-threshold interactions between texture contrast,
luminance contrast and colour contrast using a method devised by Kingdom et al.
[28] based on a stimulus originally designed by Regan & Mollon [32]. This
method measures the relative saliencies of two cues, both when the cues are
presented separately (Separate condition) and when combined (Combined
condition). Examples of the stimuli used in the Separate conditions are shown in
Fig. la-d, and for the Combined conditions in Fig. le-g. Suprathreshold
interactions between the cues are evidenced by a shift in the point-of-subjective-
equality (PSE) of the two cues when going from the Separate to Combined
condition. The Separate condition provides the necessary baseline in order to
establish whether the results from the Combined condition implicate a genuine
interaction between the two cues rather than simply a difference in their saliencies.
For example, if texture contrast is a cue to material boundaries then, like colour
(28], we might expect it to dominate luminance contrast when the two cues are
combined. This would be evidenced by a shift in the PSE fowards luminance
contrast when going from the Separate to the Combined condition, as more
luminance contrast would be needed to balance texture contrast when the two
cues were combined.
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ZQ2FI,IJ:>£;|ONE

Texture Suppresses Brightness and Colour

a) Luminance: Dark

d) Texture Increment

e) Dark vs Texture f) Red vs Texture

Violet vs Texture

Fig. 1. Example stimuli. Panels a-d Separate condition: a) Luminance decrements (dark) are arranged on
alternate diagonal rows of a 2D lattice of circles. b) L-M colour axis increments (red). c) S colour axis
increments (violet). d) Texture increments. Panels e-g Combined condition: e) Luminance decrements on one
axis of the diagonal lattice are paired with texture contrast increments on the orthogonal diagonal. f) L-M
colour axis increments (red) paired with texture contract increments. g) S colour axis increments (violet) paired
with texture contrast. Cue contrasts have been exaggerated for publication.

doi:10.1371/journal.pone.0114803.g001

Method

Procedure

There were two main conditions, Separate and Combined. Each condition was
tested in three cue comparisons: Texture vs. Dark, Texture vs. Red and Texture vs.
Violet. Conditions and comparisons were blocked by session. In the Separate
condition the two components were each presented for 500 ms in separate stimuli
(Fig. 1a-d) with a 500 ms inter-stimulus interval. Observers pressed a key to
indicate the stimulus they perceived as containing the more salient orientation
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structure and were told that “more salient” was synonymous with “more
pronounced oblique orientations”. Trials were initiated by the previous response,
with a 500 ms delay before the first stimulus. Eight ratios of the contrasts of the
two components were presented in random order, with 20 trials per ratio and 160
trials per session. The contrast of each component was selected from 8
logarithmically-spaced values chosen to span the full range of performance for
each participant as shown in S1 Dataset. Test contrasts were indexed al to a8 for
one component and bl to b8 for the other and were paired as follows: al & b8; a2
& b7; a3 & b6; a4 & b5; a5 & b4; a6 & b3; a7 & b2; a8 & bl. We did not combine
the colour and luminance conditions as these have already been tested using an
almost identical method [28] but we compare our results with those of the
previous study in the discussion.

In the Combined condition the two components were presented on opposite
oblique axes in a single stimulus (Fig. le-g). On each trial the stimulus was
presented for 500 ms and a key press indicated the orientation, left- or right-
oblique, that was more salient. The conditions were otherwise identical.

Stimuli

The stimuli were generated on a VISAGE graphics system (Cambridge Research
Systems, CRS, Rochester, UK) and displayed on a Sony Trinitron F500 CRT
monitor (Sony, Tokyo, Japan). The red, green and blue outputs of the monitor
were gamma-corrected after calibration with a CRS Optical photometer. The CIE
coordinates of the monitor’s phosphors were red: x=0.624, y=0.341; green:
x=0.293, y=0.609; and blue: x=0.148, y=0.075.

The component patterns were generated on separate video pages, along with
their own calibration look-up-tables (LUTs). During stimulus presentation the
two video pages (and corresponding LUTs) were alternated at the monitor frame
rate of 120 Hz; overall refresh rate = 60 Hz. For the Separated condition the
component patterns alternated with a mid-grey screen, whereas in the Combined
condition the component patterns alternated with each other ensuring that there
were no artifactual within-image interactions between the components. Frame
alternation halves the effective contrast of each component and we report the
halved values below.

Stimuli comprised a grid (diameter 8.9 deg at the 110 cm viewing distance) of
circles (diameter 0.383 deg) each ringed by a 1 pixel-wide black line. The black
rings reduced the impression of transparency in the Combined condition and
masked any chromatic aberrations. The separation between circles was 0.68 deg
along the oblique axes and 0.96 deg along the cardinal axes. Cues were applied to
alternate runs of circles on one or other of the oblique axes.

There were four cues: Violet, Red, Dark and Texture. The first three of these
were defined along one pole of an axis in the DKL colour space [16] itself a
modified version of the MacLeod-Boynton [33] colour space. The colour axes
were defined in terms of long- (L), middle- (M) and short- (S) wavelength cone-
contrasts as follows: L,=AL/Ly, Mc=AM/M;, S;=AS/S, [34-37]. The
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denominator in each cone-contrast term refers to the cone excitation produced by
the mid-grey background (CIE chromaticity x=0.282 and y=0.311; luminance
40 cd/m?). The numerators represent the difference in cone excitation between
the circle colour and the background. Desired LMS cone excitations were
converted to RGB phosphor intensities using the cone spectral sensitivity
functions provided by Smith & Pokorny [38] and the spectral emission functions
of the monitor phosphors as measured with a PR640 spectral radiometer (Photo
Research, Chatsworth, CA).

The Violet, Red and Dark colours/luminances employed here uniquely
stimulate one of three post-receptoral mechanisms [16,34-37,39]. These
mechanisms combine cone contrasts as follows: kL. + M, for the luminance
mechanism (LUM), L.— M, for the mechanism that differences L and M cone-
contrasts (L-M), and Sc— (L. + M.)/2 for the mechanism that differences S from
the sum of L and M (S). The parameter k determines the relative weightings of the
L and M inputs to the luminance mechanism, and was established separately for
each observer by estimating their isoluminant point using the minimum perceived
motion method (see [28] for details). We used the same method to ensure that the
S axis stimuli introduced no luminance artefact. Table 1 shows the values of k and
the Lum:S ratio at isoluminance for the 7 observers.

Full isolation of the three cardinal mechanisms was achieved using the
following equations (after [13]):

'LUM' =L.+M,+S, (Eqn. 1a)
'L—M'=L.—kM,+S.(1—k)/2 (Eqn. 1b)
'S' =8, (Eqn. 1c¢)

The measures of contrast for the Violet, Red and Dark colours/luminances were
calculated as follows: for Dark, we used the contrast assigned to each of the three
cones (i.e. L.=M_.=S,); for Red, the difference between L. and M,; and for Violet,
simply S..

For Texture stimuli we used a binary noise pattern in which each pixel was
randomly allocated one of two luminance levels which were equal amplitudes
from the background mid-grey value and thus added no low-frequency luminance
signal. The two grey levels fell on the LUM axis of colour space and thus
introduced no signal in the L-M or S mechanisms. The contrast of any cue is
defined as amplitude/mean on the relevant dimension with amplitude referring to
the light and dark luminance values relative to mean luminance in the case of
Texture stimuli.
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Table 1. Isoluminance measures for all observers.

Observer
P1
P2
P3
P4
P5
P6
P7

k Lum:S ratio
1.71 .048

0.99 .073

1.39 .084

1.12 .043

1.18 .076

1.7 .07

0.93 .077

doi:10.1371/journal.pone.0114803.t001

Participants and Ethics Statement

The seven observers had normal or corrected-to-normal visual acuity and normal
colour vision as assessed by the Ishihara plates. Except for author FK (P6) all were
undergraduate volunteers at McGill University who were naive as to the purpose
of the experiment. Observers gave their written informed consent prior to
participating in this study and were treated in accordance with the Declaration of
Helsinki. The research protocol was approved by the McGill University Health
Centre Research Ethics Office.

Data analysis
Psychometric functions were fitted with the Logistic function

1
Fr(x;o.p) = 1+ exp(—f(x—a))

(Eqn 2)

where x is the log (logarithm) ratio of component contrasts, o the PSE defined as
the contrast ratio producing a proportion of 0.5 responses (that is, cues are
perceived equally salient), and f the slope of the function. The fitting procedure,
conducted with the Palamedes toolbox [40], used a maximum-likelihood
criterion. PSE shifts (APSE) were calculated as the difference in PSE between the
two Combined and Separate conditions.

Results

Fig. 2 shows a complete set of psychometric functions for observer P2. Each graph
plots the proportion of times the Dark, Red or Violet component was chosen as
more salient than the Texture component as a function of the log contrast ratio of
the two components. The blue and red lines are best fits for the Separate and

Combined conditions, respectively. Since we are concerned only with differences
in PSE between the two conditions, the absolute PSEs are not relevant, and in any
case these will depend on the particular metric employed to measure the contrast
of each cue. In all graphs, the Combined psychometric function falls to the right
(positive shift) of the Separate psychometric function, indicating that less texture
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Dark vs. Texture
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Fig. 2. Example psychometric functions. Psychometric functions from observer P2, for all three cue combinations and the two presentation conditions:
left: dark vs. texture, middle: red vs. texture, and right: violet vs. texture. Graphs show the proportion of trials on which the non-texture cue was judged to
produce the stronger orientation structure as a function of the logarithm of the ratio of non-texture cue contrast to texture contrast. Blue symbols show data
from the Separate condition; red Combined. Lines show best fit logistic functions — see main text.

doi:10.1371/journal.pone.0114803.9002

contrast relative to either luminance or colour contrast is needed to achieve the
PSE in the Combined compared to Separate condition.

Fig. 3 shows the PSE’s for the Separate and Combined conditions for all
observers. In all but one case (P1’s Violet vs. Texture condition) the PSE shifts in
the positive direction. Indicating that less texture contrast was required at the PSE
in the Combined condition than the Separate condition. Paired sample t-tests
show that the mean difference between PSEs (Mean PSE shifts, APSE) were
positive and significant for all three comparisons (Dark vs. Texture, APSE= 0.091,
SD=0.04, t(6)=5.98, p=0.001, Cohen’s d=2.26, r=0.93; Red vs. Texture
APSE=0.079, SD=0.034, t(6)=6.19, p=0.001, d=2.34, r=0.93; and Violet vs.
Texture, APSE=0.06, SD=0.05, #(6)=3.13, p=0.02, d=1.18, r=0.79) indicating
that texture contrast is dominant in the Combined conditions. The PSE shifts in
log units given above correspond to changes in the contrast ratios as follows: 23%
more luminance contrast, 19% more red contrast, and 14% more violet contrast
were required in the Combined vs. Separate conditions. Shifts in PSE can be hard
to interpret when the slope () of the psychometric function also changes between
conditions. We therefore assessed the mean change in slope for each cue
combination. Except for the Violet vs. Texture case these were not significant

(Dark vs. Texture: A_ﬁ=—2.17, SD=4.96, t=—1.16, p=0.29; Red vs. Texture:

AB=—4.08, SD=6, t=—1.8, p=0.12; Violet vs. Texture Af=—4.55, SD=4.42,
t=—2.72, p<0.035, d=—1.03, r=0.74). Taken together these results suggest that
PSE shifts were both significant and reliable for the Dark- and Red vs. Texture
conditions whereas for the Violet vs. Texture case the PSE shift, while significant,
is weaker and possibly confounded with changes in psychometric slope.
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a) Dark vs texture

[ I Separate

0
-0.2} | I Combined
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PSE (log contrast ratio)
o
[0}
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b) Red vs texture

PSE (log contrast ratio)
o
(0]

PI P2 P2 P4 P5 P6 P7

c) Violet vs texture
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PSE (log contrast ratio)
o
[0}
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Observers

Fig. 3. PSE estimates. PSE estimates are shown for seven observers for all three cue combinations and the
two presentation conditions: a) dark vs. texture; b) red vs. texture; c) violet vs. texture. Blue bars show PSEs
for the Separate condition; red Combined. Error bars show bootstrapped standard error estimates. Negative
PSE'’s indicate that more texture contrast is required at the PSE but positive shifts in PSE between conditions
indicate that less texture contrast is required in the Combined compared to Separate case.

doi:10.1371/journal.pone.0114803.9003

Discussion

Humans are relatively insensitive to modulations of texture contrast. Typically,
sensitivity to luminance gratings at 2 c¢/deg is 100 times higher than that for
modulations of the contrast of random noise patterns (contrast modulations, CM,
[24]) similar to our texture cue. Furthermore, whereas supra-threshold luminance
modulations mask the detection of contrast modulated stimuli this masking is not
reciprocated. Such findings suggest that texture contrast is at best a secondary cue
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to luminance contrast. However, other results have shown roughly equal
suprathreshold interactions between the two cues (e.g. [25]). In addition,
Schofield et al. [11, 15] have shown that texture contrast can have a profound
effect on the appearance of luminance modulated stimuli changing their
appearance from shaded undulations to strips of material change — the
relationship between the cues being the critical factor. Similar effects have been
shown for colour-luminance interactions [7, 8].

Given the ability of colour and texture to cue object boundaries, we might
expect these cues to be relatively dominant in tasks that require an element of
grouping or segmentation. Kingdom et al. [28] showed that colour tends to
dominate luminance in an almost identical paradigm to that used here. Thus
luminance is either more suppressed or less facilitated than colour when the two
are presented in one stimulus. We have shown a similar result for texture vs.
luminance contrast.

In our experiments luminance contrast ranged from 90-250 times contrast
detection thresholds for 2 c/deg gratings. Texture contrast ranged from 3-10
times detection threshold for similar contrast modulated gratings [24]. Thus
although the absolute contrast of our texture stimuli was higher than that for our
luminance stimuli, in terms of threshold multiples the luminance cue was much
the stronger at the measured PSEs. However the crucial point is that it is not their
individual saliences that matter — these are factored out by the Separate condition
— but the way they interact when combined.

We now compare our results to those of Kingdom et al. [28,29]. On average, in
the Dark vs. Texture comparison our observers required 23% more luminance
contrast in the Combined vs. Separate condition. This compares to an average of
32% for the Luminance vs. Red-Cyan and for the Luminance vs. Violet-Lime
comparisons tested by Kingdom et al. [28]. This might suggest that texture-
contrast is less dominant than colour contrast. However, we found here that
texture contrast dominated colour contrast: 19% for Red vs. Texture, 14% for
Violet vs. Texture. Further, Kingdom et al. [29] found that red-cyan dominated
violet-lime — though only by about 8% whereas here we find that texture contrast
appears to be less dominant over violet contrast than it is over red contrast. It is
clear that comparisons between any pair of cues cannot be inferred from their
separate interactions with a third cue.

The above limitations notwithstanding, we suggest that the overall pattern of
cue dominance (texture> colour> luminance) may reflect a hierarchy in which
those cues that are more ambiguous with respect to material vs. illumination
changes tend to be suppressed by those that are less ambiguous. Luminance is
highly ambiguous in this regard, S-axis (violet-lime) colour variations less so, L-M
(red-cyan) colour variations less still (hence Kingdom et al.’s, [29] result) and (we
speculate somewhat) texture contrast the least ambiguous. In natural scenes
luminance decrements and violet contrasts are more present in shadows than are
red or texture contrasts [26], and at least for patterned (vs. rough) textures,
texture changes seem only to arise from material changes [11]. If this account is
correct then we would predict that abrupt variations in texture orientation — a

PLOS ONE | DOI:10.1371/journal.pone.0114803 December 12, 2014 10/13
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clear cue to segmentation [41,42] — will also dominate over luminance and colour
contrast, although the synergy between shading and orientation cues to surface
shape [9, 10] suggests that orientation changes might be less potent in this regard
when consistent with a uniform texture on an undulating surface.

Finally the finding that colour dominates luminance [28] is supported by
Amano & Foster’s [27] finding that colour has greater influence over eye
movements than luminance in a naturalistic visual search task. However, Amano
& Foster [27] also found that local luminance contrast (measured as the standard
deviation of pixel intensity values within small regions of an image; thus similar to
our texture contrast cue) has a relatively weak influence over eye movements as
compared to either luminance or colour. This is not consistent with our current
result. It is possible that the naturally occurring local luminance contrast
variations measured by Amano & Foster [27] were weak relative to the colour and
luminance signals in their natural images whereas our texture contrast was
deliberately matched in strength with to colour and luminance contrast by virtue
of our use of the Separate cues condition as a base line.

In conclusion we have shown that — despite its relative weakness as a cue in
absolute terms — texture contrast dominates luminance decrements and colour
changes in a perceptual grouping task.

Supporting Information

S1 Dataset. Data including stimulus test ranges. This file contains raw data from
all participants including the number of times each cue was considered more
salient for each pair of test levels in all conditions, Isoluminance settings and the
test levels used for each participant.

doi:10.1371/journal.pone.0114803.s001 (XLS)
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