1,145 research outputs found

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Anthracycline-Induced Cardiotoxicity: Cardiac Monitoring by Continuous Wave-Doppler Ultrasound Cardiac Output Monitoring and Correlation to Echocardiography

    Get PDF
    Background: Anthracyclines are agents with a well-known cardiotoxicity. The study sought to evaluate the hemodynamic response to an anthracycline using real-time continuous-wave (CW)-Doppler ultrasound cardiac output monitoring (USCOM) and echocardiography in combination with serum biomarkers. Methods: 50 patients (26 male, 24 female, median age 59 years) suffering from various types of cancer received an anthracycline-based regimen. Patients' responses were measured at different time points (T0 prior to infusion, T1 6 h post infusion, T2 after 1 day, T3 after 7 days, and T4 after 3 months) with CW-Doppler ultrasound (T0-T4) and echocardiography (T1, T4) for hemodynamic parameters such as stroke volume (SV; SVUSCOM ml) and ejection fraction (EF; EFechocardiography%) and with NT-pro-BNP and hs-Troponin T (T0-T4). Results: During the 3-month observation period, the relative decrease in the EF determined by echocardiography was -2.1% (Delta T0-T4, T0 71 +/- 7.8%, T4 69.5 +/- 7%, p = 0.04), whereas the decrease in SV observed using CW-Doppler was -6.5% (Delta T0-T4, T0 54 +/- 19.2 ml, T4 50.5 +/- 20.6 ml, p = 0.14). The kinetics for serum biomarkers were inversely correlated. Conclusions: Combining real-time CW-Doppler USCOM and serum biomarkers is feasible for monitoring the immediate and chronic hemodynamic changes during an anthracycline-based regimen; the results obtained were comparable to those from echocardiography

    Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor

    Get PDF
    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Qualitative analysis of how patients decide that they want risk-reducing mastectomy, and the implications for surgeons in responding to emotionally-motivated patient requests

    Get PDF
    Objective Contemporary approaches to medical decision-making advise that clinicians should respect patients’ decisions. However, patients’ decisions are often shaped by heuristics, such as being guided by emotion, rather than by objective risk and benefit. Risk-reducing mastectomy (RRM) decisions focus this dilemma sharply. RRM reduces breast cancer (BC) risk, but is invasive and can have iatrogenic consequences. Previous evidence suggests that emotion guides patients’ decision-making about RRM. We interviewed patients to better understand how they made decisions about RRM, using findings to consider how clinicians could ethically respond to their decisions. Methods Qualitative face-to-face interviews with 34 patients listed for RRM surgery and two who had decided against RRM. Results Patients generally did not use objective risk estimates or, indeed, consider risks and benefits of RRM. Instead emotions guided their decisions: they chose RRM because they feared BC and wanted to do ‘all they could’ to prevent it. Most therefore perceived RRM to be the ‘obvious’ option and made the decision easily. However, many recounted extensive post-decisional deliberation, generally directed towards justifying the original decision. A few patients deliberated before the decision because fears of surgery counterbalanced those of BC. Conclusion Patients seeking RRM were motivated by fear of BC, and the need to avoid potential regret for not doing all they could to prevent it. We suggest that choices such as that for RRM, which are made emotionally, can be respected as autonomous decisions, provided patients have considered risks and benefits. Drawing on psychological theory about how people do make decisions, as well as normative views of how they should, we propose that practitioners can guide consideration of risks and benefits even, where necessary, after patients have opted for surgery. This model of practice could be extended to other medical decisions that are influenced by patients’ emotions

    Minería de datos para el descubrimiento de patrones en enfermedades respiratorias en Bogotá, Colombia

    Get PDF
    Trabajo de InvestigaciónEl presente proyecto se basa en la aplicación de minería de datos mediante el algoritmo de clustering K- means que permita la generación de un modelo descriptivo con el análisis de los datos y con el objetivo de identificar posibles comportamientos en enfermedades respiratorias en la ciudad de Bogotá. El conjunto de clústeres generados por la herramienta RapidMiner es la recopilación de datos de un periodo de cinco años de 2012 a 2016, en donde se contemplan el número de casos asociados a 184 diagnósticos de enfermedades respiratorias y la edad de los pacientes corresponde de 0 a 5 años.Trabajo de Investigación1. GENERALIDADES 2. OBJETIVOS 3. JUSTIFICACIÓN 4. DELIMITACIÓN 5. MARCO REFERENCIAL 6. METODOLOGÍA 7. FUENTES DE EXTRACCIÓN Y SUS VARIABLES 8. DISEÑO 9. SELECCIÓN DE ALGORITMOS DE CLUSTERING 10. RECONOCER PATRONES A PARTIR DE LA INFORMACIÓN RECOPILADA 11. CONCLUSIONES 12. TRABAJOS FUTUROS 13. REFERENCIAS BIBLIOGRÁFICAS 14. ANEXOSPregradoIngeniero de Sistema

    Plasticity of the Muscle Stem Cell Microenvironment

    Get PDF
    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    Влияние фосфатных связующих на физико-механические свойства периклазохромитовых огнеупоров

    Get PDF
    У данній статті наведено та порівняно фізико-механічні властивості периклазо-хромітових матеріалів в залежності від різних типів фосфатних зв’язуючих та введення різних домішок. Визначено, що найбільш раціональним є введення триполіфосфату натрію.In given clause are resulted and the physycal-mechanical properties periclase-cgromite of materials are compared depending on different of types phosphate binding and introduction of the various additives. Is determined, that most rational is the introduction treepolyphosphate sodume

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio
    corecore