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Abstract Clusters of galaxies are the most recently assembled, massive, bound struc-
tures in the Universe. As predicted by General Relativity, given their masses, clusters
strongly deform space-time in their vicinity. Clusters act as some of the most pow-
erful gravitational lenses in the Universe. Light rays traversing through clusters from
distant sources are hence deflected, and the resulting images of these distant objects
therefore appear distorted and magnified. Lensing by clusters occurs in two regimes,
each with unique observational signatures. The strong lensing regime is character-
ized by effects readily seen by eye, namely, the production of giant arcs, multiple
images, and arclets. The weak lensing regime is characterized by small deformations
in the shapes of background galaxies only detectable statistically. Cluster lenses have
been exploited successfully to address several important current questions in cos-
mology: (i) the study of the lens(es)—understanding cluster mass distributions and
issues pertaining to cluster formation and evolution, as well as constraining the na-
ture of dark matter; (ii) the study of the lensed objects—probing the properties of
the background lensed galaxy population—which is statistically at higher redshifts
and of lower intrinsic luminosity thus enabling the probing of galaxy formation at
the earliest times right up to the Dark Ages; and (iii) the study of the geometry of
the Universe—as the strength of lensing depends on the ratios of angular diameter
distances between the lens, source and observer, lens deflections are sensitive to the
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value of cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a current
status report of the field.

Keywords Cosmology: observations · Galaxies: evolution · Galaxies: formation ·
Gravitational lensing

1 Introduction and historical perspective

In the early days of modern cosmology, soon after it was realized that the Universe
was expanding (Hubble 1929, 1931; Lemaître 1931); Zwicky (1933) suggested that
some unseen matter was the likely dominant mass component in clusters of galaxies.
With remarkable prescience, Zwicky (1937) further noted that gravitational lensing
by clusters would be an invaluable tool to: (i) trace and measure the amount of this
unseen mass, now referred to as dark matter and currently thought to pervade the
cosmos; and (ii) study magnified distant objects lying behind clusters. Zwicky’s bold
predictions were based on a profound and intuitive understanding of the properties of
gravitational lensing. However, at that time, inadequate imaging technology coupled
with the lack of theoretical understanding of structure formation in the Universe ham-
pered further observational progress and discoveries of gravitational lensing effects.

Although the existence of clusters of galaxies has been recognized for nearly two
centuries—they were first recognized by Messier and Herschel as “remarkable con-
centrations of nebulae on the sky” (see the review of Biviano 2000 and references
therein) the study of clusters began in earnest only really in the 1950s. In particular,
the publication of the first comprehensive cluster catalog of the nearby Universe by
Abell in 1958, can be considered as a milestone that spurred the study of clusters of
galaxies transforming it into an active observational research area.

In comparison, gravitational lensing theory developed much later in the 1960s
with early theoretical studies demonstrating the usefulness of lensing for astronomy.
In particular, Sjur Refsdal derived the basic equations of gravitational lens theory
(Refsdal 1964a) and subsequently showed how the gravitational lensing phenomenon
can be used to determine Hubble’s constant by measuring the time delay between two
lensed images (Refsdal 1964b). Following the discovery of quasars, Barnothy (1965)
proposed gravitational lensing as a tool for the study of quasars. With the discovery
of the first double quasar Q0957+561 by Walsh et al. (1979) gravitational lensing
really emerged in astronomy as an active observational field of study.

The study of clusters of galaxies as astronomical objects on the other hand, came
of age in the 1970s and early 1980s specially with the discovery of the X-ray emitting
intra-cluster medium (Lea et al. 1973; Gull and Northover 1976; Bahcall and Sarazin
1977; Serlemistos et al. 1977; Cavaliere and Fusco-Femiano 1978) and the numerous
studies of the stellar populations of galaxies in clusters (Bautz and Morgan 1970;
Sandage 1976; Leir and van den Bergh 1977; Hoessl et al. 1980; Dressler 1980).
However, there was no discussion of their lensing properties in theoretical papers till
the 1980s. The paper by Narayan et al. (1984) is one of the earliest theoretical papers
that explored in detail the possibility that clusters can act as powerful lenses. As an
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example, this paper explained large separation multiple quasars as likely “cluster-
assisted” lensing systems. Although such a possibility had been already proposed by
Young et al. (1980), who discovered a cluster of galaxies near the first double quasar
Q0957+561, it was not so obvious for most other systems.

The likely explanation for the lack of interest in cluster lensing research was prob-
ably the belief that clusters were rather diffuse/extended systems and therefore not
dense enough to act as powerful light deflectors. Only with the establishment of the
role of cold dark matter in structure formation, did it become clear that clusters are
indeed repositories of vast amounts of dark matter that enable them to act as efficient
lenses in the Universe. The theory of structure formation in the context of a cold
dark matter dominated Universe was developed in a seminal paper by Blumenthal
et al. (1984). An attractive feature of this cold dark matter hypothesis was its consid-
erable predictive power: the post-recombination fluctuation spectrum was calculable,
and it in turn governs the formation of galaxies and clusters. At that time, good agree-
ment with the data was obtained for a Zel’dovich spectrum of primordial fluctuations.
Several decades later, a version of this paradigm the � Cold Dark Matter (�CDM
hereafter) model which postulates the existence of a non-zero cosmological constant
Ω� is currently well established and is in remarkable agreement with a wide range
of current observations on cluster and galaxy scales.

Nevertheless, it still came as quite a surprise when in 1986, Lynds and Petrosian
(1989) and Soucail et al. (1987) independently discovered the first “giant arcs”: the
strongly elongated images of distant background galaxies in the core of massive clus-
ters (see Fig. 1). This new phenomenon was then immediately identified by Paczynśki
(1987) as the consequence of gravitational lensing by the dense centers of clusters,
and was soon confirmed by the measurement of the redshift of the arc in Abell 370
(Soucail et al. 1988). The discovery of giant arcs revealed the existence of the strong
lensing regime, however, as we know now, it only represents the tip of the iceberg!

Coupled with the growing theoretical understanding of the structure and assem-
bly history of clusters, this observational discovery of cluster lensing opened up an
entire new vista to probe the detailed distribution of dark matter in these systems.
In 1990, Antony Tyson while obtaining deep CCD imaging of clusters, identified a
“systematic alignment” of faint galaxies around cluster cores (Tyson et al. 1990). He
then suggested that this weak alignment produced by the distortion due to lensing
by clusters could be used to map dark matter at larger radii in clusters than strong
lensing afforded. These two key discoveries of strong and weak lensing, respectively,
opened up a rich, new field in astronomy, the study of “cluster lenses”, which we
discuss further in this review.

These observational discoveries stoked the theoretical community to produce a
number of key papers in the first half of the 1990s that developed the theoretical
framework for strong and weak lensing techniques. Several of the seminal papers
date from this period, and theorists delved into quantifying this new territory of grav-
itational lensing. Some of the significant early papers are: Schneider (1984), Bland-
ford and Narayan (1986), Blandford et al. (1989), Kochanek (1990), Miralda-Escudé
(1991), Kaiser (1992), and Kaiser and Squires (1993). It is important to underline that
significant advances in technology spurred the field dramatically during these years.
The discovery of the lensing phenomenon in clusters was made possible thanks to
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Fig. 1 The galaxy cluster Abell 370 as observed by CFHT in 1985 (left) with one of the first CCD
cameras (R-band), in which the first gravitationally lensed arc was later identified (Lynds and Petrosian
1989; Soucail et al. 1987). For comparison, the image on the right shows the Hubble Space Telescope
image of the same cluster Abell 370 taken with the WFPC-2 camera with the F675W filter in December
1995 (Soucail et al. 1999). Most of the bright galaxies seen are cluster members at z = 0.375, whereas the
arc, i.e. the highly elongated feature, is the image of a background galaxy at redshift z = 0.724 (Soucail
et al. 1988). The image is oriented such that North is on top, East to the left and the field of view is roughly
40 × 60 arcsec2

the successful development of CCD imaging that allowed deeper and sharper optical
images of the sky, as well as deep spectroscopy—essential to measure the spectrum
and the redshifts of the faint lensed background galaxies. Another technological rev-
olution was in preparation at that time, a telescope above the atmosphere: the Hubble
Space Telescope (HST). HST has dramatically impacted cluster lensing studies, and,
in particular, that of the strong lensing regime. Although launched in 1991, HST did
not make a strong impact at first, as its unforeseen “blurred vision” made the faint
images of distant galaxies inadequate for lensing work. Nevertheless, even with the
first HST-WFPC1 (Wide Field Planetary Camera) images of Abell 370 and AC114
one could already see the potential power of Hubble for lensing studies.

In December 1993, with the first successful servicing mission and the installation
of the odd shaped WFPC2 camera, Hubble recovered its image sharpness, and it is
not surprising that one of the first image releases following the installation of WFPC2
was the astonishing view of the cluster lens Abell 2218 (Kneib et al. 1996), which is
iconic and has been included in most recent introductory astronomy textbooks.

Image sharpness is one of the key pre-requisites for studying lensing by clusters
(e.g. Smail and Dickinson 1995) and unsurprisingly another requirement is a large
image field of view. The strong lensing regime in clusters corresponds to the inner
one arc-minute region around the cluster center. Typically, cluster virial radii are of
the order of a few Mpc, which corresponds to ∼15 arcminutes for a cluster at z ∼ 0.2.
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Therefore, to go beyond the inner regions and to measure the weak lensing signal
from cluster outskirts, cameras with a sufficiently large field of view are required to
ideally cover the full size of a cluster in one shot (e.g. Kaiser et al. 1998; Joffre et al.
2000).

From the second half of the 1990s we have seen the rapid development of wide
field imaging cameras such as: the UH8k followed by CFHT12k at CFHT (Canada
France Hawaii Telescope); Suprime at the Subaru Telescope; WFI at the 2.2 m tele-
scope at ESO (European Southern Observatory); the Megacam camera at CFHT; the
Gigacam of Pan-STARRS (PS-1); the OmegaCam of the VST and soon the Dark
Energy Camera at CTIO (Cerro Tololo Inter-American Observatory). These cameras
are composed of a mosaic of many large format CCDs (4k × 2k or larger) allowing
coverage of a large field (ranging from a quarter of a square degree up to a few square
degrees). The making of these instruments was strongly motivated by the detection
of the weak lensing distortion of faint galaxies produced by foreground clusters and
intervening large-scale structure, the latter effect is commonly referred to as “cosmic
shear”.

In parallel, techniques to accurately measure the gravitational shear were also de-
veloped. The most well documented is the “KSB” technique (Kaiser et al. 1995)
which is implemented in the commonly used IMCAT software package,1 which
has been since improved by several groups. The accuracy of shape measurements
for distorted background images is key to exploiting lensing effects. The difficulty
in the shear measurement arises as galaxy ellipticities need to be measured ex-
tremely accurately given that there are other confounding sources that generate dis-
tortions. Spurious distortions are induced by the spatially and temporally variable
PSF (Point Spread Function) as well as by intrinsic shape correlations that are un-
related to lensing (Crittenden et al. 2001, 2002). Corrections that carefully take
into account these additional and variable sources of image distortion have been in-
corporated into shape measurement algorithms like LENSFIT2 (Miller et al. 2007;
Kitching et al. 2008). Although the “KSB” technique has been quite popular due to
its speed and efficiency, many new implementations for extracting the shear signal
with the rapid increase in the speed and processing power of computers are currently
available.

The first weak lensing measurements of clusters were reported with relatively
small field of view cameras (Fahlman et al. 1994; Bonnet et al. 1994) but were soon
extended to the larger field of view mosaic cameras (e.g. Dahle et al. 2002; Clowe
and Schneider 2001, 2002; Bardeau et al. 2005, 2007). Two-dimensional dark matter
mapping gets rapidly noisy as one extends over more than ∼2 arcminutes from the
cluster center due to a rapidly diminishing lensing signal. However, radial averaging
of the shear field provides an effective way to probe the mass profile of clusters out
to their virial radius and even beyond. This technique of inverting the measured shear
profile to constrain the mass distribution of clusters is currently widely used. Com-
bining constraints from the strong and weak lensing regime has enabled us to derive

1IMCAT software is available at http://www.ifa.hawaii.edu/~kaiser/imcat/.
2LENSFIT software is available at http://www.physics.ox.ac.uk/lensfit/.

http://www.ifa.hawaii.edu/~kaiser/imcat/
http://www.physics.ox.ac.uk/lensfit/
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the dark matter density profile over a wide range of physical scales. As a conse-
quence, gravitational lensing has become a powerful method to address fundamental
questions pertinent to cluster growth and assembly.

Theoretically, as it is known that clusters are dominated by dark matter, enormous
progress has been made in tracking their formation and evolution using large cosmo-
logical N-body simulations since the 1980s. Gravitational lensing is sensitive to the
total mass of clusters, thereby enabling detailed comparison of the mass distribution
and properties inferred observationally with simulated clusters. Lensing observations
have therefore allowed important tests of the standard structure formation paradigm.

At the turn of the second millennium the new role of lensing clusters is its growing
use as natural telescopes to study very high-redshift galaxies that formed during the
infancy of the Universe (e.g. Franx et al. 1997; Pelló et al. 1999; Ellis et al. 2001).
This became possible with deep spectroscopy on 4 m and then 8–10 m class tele-
scopes that enable probing the high-redshift Universe, primarily by exploiting the
lensing amplification and magnification3 produced by these natural telescopes (Pelló
et al. 2001). Capitalizing on the achromatic nature of cluster lensing, various observa-
tories functioning at different wavelengths of the electromagnetic spectrum have been
deployed for these studies. In particular, the discovery and study of the population of
sub-millimeter galaxies using SCUBA at the James Clerk Maxwell Telescope (JCMT
hereafter; see the reviews by Blain et al. 2002; Smail et al. 2002; Kneib et al. 2004;
Knudsen et al. 2005, 2008; Borys et al. 2005), the Caltech interferometer at Owens
Valley (e.g. Frayer et al. 1998; Sheth et al. 2004), the IRAM interferometer (e.g. Neri
et al. 2003; Kneib et al. 2005), the Very Large Array (VLA) (e.g. Smail et al. 2002;
Ivison et al. 2002; Chapman et al. 2002) and Sub-Millimeter Array (SMA) (e.g.
Knudsen et al. 2010) greatly benefited from the boost provided by the magnification
effect of gravitational lensing in cluster fields. Similarly, observation of lensed galax-
ies in the mid-infrared with the ISOCAM mid-infrared camera on the Infra-red Space
Observatory (ISO) satellite (Altieri et al. 1999; Metcalfe et al. 2003), followed with
the Spitzer observatory (Egami et al. 2005) and now with the Herschel space observa-
tory (Egami et al. 2010; Altieri et al. 2010) have pushed the limits of our knowledge
of distant galaxies further. Gravitational lensing is now recognized as a powerful tech-
nique to count the faintest galaxies in their different classes: Extremely Red Objects
(Smith et al. 2001); Lyman-α emitters at z ∼ 4–6 (Hu et al. 2002; Santos et al. 2004;
Stark et al. 2007); Lyman-break galaxies at z ∼ 6–10 (Richard et al. 2008) as well as
to study in detail the rare, extremely magnified individual sources (Pettini et al. 2000;
Kneib et al. 2004; Egami et al. 2005; Smail et al. 2007, Swinbank et al. 2007, 2010)
in the distant Universe.

Since March 2002, the installation of the new ACS camera onboard HST has pro-
vided further observational advances in the study and unprecedented use of cluster
lenses (see Fig. 2). These are exemplified in the very deep and spectacular ACS im-
ages of Abell 1689 (Broadhurst et al. 2005; Halkola et al. 2006). This color image

3The magnification refers to the spatial stretching of the images by the gravitational lensing effect, how-
ever, the magnification cannot be recognized when the lensed object is not resolved by the observations (if
the object is compact or if the PSF is broad) leading to an apparent amplification of the flux of the lensed
object. In some cases, a lensed object can be tangentially magnified but radially amplified, the use of the
terms magnification and amplification are thus sometimes mixed.
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Fig. 2 Color image of two cluster lenses observed by HST-ACS: left panel Abell 2218 at z = 0.175 and
right panel Cl0024+1654 at z = 0.395

reveals more than 40 multiple-image systems in the core of this cluster (Limousin
et al. 2007) and well over a hundred lensed images in total. The dramatic increase in
the number of strong lensing constraints that these observations provide in the cluster
core has spurred important and significant new developments in mass reconstruction
techniques (e.g. Diego et al. 2005a, 2005b; Jullo et al. 2007; Coe et al. 2008). With
this amount of high quality data the construction of extremely high-resolution mass
models of the cluster core are now possible. Mass models with high precision have
enabled the use of this cluster to constrain the cosmological parameters Ωm and Ω�

(Link and Pierce 1998; Golse et al. 2004; Gilmore and Natarajan 2009; Jullo et al.
2010; D’Aloisio and Natarajan 2011a, 2011b). First observational constraints were
attempted by Soucail et al. (2004), and more recent work by Jullo et al. (2010) has
demonstrated the feasibility of this technique involving detailed modeling of deep
ACS images coupled with comprehensive redshift determinations for the numerous
multiple-image systems. Combining these cosmological constraints from the clus-
ter lens Abell 1689 with those obtained from independent X-ray measurements and
a flat Universe prior from WMAP, Jullo et al. (2010) find results that are compet-
itive with the other more established methods like SuperNovae (Riess et al. 1998;
Perlmutter et al. 1999) and Baryonic Acoustic Oscillations (Eisenstein et al. 2005).
Therefore, in the very near future cluster strong lensing is likely to provide us with a
viable complementary technique to constrain the geometry of the Universe and probe
the equation of state of Dark Energy, which is a key unsolved problem in cosmology
today.

This brief and non-exhaustive historical account of cluster lensing research sum-
marizes some of the important scientific results gathered up to now and demonstrates
the growing importance of cluster lensing in modern cosmology. This review is orga-
nized as follows: we first describe the key features of gravitational lensing in clusters
of galaxies, starting with strong lensing, and then summarize the various weak lensing
techniques as well as some recent developments in the intermediate lensing regime.
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We also dedicate a section to the lensing effect and measurements of galaxy halos in
clusters which has provided new insights into the granularity of the dark matter distri-
bution. The potency here arises from the ability to directly compare lensing inferred
properties for substructure directly with results from high-resolution cosmological
N-body simulations. We then present the different uses of cluster lenses in modern
cosmology. We start with the study of the lens: its mass distribution, and the relation
of the lensing mass to other mass estimates for clusters. We then discuss the use of
cluster lenses as natural telescopes to study faint and distant background galaxy pop-
ulations. And lastly, we discuss the potential use of clusters to constrain cosmological
parameters. Finally, we recap the important developments that are keenly awaited in
the field, and describe some of the exciting science that will become possible in the
next decade, focusing on future facilities and instruments. Cluster lensing is today a
rapidly evolving and observationally driven field.

When necessary, we adopt a flat world model with a Hubble constant H0 =
70 km s−1 Mpc−1, a density parameter in matter Ωm = 0.3 and a cosmological con-
stant Ωλ = 0.7. Magnitudes are expressed in the AB system.

2 Lensing theory as applied to clusters of galaxies

2.1 General description

Clusters of galaxies are the largest and most massive bound structures in the Universe.
Due to their large mass, galaxy clusters (as do galaxies) locally deform space-time
(see Fig. 3). Therefore, the wave front of light emitted by a distant source traversing
a foreground galaxy cluster will be distorted. This distortion occurs regardless of the
wavelength of light as the effect is purely geometric. Moreover, for the most massive
clusters the mass density in the inner regions is high enough to break the wave front
coming from a distant source into several pieces, thereby occasionally producing
multiple images of the same single background source. Background galaxies multiply
imaged in this fashion tend to form the observed extraordinary gravitational giant arcs
that characterize the so-called strong lensing domain. Strongly lensed distant galaxies
will thus appear distorted and highly magnified. They are often referred to as arclets
due to their noticeably elongated shape and preferential tangential alignment around
the cluster center. Note, however, that their observed distorted shape is a combination
of their intrinsic shape and the distortion induced by the lensing effect of the cluster.

When the alignment between the observer, a cluster and distant background galax-
ies is less perfect, then the distortion induced by the cluster will be less important and
cannot be recognized clearly. Statistical methods are required to detect this change in
shape of background galaxies seen in the weak regime. In the weak lensing regime,
the observed shapes of background galaxies in the field of the cluster are typically
dominated by their intrinsic ellipticities or even worse by the distortion of the imag-
ing camera optics and the imaging point spread function (PSF) which is a function of
position on the detector and may also vary with time. Thus, only a careful statistical
analysis correcting the observed images for the various non-lensing induced distor-
tion effects can reveal the true weak lensing signal. The shape changes induced in the
outskirts of clusters in the weak regime are at the few percent level, while the strong
lensing distortions are often larger, and are typically at the 10%–20% level.
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Fig. 3 Gravitational lensing in clusters: A simple schematic of how lensed images are produced delineat-
ing the various regimes: strong, intermediate and weak lensing (see text for a detailed description)

2.2 Gravitational lens equation

Before proceeding to the elegant mathematics of lensing, we first recap the assump-
tions needed to derive the basic lens equation. First, it is assumed that the “Cosmo-
logical Principle” (i.e. the Universe is homogeneous and isotropic) holds on large
scales. The scales under consideration here are the ones relevant to the long-range
gravitational force:

L ∼ c√
Gρ̄

∼ 2 Gpc, (1)

where c is the speed of light, G is the gravitational constant and ρ̄ is the mean density
of the Universe. The large-scale distribution of galaxies as determined by surveys like
the 2 degree Field survey (2dF), the Sloan Digital Sky Survey (SDSS) and the Cos-
mic Microwave Background (CMB) as revealed by the Cosmic Background Explorer
(COBE), and the Wilkinson Anisotropy Probe (WMAP) satellites are in good agree-
ment with the cosmological principle. The assumption of homogeneity and isotropy
imposes strong symmetries on the metric that describes the Universe and allows so-
lutions that correspond to both expansion and contraction. Symmetries restrict the
metric that describes space-time to the following form:

ds2 = c2 dt2 − a2(t)

(
dr2

1 − kr2
+ r2 dθ2 + r2 sin2 θ dϕ2

)
, (2)

where a(t) is the scale factor, and k defines the curvature of the Universe.
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Fig. 4 A single deflector
lensing configuration showing
the relevant angles and distances
that appear in the lens equation

This metric will be locally perturbed by the presence of any dense mass con-
centration, such as individual stars, black holes, galaxies or clusters of galaxies. The
Schwarzschild solution (e.g. Weinberg 1992) gives the form of the metric near a point
mass, and is easy to generalize for a continuous mass distribution in the stationary
weak field limit corresponding to Φ � c2:

ds2 =
(

1 + 2Φ

c2

)
c2 dt2 −

(
1 − 2Φ

c2

)
dr2, (3)

where Φ is the 3D gravitational potential of the mass distribution under consideration.
If we consider a simple configuration of a single thin deflecting lens (Fig. 4), the

observer (O) will see the image (I) of the source (S) deflected by the lens (L). The
geometric equation relating the position of the source �θS to the position of the image
�θI depends on the deflection angle �α and the relevant intervening angular diameter
distances Dij in this case between the lens and source (denoted by DLS) and the
observer and source (denoted by DOS):

�θI = �θS + DLS

DOS
�α(�θI). (4)

The value of �α depends on the local perturbation of the mass on space-time mea-
sured at the location of �θI. The photon path follows a null geodesic that is defined by
ds2 = 0. Hence from (3), one can determine the travel time tT for a given path length
which in turn, is a function of the angle �α. By applying Fermat’s principle, which
states that light follows the path with a stationary travel time, i.e. dtT/d �θI = �0, we
can derive the value of the deflection �α as a function of the local Newtonian gravita-
tional potential:

�α(�θI) = 2

c2

DLS

DOS

�∇�θI
φ2D

N (�θI), (5)

where φ2D
N is the Newtonian gravitational potential projected in the lens plane.

Combining (4) and (5) we derive the lens equation under the thin lens approxi-
mation, which holds for a wide range of deflector masses, from stars to galaxies to
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Fig. 5 Lensing efficiency
E = DLS/DOS for a given lens
as a function of source redshift
zS for different cosmologies.
The two sets of curves
correspond to two different lens
redshifts zL = 0.3 and zL = 0.9
and the solid lines correspond to
Ωm = 0.1, Ω� = 0; the dashed
line to Ωm = 1, Ω� = 0; and
the dashed-dotted line to
Ωm = 0.1, Ω� = 0.9

clusters of galaxies (see Schneider et al. 1992 for a more detailed derivation):

�θS = �θI − 2E
c2

�∇φ2D
N (�θI) = �θI − �∇ϕ(�θI). (6)

The thin lens approximation is valid when the distances from the observer to the
lens and source are significantly larger than the physical extent of the lens, an as-
sumption that is strictly true for all galaxies and clusters. Above we define ϕ as the
lensing potential—a lensing normalized version of the Newtonian projected poten-
tial, and the distance ratio E = DLS/DOS which depends on the redshift of the cluster
zL and the background source zS, as well as—but only weakly—on the cosmologi-
cal parameters Ωm and Ωλ. The distance ratio E measures the efficiency of a given
lens at redshift zL. The factor E is an increasing function of the source redshift zS
(Fig. 5); therefore the larger the background source redshift, the stronger the deflec-
tion and distortion. This relation can be slightly more complex for sources located in
the strong lensing regions. Note also that E is independent of the Hubble constant,
therefore lensing deflection angles and deformations are independent of the value
of H0.

It has also been shown that going beyond the thin lens approximation, the above
lensing equation can be derived in the more general case (with (4) being the limiting
case for Einstein–de Sitter space-time) by simply calculating the null geodesics inter-
secting an observer’s world-line without partitioning light paths into near and far lens
regions (see Pyne and Birkinshaw 1996 for a detailed derivation). The particularly
interesting case is when more than one lensing deflector is responsible for producing
the observed magnification and shear. Observations suggest that the lensing effect of
most clusters are likely further amplified due to the existence of multiple additional
mass concentrations aligned along the line of sight. Therefore, multiple lens planes



Page 12 of 100 Astron Astrophys Rev (2011) 19:47

will ultimately need to be taken into account for accurate mass modeling of clus-
ter lenses. The precise coupling between the lensing effects of two adjacent masses
depends on their transverse separation. Examining the two-screen gravitational lens,
Kochanek and Apostolakis (1988) find, albeit for galaxy scale lenses, that their effects
interact significantly for transverse separations less than 4 × r0 where r0 is the radius
of the outer critical line of the singular potential.4 Independent lenses that are close in
redshift almost always interact and these interactions can lead to either an increase or
a decrease in the total cross section relative to the cross section of two isolated lenses
depending on the system’s geometry. The resultant image geometries in such cases
are dominated by the effects of fold caustics. The deflection can be calculated for the
two-screen lens configuration numerically and most current lens equation solvers are
adapted to do so.

2.3 Gravitational lens mapping

The effect of gravitational lensing can be modeled as a mathematical transformation
of source shapes into observed image shapes. The lensing transformation is thus a
mapping from the source plane (S) to the image plane (I) [see Fig. 6]. In the case of
a single lens plane, the Hessian of this transformation (also called the magnification
matrix) relates to first order a source element of the image (d �θI) to the source plane
(d �θS) in the following way, in Cartesian and polar coordinates, respectively:

d �θS

d �θI
= A−1 =

(
1 − ∂xxϕ −∂xyϕ

−∂xyϕ 1 − ∂yyϕ

)
=

(
1 − ∂rrϕ −∂r(

1
r
∂θϕ)

−∂r(
1
r
∂θϕ) 1 − 1

r
∂rϕ − 1

r2 ∂θθϕ

)
.

(7)
This matrix is referred to as the magnification/amplification matrix and it is conven-
tionally written as

A−1 =
(

1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (8)

where the convergence is defined as κ = �ϕ/2 = Σ/Σcrit and the shear vector (also
often denoted as a complex number) �γ = (γ1, γ2) as

γ1 = (∂xxϕ − ∂yyϕ)/2 γ2 = ∂xyϕ, (9)

and the norm is given by

2γ =
√

(∂xxϕ − ∂yyϕ)2 + (2∂xyϕ)2. (10)

The term Σcrit is the critical lensing surface density defined as

Σcrit = c2

4πG

DOS

DLSDOL
= cH0

4πG

DOS

DLS

c/H0

DOL
. (11)

4Critical lines and caustics are defined in the next subsection.
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Fig. 6 Illustration of the effect of lensing: local deformation of a regular grid and a circle (left: source
map) by a lens with constant value of the convergence κ and the shear γ over the region (right: image
map)

It can be clearly seen that the critical surface mass density scales as

Σcrit � 0.162

(
H0

70 km s−1 Mpc−1

)(
DOS

DLS

)(
c/H0

DOL

)
g cm−2. (12)

For instance, given a cluster lens at zL = 0.3 and a source at redshift zS = 1.0,
DOS
DLS

= 1.567 and c/H0
DOL

= 4.661, yielding

Σcrit � 1.18

(
H0

70 km s−1 Mpc−1

)
g cm−2. (13)

Thus, for a cluster with a depth of ∼300 kpc, the 3D mass density needed to reach
the lensing critical surface mass density is about 10−24 g/cm3, which corresponds to
a density that is ∼10,000 times the critical density of the Universe ρcrit. Background
galaxies viewed via a cluster region where the surface mass density is critical or
higher are likely to be multiply imaged.

We can readily see that the magnification matrix is real and symmetric, therefore,
it can be diagonalized, and can be written in its principal axes as follows:

A−1 =
(

1 − κ + γ 0
0 1 − κ − γ

)
= (1−κ)

[(
1 0
0 1

)
+ γ

1 − κ

(
1 0
0 −1

)]
. (14)

From this equation, we see that 1 − κ describes the isotropic deformation, and
the shear γ describes the anisotropic deformation. Note that the quantity that is most
directly measured from faint galaxy shapes is the reduced shear g defined as g =
γ /(1 − κ).

The direction of the deformation (or equivalently of the shear) can be written as

tan 2θshear = 2∂xyϕ

∂yyϕ − ∂xxϕ
. (15)
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As the direction of the shear is a ratio of the components of the lensing potential,
the shear direction θshear will be independent (modulo 90 degrees) of the distance
ratio E = DLS/DOS and thus will be independent of the source redshift zS. Only the
intensity or magnitude of the shear will change with the source redshift zS.

2.4 Critical and caustic lines

The magnification μ is defined as the determinant of the magnification matrix and
can be expressed as a function of κ and γ as

μ−1 = det
(

A−1) = (1 − κ)2 − γ 2 = (1 − κ)2(1 − g2). (16)

The magnification is infinite if one of the principal values of the magnification
matrix is equal to zero, which implies that the reduced shear g is equal to 1 or −1.
Thus, the locus in the image plane of infinite magnification defines two closed lines
that do not intersect (as g cannot be equal to 1 and −1 at the same location) and
these are called the “critical lines”. The corresponding lines in the source plane are
called “caustic lines”, they are also closed lines but contrary to the critical lines, they
can intersect each other. In general, for a simple mass distribution, we can easily
distinguish the two critical lines: the external critical line where the deformations are
tangential, and the internal critical line where the deformations are radial. Note that
these simple geometries for the critical and caustic lines do not hold strictly for more
complex mass distributions (see Fig. 7 for examples of critical and caustic lines for
different simple mass distribution).

For a circularly symmetric mass distribution, the equations for the critical lines are
simple. The magnification matrix in polar coordinates simplifies to

A−1 =
(

1 − ∂rrϕ 0
0 1 − 1

r
∂rϕ

)
. (17)

Thus both the critical and caustic lines (if they exist) are circles. In fact, substitut-
ing the equation of the tangential critical line: r = ∂rϕ into the lensing equation to
compute the caustic line, we find that the tangential caustic line is always restricted
and reduces to a single point in the case of a circular mass distribution. It is also rela-
tively easy to demonstrate that for a well behaved mass distribution the radial critical
line is always located within the tangential critical line (Kneib 1993).

It is important to notice that for a circularly symmetric mass distribution, the pro-
jected mass enclosed within the radius r can be written as

M(r) = c2

4G

DOSDOL

DLS
r∂rϕ(r) = πΣcritr∂rϕ(r). (18)

At the tangential critical radius we have rct = ∂rϕ(rct), thus the mass within the tan-
gential critical radius (also referred to as the Einstein radius rE) is

M(rE) = πΣcritr
2
E. (19)

The critical surface mass density Σcrit corresponds to the mean surface density en-
closed within the Einstein radius. Thus the higher the mass concentration, the larger
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Fig. 7 Critical lines (dashed) and caustics (solid) for different classes of mass models: (a) for a singular
isothermal circular mass distribution, the radial critical line is the central point, and the corresponding
caustic line is at infinity, (b) a singular isothermal elliptical mass distribution, the tangential caustic line is
an astroid, (c) a circular mass distribution with an inner slope shallower than isothermal mass distribution,
in this case a radial critical curve appears, and both caustics are circles. (d) same as (c) but for an elliptical
mass distribution, the relative size of both caustic lines will depend on the mass profile and the ellipticity
of the mass distribution, (e) a bimodal mass distribution with two clumps of equal mass, similar to (d), and
(f) for a bimodal distribution with unequal masses

the Einstein radius. For a given surface mass density profile, the size of the Einstein
radius will depend on the redshift of the lens and the source as well as the underlying
cosmology. The variation of Σcrit for a given source redshift as a function of the lens
redshift shows that for a given lens mass distribution the most effective lens is placed
at roughly less than half the source redshift.

Furthermore, the radial critical curve is defined as

∂rrϕ(r) = ∂r

(
M(r)

πΣcritr

)
= 1, (20)

thus, the position of the radial critical line depends on the gradient of the mass profile.
The above equations suggest that: (i) from the tangential critical curve location,

the total mass enclosed within a circular aperture can be measured precisely, and (ii)
from the radial critical curve, the slope of the mass profile near the cluster center can
be strongly constrained. However, for an accurate estimate of the mass enclosed the
redshifts of the cluster and the arc need to be known precisely. Furthermore, note that
only the mass normalization scales directly with the value of H0, but not the derived
mass profile slope.

For the general non-circular case, the determination of the critical lines cannot be
addressed analytically except for certain simple elliptical mass profiles (e.g. Kneib
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Fig. 8 HST/ACS color image of MACSJ0451+00. The red curve shows the location of the critical line for
a source at z = 2. A giant arc at z = 2.01, as well as different sets of multiple images are identified (each
system of images is marked with a circle of the same color—the cyan and magenta identified multiple
image have no spectroscopic redshift measurement yet) (Richard et al. private communication)

Fig. 9 Multi-scale marching
square field splitting to map
critical lines: the boxes represent
the splitting squares and the red
lines chart the critical curve
contour. The imposed upper and
lower limits for the box sizes are
10′′ (corresponding to the
largest box shown) and 1′′,
respectively. The 1′′ boxes are
not plotted here for clarity.
Figure adapted from Jullo et al.
(2007) where more details may
be found

1993). The complexity of the shapes of critical lines can be seen for the lens model
of MACS0451-02 (Fig. 8). Indeed, to solve for the critical line in complex lens mass
models, one has to resort to numerical methods. Iterative methods are more econom-
ical in terms of CPU time. For example, Jullo et al. (2007) have implemented the
“Marching Square” technique for computing critical lines (see illustration in Fig. 9).

The above property linking the total mass within the critical line to the area within
the critical line does not hold exactly for the more general cases but it is still a good
approximation if the mass distribution is not too different from the circularly sym-
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metric case (Kassiola and Kovner 1993). Hence identifying the characteristic sizes of
the critical lines both radial and tangential in an observed cluster is the first important
step toward measuring the mass and its degree of concentration in the inner regions.

2.5 Multiple images

2.5.1 Definition

Critical lines are virtual lines, and thus cannot be directly mapped. However, multiple
images that straddle critical lines can easily be identified in high resolution images.
For instance, tangentially distorted images are found near tangential critical lines and
radially distorted ones near the radial critical lines. One often refers to tangential
pairs or radial pairs, which are simple configurations that are easily recognizable
(e.g. Miralda-Escudé and Fort 1993). For example, one can have triplets, quadruplets,
quintuplets or even larger multiplicities of images of the same source depending on
the complexity of the mass distribution.

The number of multiple images produced is simply the number of solutions of (6).
It can be estimated easily using catastrophe theory (Thom 1989; Zeeman 1977; Erdl
and Schneider 1993), according to which each time one crosses a caustic line in the
source plane two additional lensed images are produced. For a non-singular mass
distribution we expect to always have an odd number of multiple images (Burke
1981). However, some images are likely to be less magnified, or in fact, demagnified
so that they are not observable, thereby complicating at first the task of counting the
total number of multiple images produced. Often, the presence of a bright central
galaxy in clusters scuppers the detection of the central demagnified image.

2.5.2 Multiple-image symmetry

Multiple images have different symmetries which can be summarized by the signs of
the eigenvalues of the magnification matrix, we can thus in principle have three pos-
sibilities for the parities, which correspond to the symmetry of the source, denoted
as (+,+), (+,−) and (−,−). For example we often talk about “mirror” symmetry,
when we recognize a counter image as the flipped image of galaxy with a remarkably
similar morphology. The image symmetry property is generally used to identify mul-
tiple images in what turns out to be a secure way, as we see in the pair configuration
of Fig. 10.

Indeed, each time, one crosses a critical line (this corresponds to a change in sign
of one of the eigenvalues of the magnification matrix), the parity of the image changes
(Blandford and Narayan 1986; Schneider et al. 1992). For simple mass distributions,
only three parities described above by the notation (+,+), (−,−) and (+,−) can be
observed as shown in Fig. 11. Since for a simple mass distribution the radial critical
line is always inside the tangential critical line, the parity (−,+) is not physically
allowed.

2.5.3 Examples of multiple-image systems

Massive clusters frequently produce multiple images, and this happens when the sur-
face mass density of the cluster core is close to or larger than the critical surface mass
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Fig. 10 The lensed pair S1–S2 in AC114. This galaxy at z = 1.867 displays the surprising morphology
of a hook, with an obvious change in parity (Smail et al. 1995; Campusano et al. 2001)

Fig. 11 Area in the image plane showing different image parities (indicated by the signs in parentheses):
(a) in the case of a simple elliptical mass distribution, (b) in the case of a bimodal mass distribution. The
dashed lines correspond to the critical lines. The arrow is just an indication of the radial direction of the
closest mass clump. We note that while the deformations shown in this figure are completely arbitrary, the
orientation of the images is portrayed accurately

density:

Σcrit = c2

4πG

DOSDOL

DLS
,

for given lens and source redshifts. The detailed configuration of multiple images can
be used to unravel the structure of the mass distribution.

A cluster with one dominant clump of mass will produce (for the range of multiple-
image configurations see Fig. 12) fold, cusp or radial arcs (e.g. MS2137.3-2353: Fort
et al. 1992; Mellier et al. 1993; AC114: Natarajan et al. 1998; A383: Smith et al.
2001, 2003); a bimodal cluster can produce straight arcs (e.g. A2390: Pelló et al.
1991; Cl2236-04: Kneib et al. 1994), triplets (A370: Kneib et al. 1993; Bezecourt
et al. 1999); a very complex structure with lots of massive halos in the core can
produce multiple-image systems with seven or more images of the same source (e.g.
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Fig. 12 Multiple-image configurations produced by a simple elliptical mass distribution. The panel (S)
shows the caustic lines in the source plane and the positions numbered 1 to 10 denote the source position
relative to the caustic lines. The panel (I) shows the image of the source without lensing. The panels (1)
to (10) show the resulting lensed images for the various source positions. Certain configurations are very
typical and are named as follows: (3) radial arc, (6) cusp arc, (8) Einstein cross, (10) fold arc

A2218, see Fig. 13). The presence of every nearby perturbing mass can typically add
two extra images to a simple configuration if that mass is well positioned relative
to the central core. Very elongated/elliptical clusters with appropriate inner density
profile slopes can produce hyperbolic-umbilic catastrophes producing quintuple arc
configurations such as the one seen in Abell 1703 (Limousin et al. 2008). A thorough
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Fig. 13 A spectacular set of multiple images seen in the cluster Abell 2218 in the composite B, R, and
I-band HST image. A distant E/S0 galaxy at z = 0.702 is lensed into a 7-image configuration

description of exotic configurations has been discussed quite extensively in a paper
by Orban de Xivry and Marshall (2009).

2.5.4 Multiple-image identification

Multiple images can be identified by their distinct properties. Traditionally, multiple
images have been recognized as the images forming the giant arcs (3 images in the
case of Abell 370, but only two images in the case of MS2137-17 or Cl2244-04).
However, not every giant arc is composed of multiple images, for example it is most
likely that the northern giant arc in Abell 963 is only a single image, and that the
southern arc in Abell 963 is composed of two or three arclets (single images) from
sources at different redshifts as revealed by their different colors. Multiple images can
be recognized in terms of their (mirror) symmetry, which is of course best visible with
high-resolution HST data. One of the classic examples is the “hook-pair” in AC114
(Fig. 10) where the image symmetry is readily identified. Furthermore, as lensing is
achromatic, multiple images can be recognized by the similarity of their colors, or by
their extreme brightness at a specific wavelength like in the sub-mm or in mid-infra
red.

Finally, the secure way to identify and confirm the existence of a multiple-image
system, is through the detailed modeling of the cluster lens itself. This allows one in
principle to test if a set of images having similar morphology and colors can actu-
ally be multiple images of the same source. Calibrated lens models can predict the
location of counter images and also predict the redshift of the multiply lensed source
(Kneib et al. 1993, 1996).

Ultimately, for studying a large sample of massive clusters, one would likely need
to develop automatic techniques to identify multiple-image systems based on their
morphology, color and more sophisticated lens modeling software. Although such
robotic processes are being developed (Sharon private communication), further de-
velopments are needed to make them completely user friendly.
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Fig. 14 Diagram showing the regions wherein multiple images are produced with the location of critical
lines marked, for the case of different mass models (a) circular mass distribution; (b) an elliptical mass
distribution and (c) a bimodal mass distribution. The grey scale areas indicate regions behind which we
can expect a single background galaxy to be imaged into three (light grey) or five (dark grey) multiple
images

2.5.5 Multiple-image regions

Multiple images are located in the central regions of clusters where the surface mass
density is close to or higher than the lensing critical surface density. For a given
source redshift one can compute the region conducive to multiple imaging and the
expected multiplicity. This is easily computed, as for any given image position θI, we
can determine the source position θS using the lensing equation (4). Given a source
position it is straightforward to determine whether θS lies within a caustic curve or
not. The expected number of images is given by (1 + 2Nc) where Nc is the minimum
number of caustic curves that need to be crossed to reach the position θS (Fig. 14).
The calculation of multiple-imaging regions can be useful to help observationally
identify multiple-image counterparts (Fig. 15) particularly in the case of complicated
mass distributions.

2.6 First order shape deformations—shear

Distant sources are only multiply imaged in the central regions of cluster where the
surface mass density is sufficiently high. However, every observed galaxy image in
the field of the cluster is deformed by lensing, typically in the weak regime. To first
order, one can approximate the light distribution of a galaxy as an object with ellipti-
cal isophotes. In this event, the shape and size of galaxies can be defined in terms of
the axis ratio and the area enclosed by a defined boundary isophote.

However, the real shapes of faint galaxies can be quite irregular and not well ap-
proximated by ellipses. We thus need to express the shape of a galaxy in terms of its
pixelized surface brightness as measured on a digital detector. For this purpose, we
use the moments of the light distribution to define shape parameters. If I (�θ) is the
surface brightness distribution of the galaxy under consideration, we can define the
center of the image �θc = (θC

i , θC
j ) using the first moment of the I (�θ) distribution:

�θc =
∫

W(I (�θ))�θ d �θ∫
W(I (�θ)) d �θ . (21)
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Fig. 15 Hubble ACS color image of Abell 1703 (image shown is from the combination of the F450W,
F606W and F850LP filters), showing the location of all the multiply imaged systems. The white cross at
the center of the image marks the location of the brightest cluster galaxy, which has been subtracted from
this image for clarity. The red dashed line outlines the limit of the region where we expect multiple images
from sources out to z = 6 (figure from Richard et al. 2009)

Note that W(I) is a weight/window function that allows the integrals above to be
finite in the case of noisy data. The simplest choice for the function W(I) is the
Heaviside step function H(I − Iiso) which is equal to 1 for I (�θ) > Iiso where Iiso is
the isophote limiting the detection of the object, and 0 otherwise. The image center
found is then taken as the center of the detection isophote. Another popular weight
function that is frequently adopted is W(I) = I × H(I − Iiso), where the window
function is now weighted by the light distribution within the isophote.

The second order moment matrix of the light distribution centered on �θc:

Mij =
∫ ∫

W(I (�θ))(θi − θC
i )(θj − θC

j ) dθi dθj∫ ∫
W(I (�θ)) dθiθj

, (22)
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Fig. 16 A typical faint galaxy observed on a CCD image (left), and the equivalent ellipse defined from
the second order moments (right)

allows us to define the size, the axis ratio and the orientation of the corresponding
approximated ellipse. Indeed the moment matrix M is positive definite and can be
written in its principal axes as

Mij = Rθ

(
a2 0
0 b2

)
R−θ , (23)

where a and b are the semi-major and semi-minor axes, respectively, and θ the posi-
tion angle of the equivalent ellipse, and Rθ is the rotation matrix of an angle θ . Thus
the moment matrix M contains three parameters: the size of the galaxy, its ellipticity
and its orientation (see illustration in Fig. 16).

It is useful to define a complex ellipticity which encodes both the shape parameter
and the orientation of an observed galaxy.

There are, however, a number of ways to define the norm of the complex ellipticity,
and the lensing community has experimented several notations:

|ε| = a2 − b2

a2 + b2
|δ| = a2 + b2

2ab
|τ | = a2 − b2

2ab
|ε| = a − b

a + b
. (24)

With the complex ellipticity defined for example as

ε = |ε|e2iθ . (25)

The notation ε was the first to be introduced, as it emerges naturally from the
moment calculation, then τ and δ were introduced in the context of cluster lensing
by Kneib (1993) and Natarajan and Kneib (1997). The advantage of this form is that
the lens mapping can be written as a simple linear transformation from the image
plane to the source plane which is mathematically convenient. Subsequently ε was
adopted, and it has now become the standard definition, essentially because it is a
direct estimator (modulo the PSF correction) of the measured quantity, which is the
reduced shear g as we show below. All ellipticity parameters are of course linked to
each other, and in particular we have ε = 2ε/(1 + |ε|2).
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With the various definitions in hand for the relevant parameters, we can now ex-
plicitly express the transformation produced by gravitational lensing on the shape
of a background galaxy. First, it can be shown that the image of the center of the
source corresponds to the center of the image in the case where the magnification
matrix does not change significantly across the size of the image (Kochanek 1990;
Miralda-Escudé 1991). This is generally adopted as the definition of the weak lensing
regime as such a simplification does not hold in the strong lensing regime. To demon-
strate this explicitly, one has to use the fact that the surface brightness is conserved
by gravitational lensing as was first demonstrated by Etherington (1933), namely,
I (�θI) = I (�θS).

The lens mapping will transform the shape of the galaxy, by magnifying it and
stretching it along the shear direction. This transformation can be written in terms of
the moment matrix MS (for the galaxy in the source plane) and M I (for the galaxy in
the image plane—that is, as observed) as follows:

MS = A−1M I tA−1, (26)

or if the matrix A−1 is not singular:

M I = AMS tA. (27)

Note that tA is the transpose of matrix A.
These equations describe how the ellipse defining the source shape is mapped onto

the equivalent ellipse of the image or vice versa. If we consider the size σ = πa × b

of the equivalent ellipse, we can write

σ 2
S = detMS = detM I · (detA−1)2 = σ 2

I · μ−2. (28)

Thus the overall size σS of the source is enlarged by the magnification factor μ.
Similarly, it is possible to write the lensing transformation for the complex ellipticity,
which of course will depend on the ellipticity estimator chosen. For the ellipticity ε,
and using the complex notation, we have

εS = εI − g

1 − gεI
, for |g| < 1, (29)

which corresponds to the region external to the critical lines, and

εS = 1 − g∗ε∗
I

ε∗
I − g∗ , for |g| > 1, (30)

which corresponds to the region inside the critical lines (the notation ∗ denotes the
transpose of a complex number).

In the weak regime, where the distortions are small (|g| � 1) the lensing equation
simplifies to

εI = εS + g. (31)
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Thus the ellipticity of the image is just a linear sum of the intrinsic source ellipticity
and the lensing distortion in this limit. Thus averaging the above equation over a num-
ber of sources yields the convenient fact that image ellipticities are a direct measure
of the reduced shear g. Note, however, that these simplified equations mask observa-
tional limitations such as the PSF/seeing convolution and pixelization, all effects that
contribute to and contaminate observed image shapes.

2.7 Mass-sheet degeneracy

The “mass sheet degeneracy” problem was recognized as soon as mass distributions
began to be mapped using lensing observations (e.g. Falco et al. 1985) and the issue
has been discussed in detail in Schneider et al. (1992), Schneider and Bartelmann
(1997) and Bradač et al. (2004) in the context of weak lensing mass measurement.
This degeneracy arises due to the lack of information needed to calibrate the total
mass of clusters in the absence of a normalization scheme due to the simple fact
that the addition of a constant surface mass density sheet leaves the measured shear
unaltered.

Expressed mathematically, the magnification and shear are invariant under the fol-
lowing transformation:

κ ′ = (1 − λ)κ + λ (32)

and

γ ′ = (1 − λ)γ, (33)

where λ is the mass-sheet (denoting a sheet of constant surface mass density) added
to the lens plane. Expressing the reduced shear with the above two equations we can
show that

g′ = g, (34)

thus the reduced shear is conserved under this transformation. This means that for
a given observed reduced shear field, one can only extract the surface mass density
distribution κ up to a constant factor given by the unknown value of λ.

There are several ways to break the mass sheet degeneracy, the obvious way is
to use lensed sources from different source redshift planes. Indeed with, κ(z1) =
E (z1)/E (z2)κ(z2), such a transformation is incompatible with the above invariance.
Other methods to break the mass-sheet degeneracy, such as the inclusion of con-
straints from the strong lensing regime are discussed further in Sect. 3.4.3 on lens
modeling.

2.8 Higher order shape deformations—flexion

The equations in the previous section assume that κ and γ and as a consequence
the reduced shear g are all constant across an image. This assumption fails when
an image is physically large and/or when it is close to critical regions where the
lensing distortion is changing rapidly. There are basically two effects that lensing
produces on a background elliptical source: a shift in the peak flux at the center of
the image compared to that of the fainter isophotes (while still preserving the surface
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Fig. 17 Decomposition of weak lensing distortions, illustrated for an unlensed Gaussian galaxy with a
radius of 1 arcsec. The source has been distorted with 10% convergence/shear, and 0.28 arcsec−1 flexion.
The convergence κ , and 2 components of the first flexion (F1 and F2); shear (γ1, γ2); and second flexion
G1 and G2 are shown. As mentioned, flexion causes the arciness or elongation of weakly lensed arcs once
one combines F , G and γ (figure from Bacon et al. 2006)

brightness from the source to the image), and the distortion of the elliptical shape into
an extended “banana” shape. Therefore, there is additional, valuable information that
can be gleaned from higher order lensing effects.

To determine these higher order effects numerically, one needs to use higher or-
ders of the lensing transformation using the Taylor expansion of the image shape. This
was first investigated by Goldberg and Natarajan (2002), and followed up by Gold-
berg and Bacon (2005). A recent summary of the formalism and applications is re-
viewed in Bacon et al. (2005). Flexion is the significant third-order weak gravitational
lensing effect responsible for the skewed and arc-like appearance of lensed galaxies.
Flexion has two components: the first flexion, which is essentially the derivative of
the shear field which contains local information about the gradient of the matter den-
sity (Goldberg and Natarajan 2002) and the second flexion which contains non-local
information (Bacon et al. 2005 and Fig. 17). Flexion measurements can be used to
measure density profiles and these reconstructions can be combined with those de-
rived from the shear alone. One key advantage of using the flexion estimator is that
it is not plagued by the mass sheet degeneracy as it is a higher order term, while its
dispersion measure is comparable to that of the shear. Recent successful applications
of flexion to map mass distributions can be found in Okura et al. (2008), Leonard
et al. (2011) and Er et al. (2011).

Flexion arises from the fact that the shear and convergence are actually not con-
stant within the image, and therefore to derive its explicit form we need to expand to
second order:

θ ′
i � Aij θj + 1

2
Dijkθj θk, (35)

with

Dijk = ∂kAij . (36)
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Using results from Kaiser (1995), we find that

Dij1 =
(−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)
,

Dij2 =
(−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

)
.

(37)

By expanding the surface brightness as a Taylor series and using the relations above,
we can approximate the lensed surface brightness of a galaxy in the weak lensing
regime as

f (θ) �
{

1 +
[
(A − I )ij θj + 1

2
Dijkθj θk

]
∂i

}
f ′(θ). (38)

This shows that the flexion can be written explicitly in terms of derivatives of the
shear field. We define the flexion in terms of these shear derivatives, using the com-
bination which is shown by Kaiser (1995) to directly give the gradient of the conver-
gence:

F ≡ (γ1,1 + γ2,2)i + (γ2,1 − γ1,2)j (39)

= ∇κ (40)

= |F |eiφ. (41)

Since flexion is defined in terms of derivatives of the shear field, to measure it from
observed shapes we need to be able to measure these derivatives, γi,j with sufficient
accuracy. This is becoming increasingly feasible with the availability of high quality
imaging data. The first flexion probes the local density via the gradient of the shear
field and quantifies the variation of the center of the different isophotal contours.
The second flexion probes the non-local part of the gradient of the shear field and
quantifies the shape variation and departure from elliptical symmetry.

Flexion has been incorporated as an additional constraint in the cluster mass re-
constructions only recently as extremely high quality data is required to extract the
flexion field and this is very challenging (see Leonard et al. 2011 for the case of Abell
1689). This higher order shape estimator, however, offers a powerful probe provided
it can be measured accurately from observations (Leonard and King 2010; Er et al.
2011). As an illustration, we present the calculation of the flexion for the SIS model
in Appendix A.4.

3 Constraining cluster mass distributions

In most cases, intermediate redshift z ∼ 0.2–0.5 massive clusters are the most signifi-
cant mass distribution along the line of sight, thus they can be represented by a single
lens plane in concordance with the thin lens approximation. In the �CDM model, the
probability of finding two massive clusters extremely well aligned along the line of
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sight (albeit separated in redshift) is extremely unlikely as clusters are very rare ob-
jects. Lensing deflections and distortions probe the two dimensional projected cluster
mass along the line of sight. This allows us to constrain the two dimensional New-
tonian potential, φ(x, y), resulting from the three-dimensional density distribution
ρ(x, y, z) projected onto the lens plane. The related projected surface mass density
Σ(x,y) is then given by

4πGΣ(x,y) = ∇2φ(x, y). (42)

Often we are interested in the two-dimensional projected mass inside an aperture
radius R (particularly when comparing different mass estimators), which is defined
explicitly as follows:

Maper(R) = 2π

∫ R

0
Σ(x)x dx, (43)

and the mean surface density inside the radius R is given by

Σ(R) = 1

πR2

∫ R

0
2πxΣ(x)dx. (44)

The important quantities for lensing in clusters are primarily the deflection angle
�α between the image and the source, the convergence κ, and the shear γ , which can
all be conveniently expressed in terms of the projected potential:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(45)

For a radially symmetric mass distribution, these expressions can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(x) = Σ(x)

Σcrit
,

γ (x) = Σ(x) − Σ(x)

Σcrit
,

�α(x) = θ
Σ(x)

Σcrit
= θ

(
κ(x) + γ (x)

)
(46)

where x = DOLθ is the radial physical distance. From this equation, we note that
one can derive γ directly from α and κ . This formulation is particularly useful when
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trying to compute an analytic expression of the lensing produced by a given mass
profile.

3.1 Strong lensing modeling

3.1.1 Modeling approaches

Traditionally, modeling of the cluster mass distribution in the strong lensing regime
is done using “parametric models” (e.g. Kneib et al. 1996; Natarajan and Kneib
1997). In these schemes the mass distribution is described by a finite number of mass
clumps; some small scale (galaxy components) and some large scale (to represent
the dark matter, X-ray gas in the Intra-Cluster Medium), each of which are described
in turn by a finite number of parameters contingent upon the choice of mass profile
deployed. The simplest mass distribution that is commonly employed is the circu-
lar Singular Isothermal Sphere (SIS), which is described by three parameters. The
parameters are the position of its center (x, y) and the value of the velocity disper-
sion σ , which in this case is a constant. Other mass distributions such as the PIEMD
(Pseudo Isothermal Elliptical Mass Distribution) or NFW (Navarro–Frenk–White)
profiles are often used in lensing analysis and their relevant parameters are described
in the Appendix (see Sects. A.1–A.3).

Using a simple mass model makes sense when there are not many available obser-
vational constraints—indeed one needs to balance the number of model parameters
to the number of observational constraints available in order to compute a sensible
best-fit model. However, with recent deep images of cluster cores from HST a very
large number of multiple images can readily be identified. For instance, more than
40 multiple-image systems have been identified in the massive cluster Abell 1689 by
Limousin et al. (2007). The discovery and identification of such a large number of
multiple images has dramatically increased the number of constraints available for
mass modeling of massive clusters in the last decade. With the availability of a larger
number of multiply imaged systems with redshift measurements, more accurate mass
models (Fig. 18) are now possible.

Therefore, the number of allowable parameters required to describe the mass dis-
tribution of a cluster has also increased, leading obviously to a more accurate de-
scription of the mass profile in the cluster core. This is for example evident upon
comparing the model of Kneib et al. (1993) with that of Richard et al. (2010) for the
cluster Abell 370. In the case of “parametric models”, the increase in the number of
constraints translates to the fact that cluster mass distributions can now be described
by a larger number of mass clumps and each of these clumps can be more complex
(e.g. having elliptical mass distributions rather than circular, and a radial profile de-
scribed by more parameters).

The increase in the number of available constraints has also lead to the develop-
ment of new “non-parametric” methods, where no (or few) external priors are re-
quired to describe the mass distribution of clusters (Diego et al. 2005a; Saha and
Williams 1997; Coe et al. 2010). Generically, in most of these “non-parametric”
methods, the mass distribution is typically tessellated into a regular grid of smaller
mass elements. Further details of such methods are discussed later on in this section.
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Fig. 18 Relative aperture mass error as a function of the number of multiple images as measured in
Richard et al. (2010). Open symbols: clusters observed with WFPC2. Filled symbols: clusters observed
with ACS. Symbols reflect the number of filters used to image the cluster (circle: 1 filter, triangle: 2 filters,
diamond: 3 or more filters). One can see that with multi-band ACS data we can uncover more than 10
multiple-image systems for the most massive clusters, and thus achieve mass accuracy within 10% or so
in cluster cores

3.1.2 From simple to more complex mass determinations

A particularly useful and popular mass estimate in the strong lensing regime is the
mass enclosed within the Einstein radius θE, given by

M(< θE) = πΣcritD
2
OLθ2

E, (47)

where θE is the location of the tangential critical line for a circular mass distribution,
usually approximated by the tangential arc radius θarc. It is a very handy expression
that is independent of the mass profile for circularly symmetric cases. However, cau-
tion needs to be exercised when using this expression as often the arc used to derive
the mass has an unknown redshift (thus Σcrit is not well defined), or the arc is a sin-
gle image and therefore does not trace the Einstein radius or the mass distribution is
very complex with a lot of substructure. Note that, however, for a singular isothermal
sphere model, a single image cannot be closer than twice the Einstein radius since it
will then have a counter image. In conclusion, this estimator tends to typically over-
estimate the mass in instances where the tangential arc is not multiply imaged or its
redshift is unknown.

The radial critical line can be constrained when a radial arc is observed in the
cluster core, this has now been done for a number of cluster lenses (e.g. Fort et al.
1992; Smith et al. 2001; Sand et al. 2002; Gavazzi et al. 2003). These features are
important as they lie very close to the cluster core, and thus provide a unique probe
of the surface mass density in the very center. Baryons are highly concentrated in the
inner regions of clusters and they are expected to play an important role in possibly
modifying the dark matter distribution on the smallest scales. The scales on which
these effects are expected are accessible effectively with lensing data. Radial arcs
have been used to probe the dark matter slope in the inner most regions of clusters
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(Sand et al. 2005, 2008; Newman et al. 2011), the results of these studies will be
discussed in detail later on in this review.

The proper way to accurately constrain the mass in cluster cores is thus to use
multiple images with preferably measured spectroscopic redshifts to absolutely cali-
brate the mass. To do this, one generally defines a likelihood L for the observed data
D and parameters p of the model:

L = Pr(D|p) =
N∏

i=1

1∏ni

j=1 σij

√
2π

exp− χ2
i
2 , (48)

where N is the number of systems, and ni the number of multiple images for the
system i. The contribution from the multiple-image system i to the overall χ2 can be
simply given by

χ2
i =

ni∑
j=1

[θj

obs − θj (p)]2

σ 2
ij

, (49)

where θj (p) is the position of image j predicted by the current model, whose param-
eters are p and where σij is the error on the position of image j .

The accurate determination of σij depends on the signal-to-noise of the image S/N
ratio. For extended images, a pixellated approach is the only accurate way to take the
S/N ratio of each pixel into account (Dye and Warren 2005; Suyu et al. 2006) but
this is not optimal for cluster lenses with a large number of multiple-image systems.
However, to a first approximation, the positional error of images can be determined
by fitting a 2D Gaussian profile to the image surface brightness, which assumes that
the background galaxy is compact and its surface brightness profile is smooth enough
so that the brightest point in the source plane can be reliably matched to the brightest
point in the image plane.

A major issue in the χ2 computation is how to match the predicted and observed
images one by one. In models producing different configurations of multiple images
(e.g. a radial system instead of a tangential system), the χ2 computation will fail
and the corresponding model will then be rejected. This usually happens when the
model is not yet well determined, and this can slow down the convergence of the
modeling significantly. To get around this complexity, one often computes the χ2

in the source plane (by computing the difference in the source position for a given
parameter sample p) instead of doing so in the image plane. The source plane χ2 is
written as

χ2
Si

=
ni∑

j=1

[θj

S (p) − 〈θj

S (p)〉]2

μ−2
j σ 2

ij

, (50)

where θ
j

S (p) is the corresponding source position of the observed image j , 〈θj

S (p)〉 is
the barycenter position of all the ni source positions, and μj is the magnification for
image j . Written in this way, there is no need to solve the lensing equation repeatedly
and so the calculation of the χ2 is very fast. However, in the case where only a small
number of multiple-image systems are used, source plane optimization may lead to a
biased solution, typically favoring mass models with large ellipticity.
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It is important to use physically well motivated representations of the mass distri-
bution and adjust these in order to best reproduce the different families of observed
multiple images (e.g. Kneib et al. 1996; Smith et al. 2001) iteratively. Indeed, once
a set of multiple images is securely identified, other multiple-image systems can in
turn be discovered using morphological/color/redshift-photometric criteria, or on the
basis of the lens model predictions. Better data, or data at different wavelengths may
also bring new information enabling new multiple images to be identified increasing
the number of constraints for modeling and hence the accuracy of mass models.

3.1.3 Modeling the various cluster mass components

In a cluster, the positions of multiple images are known to great accuracy and they
are usually scattered at different locations within the cluster inner regions. A simple
mass model with one clump cannot usually successfully reproduce observed image
configurations.

We know that galaxies in general are more massive than represented by their stellar
content alone. In fact, the visible stellar mass represents only a small portion (likely
10–20%) of their total mass. The existence of an extended dark matter halo around
individual galaxies has been established for disk galaxies with the measurement of
their flat and spatially extended rotation curves (e.g. van Albada et al. 1985). The ex-
istence of a dark matter halo has been accepted for ellipticals only relatively recently
(e.g. Kochanek et al. 1995; Rix et al. 1997). These studies found that while the stellar
content dominates the central parts of galaxies, at distances larger than the effective
radius the dark matter halo dominates the total mass inventory. What is less obvious
in clusters of galaxies, given their dense environments, is how far the dark halos of
individual early-type galaxies extend. One expects tidal “stripping” of extended dark
matter halos to occur as cluster galaxies fall in and traverse through cluster cores dur-
ing the assembly process. This is borne out qualitatively by the strong morphological
evolution observed in cluster galaxies (e.g. Lewis et al. 2000; Kodama et al. 2002;
Treu et al. 2003). In fact, lensing offers a unique probe of the mass distribution on
these smaller scales within cluster environments.

The lensing effects of individual galaxies in clusters was first noted by Kassiola
et al. (1992) who detected that the lengths of the triple arc in Cl0024+1654 can only
be explained if the galaxies near the ‘B’ image were massive enough. Detailed treat-
ment of the individual galaxy contribution to the overall cluster mass distribution be-
came critical with the refurbishment of the HST as first shown by Kneib et al. (1996).
It was found that cluster member galaxies and their associated individual dark matter
halos need to be taken into account to accurately model the observed strong lensing
features in the core of Abell 2218.

The theory of what is now referred to as galaxy–galaxy lensing in clusters was
first formulated and discussed in detail by Natarajan and Kneib (1997), and its ap-
plication to data followed shortly (Natarajan et al. 1998; and Geiger and Schneider
1999). From their detailed analysis of the cluster AC 114, Natarajan et al. (1998)
concluded that dark matter distributed on galaxy scales in the form of halos of cluster
members contributes about 10% of the total cluster mass. Analysis of this effect in
several cluster lenses at various redshifts seems to indicate that tidal stripping does
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in fact severely truncate the dark matter halos of infalling cluster galaxies. The dark
matter halos of early-type galaxies in clusters is found to be truncated compared to
that of equivalent luminosity field galaxies (Natarajan et al. 2002a, 2002b; Natarajan
and Springel 2004). More recent work finds that tidal stripping is on average more
efficient for late-type galaxies compared to early-type galaxies (Natarajan et al. 2009)
in the cluster environment.

Lens models need to include the contribution of small scale potentials in clusters
like those associated with individual cluster galaxies to reproduce the observed image
configurations and positions. As there are only a finite number of multiple images,
the number of constraints is limited. It is therefore important to limit the number of
free parameters of the model and keep it physically motivated—as in the end—we
are interested in deriving physical properties that characterize the cluster fully.

Generally, in these parametric approaches, the cluster gravitational potential is
decomposed in the following manner:

φtot =
∑

i

φci
+

∑
j

φpj
, (51)

where we distinguish smooth, large-scale potentials φci
, and the sub-halo potentials

φpj
that are associated with the halos of individual cluster galaxies as providing small

perturbations (Natarajan and Kneib 1997). The smooth cluster-scale halos usually
represent both the dark matter and the intra-cluster gas. However, combining with
X-ray observations, each of these two components could in principle be modeled
separately. For complex systems, more than one cluster-scale halo is often needed to
fit the data. In fact, this is the case for many clusters: Abell 370, 1689, 2218 to name
a few.

The galaxy-scale halos included in the model represent all the massive cluster
member galaxies that are roughly within two times the Einstein radius of the cluster.
This is generally achieved by selecting galaxies within the cluster red sequence and
picking the brighter ones such that their lensing deflection is comparable to the spatial
resolution of the lensing observation. Studies of galaxy–galaxy lensing in the field
have shown that a strong correlation exists between the light and the mass profiles of
elliptical galaxies (Mandelbaum et al. 2006). Consequently, to a first approximation,
in mass modeling the location, ellipticity and orientation of the smaller galaxy halos
are matched to their luminous counterparts.

Except for a few galaxy scale sub-halos that do perturb the locations of multiple
images in their vicinity or alter the multiplicity of lensed images in rare cases, the
vast majority of galaxy scale sub-halos act to merely increase the total mass enclosed
within the Einstein radius. In order to reduce the number of parameters required to
describe galaxy scale halos, well motivated scaling relations with luminosity are often
adopted. Following the work of Brainerd et al. (1996) for galaxy–galaxy lensing in
the field, galaxy-scale sub-halos within clusters are usually modeled with individual
PIEMD potentials. The mass profile parameters for this model are the core radius
(rcore), cut-off radius (rcut), and central velocity dispersion (σ0), which are scaled to
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the galaxy luminosity L in the following way:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(52)

The total mass of a galaxy scale sub-halo then scales as (Natarajan and Kneib
1997):

M = (π/G)
(
σ�

0

)2
r�

cut

(
L/L�

)1/2+α
, (53)

where L� is the typical luminosity of a galaxy at the cluster redshift. When r�
core

vanishes, the potential becomes a singular isothermal potential truncated at the cut-
off radius.

In the above scaling relations (52), the velocity dispersion scales with the total
luminosity in agreement with the empirically derived Faber–Jackson relations for
elliptical galaxies (for spiral galaxies the Tully–Fisher should be used instead, but
those are not numerous in cluster cores). When α = 0.5, the mass-to-light ratio is
constant and is independent of the galaxy luminosity, however, if α = 0.8, the mass-
to-light ratio scales with L0.3 similar to the scaling seen in the fundamental plane
(Jorgensen et al. 1996; Halkola et al. 2006). Other scalings are of course permissible,
and a particularly interesting one that has been recently explored in field galaxy–
galaxy lensing studies, is to scale the sub-halo mass distribution directly with the
stellar mass (see Leauthaud et al. 2011).

3.1.4 Bayesian modeling

State of the art parametric modeling is done in the context of a fully Bayesian frame-
work (Jullo et al. 2007), where the prior is well defined and the marginalization is
done over all the relevant model parameters that represent the cluster mass distri-
bution. Indeed, the Bayesian approach is better suited than regression techniques in
situations where the data by themselves do not sufficiently constrain the model. In
this case, prior knowledge about the Probability Density Function (PDF) of parame-
ters helps to reduce degeneracies in the model. The Bayesian approach is well-suited
to strong lens modeling given the few constraints generally available to optimize a
model. The Bayesian approach provides two levels of inference rather efficiently:
parameter space exploration, and model comparison. Bayes Theorem can be written
as

Pr(p|D,M) = Pr(D|p,M)Pr(p|M)

Pr(D|M)
, (54)

where Pr(p|D,M) is the posterior PDF, Pr(D|p,M) is the likelihood of getting the
observed data D given the parameters p of the model M , Pr(p|M) is the prior PDF
for the parameters, and Pr(D|M) is the evidence.
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The value of the posterior PDF will be the highest for the set of parameters p
which gives the best fit and that is consistent with the prior PDF, regardless of the
complexity of the model M . Meanwhile, the evidence Pr(D|M) is the probability of
getting the data D given the assumed model M . It measures the complexity of model
M , and, when used in model selection, it acts as Occam’s razor.5

Jullo et al. (2007) have implemented in LENSTOOL6 a model optimization based
on a Bayesian Markov Chain Monte Carlo (MCMC) approach, which is currently
widely used. Since this approach involves marginalizing over all relevant parameters,
it offers a clearer picture of all the model degeneracies.

3.2 Probing the radial profile of the mass in cluster cores

One important prediction from dark matter only numerical simulations of structure
formation and evolution in a �CDM Universe, is the value of the slope β of the
density profile ρdarkmatter ∝ r−β in the central part of relaxed gravitational systems.
Although there has been on-going debate for the past decade on the exact value of
the inner slope (Navarro et al. 1997 (β = 1); Moore et al. 1998 (β = 1.5)), the real
limitation of such predictions is the lack of baryonic matter in these simulations.
Baryons dominate the mass budget and the gravitational potential in the inner most
regions of clusters and need to be taken into account while trying to constrain the
inner slope of the dark matter density profile. This is expected to change in the near
future with better numerical simulations. Even in dark matter only simulations, it
has been found that non-singular three-parameter models, e.g. the Einasto profile
has a better performance than the singular two-parameter NFW model in the fitting
of a wide range of dark matter halo structures (Navarro et al. 2010). Nevertheless,
the radial slope of the total mass profile is a quantity that lensing observations can
uniquely constrain (e.g. Miralda-Escudé 1995). This was first attempted for Abell
2218 by Natarajan and Kneib (1996) and subsequently by Smith et al. (2001) for the
cluster Abell 383, by modeling the cluster center as the sum of a cD halo and a large-
scale cluster component. Abell 383 is an interesting and unique system wherein both
a tangential and a radial arc with similar redshift are observed. Such a configuration
provides a particularly good handle on the inner slope (here considered as the sum of
the stellar and Dark Matter component), which in the case of Abell 383 was found to
be steeper than the NFW prediction.

Once tangential and radial arcs have been identified from HST images (see
Fig. 19), the main observational limitation is the measurement of the redshift of
the multiply imaged arc to firmly constrain the radial mass profile. Large telescopes
(Keck/VLT/Gemini/Subaru) have been playing a key role in cluster lensing by mea-
suring the redshifts of multiple images. Furthermore, working at high spectral reso-
lution allows one to also probe the dynamics of cD galaxies in the core of clusters
(Natarajan and Kneib 1996; Sand et al. 2002). Thus combining constraints from stel-
lar dynamics, in particular, measurements of the velocity dispersion of stars and cou-
pling that with lensing enables the determination of the mass distribution in cluster

5“All things being equal, the simplest solution tends to be the best one.”
6LENSTOOL is available at http://lamwws.oamp.fr/lenstool/.

http://lamwws.oamp.fr/lenstool/
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Fig. 19 Example of radial arcs found in the 4 cluster AC118, RCS0224, A370 and A383 (from Sand et al.
2005). The right side of each panel shows the BCG subtracted images

cores. This combination is very powerful as it weighs the different mass compo-
nents individually: stellar mass, X-ray gas and dark matter in the cores of clusters.
Sand et al. (2005) applied this technique to the clusters MS2137-23 and Abell 383
and found that the dark matter component is best described by a generalized NFW
model with an inner slope that is shallower than the theoretically predicted canonical
NFW profile. A similar analysis was also conducted by Gavazzi et al. (2003) with the
same result. It must be stressed that the comparison between numerical simulations
and observations is not direct as the stars in the cD galaxies dominate the total mass
budget in the very center and the additional contributions of these baryons are not
accounted for in the dark matter only simulations. It is widely believed that the sig-
nificant presence of baryons in cluster cores likely modifies the inner density profile
slope of dark matter, although there is disagreement at present on how significant this
adiabatic compression is likely to be (Blumenthal et al. 1986; Gnedin et al. 2004;
Zappacosta et al. 2006). Radial arcs offer a unique and possible only handle to probe
the inner slopes of density profiles. Several other clusters with radial arcs have been
discovered from HST archives recently, and are currently being followed up spectro-
scopically (Sand et al. 2005, 2008).

In a recent paper, Newman et al. (2011) have obtained high accuracy velocity
dispersion measurements for the cD galaxy in Abell 383 out to a radius of ∼26 kpc
for the first time in a lensing cluster. Adopting a triaxial dark matter distribution,
an axisymmetric dynamical model and using the constraints from both strong and
weak lensing, they demonstrate that the logarithmic slope of the dark matter density
at small radii is β < 1.0 (95% confidence), shallower than the NFW prediction (see
Fig. 20). Similar analysis of other relaxed clusters, including constraints from small
to large scales will help improve our understanding of the mass distribution in cluster
cores and help test the assumptions used in numerical simulations where both dark
matter and baryonic matter (stars and X-ray-gas) are explicitly included.
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Fig. 20 Top: Projected mass for the dark matter and stellar components, as well as the total mass distribu-
tion, with tangential reduced shear (g) data inset at the same radial scale for the cluster Abell 383. Bottom:
3D Mass, with velocity dispersion data inset and X-ray constraints overlaid. All bands show 68% confi-
dence regions. The models acceptably fit all constraints ranging from the smallest spatial scales �2 kpc to
�1.5 Mpc. This figure is taken from Newman et al. (2011)

3.3 Non-parametric strong lensing modeling

In addition to the use of the parametric analytic mass models described above,
there has been considerable progress in developing non-parametric mass reconstruc-
tion techniques in the past decade (e.g. Abdelsalam et al. 1998a, 1998b; Saha and
Williams 1997; Diego et al. 2005a, 2005b; Jullo and Kneib 2009; Coe et al. 2010;
Zitrin et al. 2010). Non-parametric cluster mass reconstruction methods have become
more popular with the increase in available observational constraints from the numer-
ous multiple images that are now more routinely found in deep HST data (e.g. Broad-
hurst et al. 2005). Non-parametric models have increased flexibility which allows
a more comprehensive exploration of allowed mass distributions. These schemes are
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particularly useful to model extremely complex mass distributions such as the “Bullet
Cluster” (Bradač et al. 2005).

Contrary to the analytic profile driven“parametric” methods, in “non-parametric”
schemes, the mass distribution is generally tessellated into a regular grid of small
mass elements, referred often to as pixels (Saha and Williams 1997; Diego et al.
2005a). Alternatively, instead of starting with mass elements, Bradač et al. (2005)
prefer tessellating the gravitational potential because its derivatives directly yield
the surface density and other important lensing quantities that can be related more
straightforwardly to measurements. Pixels can also be replaced by radial basis func-
tions (RBFs) that are real-valued functions with radial symmetry. Several RBFs for
density profiles have been tested so far. Liesenborgs et al. (2007) use Plummer pro-
files, and Diego et al. (2007) use RBFs with Gaussian profiles. The properties of
power law profiles, isothermal profiles as well as Legendre and Hermite polynomi-
als have been explored as RBFs. These studies find that the use of compact profiles
such as the Gaussian or Power law profiles are generally preferred as they are more
accurate in reproducing the surface mass density.

In more recent work, instead of using a regular grid, Coe et al. (2008, 2010) and
Deb et al. (2008) use the actual distribution of images as an irregular grid. Then,
they either place RBFs on this grid or directly estimate the derivatives of the poten-
tial at the location of the images. Whatever their implementation, the reproduction
of multiple images is generally greatly improved with respect to traditional “para-
metric” modeling with these techniques. However, the robustness of these models
is still a matter of debate given the current observational constraints available from
data. Indeed, due to the large amount of freedom that inevitably goes with the large
degree of flexibility afforded by a “non-parametric” approach, many models can fit
perfectly the data and discriminating between models is challenging. To identify the
best physically motivated model and eventually learn more about the dark matter
distribution in galaxy clusters, additional external criteria (e.g. mass positivity) or
regularization terms (e.g. to avoid unwanted high spatial frequencies) are necessary.
Furthermore, galaxy mass scales are usually not taken into account in these non-
parametric schemes, despite the fact that successful parametric modeling has clearly
demonstrated that these smaller scale mass clumps do significantly affect the po-
sitions of observed multiple images. This is a key limitation of most of the “non-
parametric” models.

Jullo and Kneib (2009) [JK09 hereafter] have proposed a novel modeling scheme
that includes both a multi-scale grid of RBFs and a sample of analytically defined
galaxy-scale dark matter halos, thus allowing combined modeling of both complex
large-scale mass components and galaxy-scale halos. In this hybrid scheme, similar
to the one adopted by Diego et al. (2005a), JK09 define a coarse multi-scale grid from
a pixellated input mass map and recursively refine it in the densest regions. However,
in contrast to previous work, they start from a hexagonal grid (composed of triangles),
on the grounds that it better fits the generally roundish shapes of galaxy clusters. For
their RBF, they use truncated circular isothermal mass models, and truncated PIEMD
models to explicitly include galaxy-scale halos. Thus both components are modeled
with similar analytical functions which permits a simple combination for ready incor-
poration into the Bayesian MCMC optimization scheme built into LENSTOOL. Fig-
ure 21 shows the derived S/N convergence map for the model of the cluster A1689.
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Fig. 21 Map of S/N ratio for
the A1689 mass reconstruction
using the JK09
“non-parametric” mass
reconstruction. Colored contours
bound regions with S/N greater
than 300, 200, 100 and 10. The
highest S/N region is at the
center where there are the most
constraints. Red contours are
mean iso-mass contours. Black
boxes mark the positions of the
multiple images used to
constrain the mass distribution,
and the numbers indicate the
different multiple-image
systems (from JK09)

As the S/N of the mass reconstruction is found to be larger than 10 everywhere inside
the hexagon, the error in the convergence derived mass is less than 10%, demonstrat-
ing the power of this hybrid scheme.

3.4 Cluster weak lensing modeling

As soon as we look a little bit further out radially from the cluster core, the lensing
distortion gets smaller (distortions in shape get to be of the order of a few percent at
most), and very quickly the shape of faint galaxies gets dominated by their intrinsic
ellipticities (the dispersion of the intrinsic ellipticity distribution of observed galaxies
σε ∼ 0.25). Thus the lensing distortion is no longer visible in individual images and
can only be probed in a statistical fashion, characteristic of the weak lensing regime
(e.g. Bartelmann 1995). The nature of constraints provided by observations are funda-
mentally different in the weak lensing regime compared to the strong lensing regime.
In the strong regime, as we shown above every set of observed multiple images pro-
vides strong constraints on the mass distribution. In the weak regime, however, what
is measured are the mean ellipticities and/or the mean number density of faint galax-
ies in the frame. In order to relate these to the mean surface mass density κ of the
cluster, these data need to be used statistically. There are two key sets of challenges
in doing so:

• Observational: How to best determine the ‘true’ ellipticity of an observed faint
galaxy image which is smeared by a PSF of comparable size, and is not circular (as
a result of camera distortions, variable focus across the image, tracking and guiding
errors) and not stable in time? How best to estimate and isolate the variation in
the number density of faint galaxies due to lensing, while taking into account the
crowding effect due to the presence of cluster members and the intrinsic spatial
fluctuations in the distribution of galaxies; and the unknown redshift distribution
of background sources?
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• Theoretical: what is the optimal method to reconstruct the surface mass density
distribution κ (as a mass map or a radial mass profile) using either the ‘reduced
shear field’ �g and/or the amplification?

Various approaches have been proposed to solve these sets of problems, and two
distinct families of methods can be distinguished: direct and inverse methods. We
describe them in detail in what follows.

3.4.1 Weak lensing observations

For observers, before any data handling, the first step is to choose the telescope (and
instrument) that will minimize the sources of noise in the determination of the ellip-
ticity of faint galaxies. Although HST has the best characteristics in terms of the PSF
size, it has a very limited field of view ∼10 square arcminutes for the ACS camera.
Furthermore, Hubble is “breathing” as it is orbiting around the Earth, which affects
the focus of its instruments, and the most recent ACS imaging data appear to be suf-
fering from Charge Transfer Inefficiency (CTI) which needs special post-processing
for removal of these instrumental effects (Massey 2010). Although, as we have seen,
HST is ideal for picking out strong lensing features (e.g. Gioia et al. 1998), it is not
the most appropriate instrument to probe the large-scale distribution of a cluster ex-
tending out to and beyond the virial radius. Note, however, this limitation becomes
less of a problem when observing high-redshift clusters (e.g. Hoekstra et al. 2002;
Jee et al. 2005; Lombardi et al. 2005).

On the ground a number of wide-field imaging cameras have been used to conduct
weak lensing measurements in cluster fields. The most productive ones in the last
decades have been: the CFHT12k camera (e.g. Bardeau et al. 2007; Hoekstra 2007)
and the more recent Megacam camera (e.g. Gavazzi and Soucail 2007, Shan et al.
2010) at CFHT, and the Suprimecam on Subaru (e.g. Okabe et al. 2010). However,
a number of studies have also been done with other instruments, in particular, the
VLT/FORS (e.g. Cypriano et al. 2001, Clowe et al. 2004a, 2004b), 2.2 m/WFI (e.g.
Clowe and Schneider 2002), and more recently with the LBT camera (Romano et al.
2010).

3.4.2 Galaxy shape measurement

Once the data have been carefully taken either from the ground or space with utmost
care to minimize contaminating distortions and hopefully under the best seeing con-
ditions, the next step is to convert the image of the cluster into a catalog where the
PSF corrected shapes of galaxies are computed.

Before measuring the galaxy shape a number of steps are usually undertaken:
(1) masking of the data and identifying the regions in the image that suffer from
observational defects: bleeding stars, satellite tracks, hot pixels, spurious reflec-
tions; (2) source identification and catalog production—which is usually done us-
ing the SEXTRACTOR software (Bertin and Arnouts 1996); (3) identification of
the stellar objects—in order to accurately compute the PSF as a function of posi-
tion in the image. Once this is done, the shapes of the stellar objects and galax-
ies can be computed to derive the PSF corrected shapes of galaxies which will
then be used for weak lensing measurements. For accomplishing this crucial next
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step, a popular and direct approach is often used, to convert galaxy shapes to
shear measurements using the IMCAT software package. This implementation is
based on the Kaiser et al. (1995) methodology, but has been subsequently im-
proved by various other groups (e.g. Luppino and Kaiser 1997; Rhodes et al. 2000;
Hoekstra et al. 2000), providing variants of the original KSB technique. To correct the
galaxy shape from the PSF anisotropy and circularization, the KSB technique uses
the weighted moment of the object’s surface brightness to find its center, and shape
to measure higher order components that can be used to improve the PSF correction.
As a result the correction is fast and processing a large amount of data can be done
swiftly and efficiently.

Alternatively, one can use the inverse approach using maximum likelihood meth-
ods or Bayesian techniques to find the optimal galaxy shape that when convolved
with the local PSF best reproduces the observed galaxy shape (e.g. Kuijken 1999;
IM2SHAPE: Bridle et al. 2002). A recent implementation of this inverse method is
available in the LENSFIT software package (Miller et al. 2007; Kitching et al. 2008)
and one of its key advantages is that it works directly on the individual exposures of
a given field. LENSFIT has been developed in the context of the CFHT-LS survey, but
is flexible and can be easily adapted for use with other observations.

These inverse approaches have the advantage that they provide a direct estimate
of the uncertainty in the parameter recovery as illustrated in Fig. 22. Further exten-
sion of these inverse techniques, has led to the use of SHAPELETS (Refregier 2003;
Refregier and Bacon 2003) that offer a more sophisticated basis set to characterize
the two-dimensional shapes of the PSF and faint galaxies. The versatility of shapelets
has made this technique quite popular for lensing measurements. Nevertheless, it
has been realized that these different shape measurement recipes need to be tuned,
compared and calibrated amongst each other in order to obtain accurate, unbiased
and robust shear measurements. This calibration work has been done in the con-
text of various numerical challenges, wherein different research groups measure the
shapes of the same set of simulated images as part of STEP (Heymans et al. 2006;
Massey et al. 2007); the GREAT08 and GREAT10 challenges (Bridle et al. 2010;
Kitching et al. 2011). These challenges have proven to be very useful exercises for
the community as they have enabled calibration of the several independent techniques
employed to derive shear from observed shapes.

3.4.3 From galaxy shapes to mass maps

From the catalog of shape measurements of faint galaxies, a mass map can be de-
rived. And here again direct and inverse methods have been explored. The direct
approaches are: (i) the Kaiser and Squires (1993) method—this is an integral method
that expresses κ as the convolution of �γ with a kernel and subsequent refinements
thereof (e.g. Seitz and Schneider 1995, 1996; Wilson et al. 1996); and (ii) a local
inversion method (Kaiser 1995; Schneider 1995; Lombardi and Bertin 1998) that in-
volves the integration of the gradient of �γ within the boundary of the observed field
to derive κ . This technique is particularly relevant for datasets that are limited to a
small field of view.

The inverse approach works for both the κ field and the lensing potential ϕ and
uses a maximum likelihood (e.g. Bartelmann et al. 1996; Schneider et al. 2000;
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Fig. 22 Simulated images demonstrating the various sources of noise in weak lensing data: the galaxy
model, the PSF model, the convolution of the two, and the final image when noise is added. Simple simu-
lations allow the production of model images that include observational sources of noise and can therefore
be compared directly to the shapes of observed faint galaxies. The best galaxy model is then found by
taking into account the convolution effect of the measured PSF that best fits the data. (Bottom panels):
the MCMC samples fitting the final image in terms of its ellipticity vector with coordinates [e+ = e1]
and [e× = e2] (on the left) and in terms of the position (x, y) of the image center (right), from which the
best-fit fiducial models with errors can be extracted (black crosses). One of the first implementations of
this inverse technique was done in the IM2SHAPE software (Bridle et al. 2002)

King and Schneider 2001), maximum entropy method (e.g. Bridle et al. 1998;
Marshall et al. 2002) or atomic inference approaches coupled with MCMC optimiza-
tion techniques (Marshall 2006) to determine the most likely mass distribution (as a
2D mass map or a 1D mass profile) that reproduces the reduced shear field �g and/or
the variation in the faint galaxy number densities. These inverse methods are of great
interest as they enable quantifying the errors in the resultant mass maps or mass esti-
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Fig. 23 Maximum entropy mass reconstruction (Marshall et al. 2002; Marshall 2003) of the X-ray lumi-
nous cluster MS1054 at z = 0.83 using Hoekstra’s HST dataset (Hoekstra et al. 2000). (Top left) Distribu-
tion of the positions of galaxies used in the mass reconstruction. (Top right) Evidence values for different
sizes of the Intrinsic Correlation Function (ICF). (Bottom) Two mass reconstructions illustrate the case of
2 different values for the ICF: (left) small ICF with a low evidence value, (right) large ICF with the largest
evidence

mates (e.g. Kneib et al. 2003), and in principle, can cope with the addition of further
external constraints from strong lensing or X-ray data simultaneously. Wavelet ap-
proaches that use the multi-scale entropy concept have also been extremely powerful
in producing multi-scale mass maps (Starck et al. 2006; Pires et al. 2009).

An important issue for producing mass maps is the resolution at which the 2D lens-
ing mass map can be reconstructed. Generally, mass maps are reconstructed on a fixed
size grid, which then automatically defines the minimum mass resolution that can be
obtained. By comparing the likelihood of different resolution mass maps, we can cal-
culate the Bayesian evidence of each to determine the optimal resolution (Fig. 23).
However, it is most likely that the optimal scale to which a mass map can be recon-
structed is adaptive, and is determined by the strength of the lensing signal. As we
are limited by the width of the intrinsic ellipticity distribution, it is only by averaging
over a large number of galaxies that we can reach lower shear levels. Thus low shear
levels can only be probed on relatively large scales by averaging over a large number
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Fig. 24 The 39 WFPC2/F814W, and the 38 STIS/50CCD pointings sparsely covering the Cl0024+1654
cluster. The (red) dashed contours represent the number density of cluster members as derived by Czoske
et al. (2001). The blue solid contour is the mass map built from the joint WFPC2/STIS analysis derived
using the LensEnt software (Bridle et al. 1998; Marshall et al. 2002)

of galaxies. Furthermore, as the projected surface mass density of clusters on large
scales falls off relatively quickly scaling as 1/R to 1/R2, respectively, for an SIS or
a NFW profile, mass maps may quickly lose spatial resolution.

Although lensing mass maps may quickly loose information content outside the
cluster core, they can be very useful in identifying possible (unexpected) substruc-
tures on scales larger than the typical weak lensing smoothing scale (∼1 arcminute).
This has been the case for several cluster lenses such as the cluster Cl0024+1654
(e.g. Kneib et al. 2003 and Fig. 23; Okabe et al. 2010) and the “Bullet Cluster” (see
Fig. 25), and more recently in the so-called “baby bullet” cluster (Bradač 2009).

3.4.4 Measuring total mass and mass profiles

Weak lensing mass maps are useful to determine mass peaks, but they are of limited
use for the extraction of physical information. If a cluster has a relatively simple
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Fig. 25 Right panel: Shown in greyscale is the I -band VLT/FORS image of the Bullet cluster used to mea-
sure galaxy shapes. Over-plotted in black contours is the weak lensing mass reconstruction with solid con-
tours for positive mass, dashed contours for negative mass, and the dash-dotted contour for the zero-mass
level. Left panel: Shown in greyscale is the Chandra X-ray image from Markevitch et al. (2002) with the
same weak lensing contours as in the Right Hand panel. (Figure from Clowe et al. 2004a, 2004b)

geometry (i.e. has a single mass clump in its 2D mass map) one can easily extract
the radial mass profile and compute the total mass enclosed within a given radial
aperture. Different approaches are currently available to compute the mass profile
and the total mass. The direct method is just to sum up the tangential weak shear as
expressed in the aperture mass densitometry first introduced by Fahlman et al. (1994)
and then revised by Clowe et al. (1998). This statistic is quite popular and has been
used in several recent cluster modeling papers, including Hetterscheidt et al. (2005),
Hoekstra (2007) and Okabe et al. (2010). Aperture mass densitometry measures the
mass interior to a given radius following the ζ statistic, defined as

ζ(θ1) = κ(θ < θ1) − κ(θ1 < θ < θmax) = 2

(
1 − θ2

1

θ2
max

)∫ θmax

θ1

〈γT〉d ln θ, (55)

which provides a lower bound on the mean convergence κ interior to radius θ1. The
mass within θ is then just given by

M(< θ) = πD2
OLθ2Σcritζ(θ). (56)

This statistic assumes, however, that all background galaxies are at a similar redshift,
which can be a strong and severely limiting assumption, particularly for high-redshift
clusters.

Another semi-direct approach is to build the projected surface density contrast
�Σ estimator as introduced by Mandelbaum et al. (2005):

�Σ(r) = Σ(< r) − Σ(r) = γT(r)Σcrit(zS). (57)
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In practice, �Σ is measured by averaging over the galaxies at radius r from the
cluster center, and requires some information about the redshift distribution of back-
ground galaxies zS. It can then be directly compared to the �Σ(r) computed for a
given parametrized mass model. Mandelbaum et al. (2010) discuss and compare this
cluster mass estimator with other proposed ones. In a recent paper, Gruen et al. (2011)
compare the use of various aperture mass estimators to calibrate mass-observable re-
lations from weak lensing data.

The alternative method is to directly fit the observables using simple parametric
models similar to what is done in the strong lensing approach, for example using
radially binned data (e.g. Fischer and Tyson 1997; Clowe and Schneider 2002; Kneib
et al. 2003; King et al. 2002). The advantage of adopting such a method lies in its
flexibility, i.e. allowing combination of strong and weak lensing constraints. This
direct approach also allows inclusion of external constraints such as those from X-
ray data and the redshift distribution of background sources that can be estimated
using photometric-redshift techniques. Of course, such parametric techniques require
allowing sufficient freedom in the radial profile and the inclusion of substructures
(e.g. Metzler et al. 1999, 2001; King et al. 2001) to closely match observed lensing
distortions.

3.5 Cluster triaxiality

As lensing is sensitive to the integrated mass along the line of sight, it is natural to
expect mass overestimates due to fortuitous alignment of mass concentrations not
physically related to the cluster or alternatively departures of the cluster dark matter
halo from spherical symmetry (e.g. Gavazzi 2005). Till recently, most studies of the
dark matter distribution and the intra-cluster medium (ICM) in galaxy clusters using
X-ray data have been limited due to the assumption of spherical symmetry. How-
ever, the Chandra and XMM-Newton X-ray telescopes have resolved the core of the
clusters, and have detected departures from isothermality and spherical symmetry.
Evidence for a flattened triaxial dark matter halo around five Abell clusters had been
reported early on by Buote and Canizares (1996). Furthermore, numerical simula-
tions of cluster formation and evolution in a cold dark matter dominated Universe
do predict that dark matter halos have highly elongated axis ratios (Wang and White
2009), disproving the assumption of spherical geometry. In fact the departures from
sphericity of a cluster may help explain the discrepancy observed between cluster
masses determined from X-ray and strong lensing observations (Gavazzi 2005). This
suggests that clusters with observed prominent strong lensing features are likely to
be typically preferentially elongated along the line of sight which might account for
their enhanced lensing cross sections. This is definitely the case for the extreme strong
lenses with large Einstein radii and therefore anomalously high concentrations. The
galaxy cluster A1689 is a well-studied example with such a mass discrepancy (Ander-
sson and Madejski 2004; Lemze et al. 2008; Riemer-Sorensen et al. 2009; Peng et al.
2009). In the same vein, large values of the NFW model concentration parameters
have also been reported for clusters with prominent strong lensing features (Comer-
ford and Natarajan 2007; Oguri et al. 2009). This can again be explained by strong
lensing cluster halos having their major axis preferentially oriented toward the line of
sight (Corless et al. 2009).
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Combining strong lensing constraints with high-resolution images of cluster cores
in X-rays obtained with Chandra is an excellent way to probe the triaxiality of the
mass distribution in cluster cores. Mahdavi et al. (2007) provided a new framework
for the joint analysis of cluster observations (JACO) using simultaneous fits to X-ray,
Sunyaev–Zel’dovich (SZ), and weak lensing data. Their method fits the mass mod-
els simultaneously to all data, provides explicit separation of the gaseous, dark, and
stellar components, and allows joint constraints on all measurable physical param-
eters. The JACO prescription includes additional improvements to previous X-ray
techniques, such as the treatment of the cluster termination shock and explicit inclu-
sion of the BCG’s stellar-mass profile. Upon application of JACO to the rich galaxy
cluster Abell 478 they report excellent agreement among the X-ray, lensing, and SZ
data.

Morandi et al. (2010) have used a triaxial halo model for the galaxy cluster
MACS J1423.8+2404 to extract reliable information on the 3D shape and physical
parameters, by combining X-ray and lensing measurements. They found that this
cluster is triaxial with dark matter halo axial ratios 1.53 ± 0.15 and 1.44 ± 0.07 on
the plane of the sky and along the line of sight, respectively. They report that such a
geometry produces excellent agreement between the X-ray and lensing mass.

These first results are very encouraging and pave the way for a better understand-
ing of the 3D distribution of the various mass constituents in clusters. Theoretically,
according to the current dark matter dominated cosmological model for structure
formation cluster halo shapes ought to be triaxial and a firm prediction is proffered
for the distribution of axis ratios for clusters. More observational work needs to be
done to test these predictions, and ultimately techniques that combine lensing, X-ray
and Sunyaev–Zel’dovich decrement data might be able to provide a complete three-
dimensional view of clusters.

4 Mass distribution of cluster samples

Although the careful modeling of individual cluster cores and extended regions of-
fers a unique way to characterize the mass distribution and understand cluster physics
in detail, analysis of cluster samples provides important insights into cluster as-
sembly and evolution. There have been several statistical studies focused on mea-
suring cluster masses derived from lensing and comparing these with mass esti-
mates from other measurements such as: richness, X-ray luminosity, X-ray tempera-
ture, velocity dispersions of cluster galaxies, and the Sunyaev–Zel’dovich decrement.
These multi-wavelength comparisons enable a deeper understanding of empirically
derived scaling relations between key physical properties of clusters (e.g. Luppino
and Gioia 1992; Loeb and Mao 1994; Miralda-Escudé and Babul 1995; Allen 1998;
Ota et al. 1998; Ono et al. 1999; Irgens et al. 2002; Huterer and White 2002). These
studies also help uncover how mass is partitioned between the different baryonic
and non-baryonic components on cluster scales. Studying cluster samples allows the
probing of several fundamental questions with regard to the dynamical state of clus-
ters, namely, are clusters relaxed? How much substructure is present in clusters? How
triaxial are clusters? How recently has a cluster had a major merger with another sub-
cluster and what are the signatures of such an event? How important are projection
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effects in mass estimates? Are clusters in hydrostatic equilibrium? When did clus-
ters start to assemble? And how have they evolved? Observationally derived answers
to these questions from cluster samples can then be directly compared to numerical
simulations, thus providing insights and tests of the structure formation paradigm.

4.1 Early work

Comprehensive multi-wavelength datasets that ideally span a range of spatial scales
in clusters are needed for such statistical studies. Collecting such datasets is a big
challenge as it requires coordination between researchers working with a range of
observational techniques deploying many different resources. Some of the first stud-
ies of cluster samples did produce interesting cosmological results, as discussed in
Luppino et al. (1999), Allen et al. (2001, 2002), Dahle et al. (2002) and Smith et al.
(2003).

One of the key challenges for these statistical studies lies in the very definition
of a sample with robust criteria that will be complete and volume limited and be
representative to avoid systematic biases. Starting from simple selection criteria is
therefore very important. For instance, dramatic lensing clusters imaged by HST are
likely a biased sample of the most massive clusters at any redshift with enhanced
strong lensing cross sections due to an excess of mass along the line of sight from
either the cluster itself or the presence of other intervening structures. Most frequently
cluster samples are therefore selected on the basis of their X-ray luminosities, which
should minimize projection effects that typically plague optically selected clusters.
Since X-ray luminosity is proportional to the square of the electron density of the
Intra-Cluster-Medium (ICM), this selection should pick genuinely virialized clusters,
irrespective of the line of sight distribution of cluster member galaxies or additional
background structures. One of the first systematic studies that combined X-ray and
lensing data was a sample of 12 z ∼ 0.2 X-ray luminous clusters of galaxies selected
from the XBACS catalog (see Figs. 26 and 27) with LX > 8 × 1044 erg/s in the
0.1–2.4 keV band. These clusters have been imaged with the WFPC2 camera (Smith
et al. 2001, 2005). It is found that the fraction of strong lensing clusters in this sample
is 70%. All of the cluster cores also have a significant weak lensing signal, providing
independent lensing constraints on cluster masses.

Smith et al. (2005) defined a number of criteria to characterize whether clusters
are relaxed and also quantified the amount of substructure in them. Out of 10 clus-
ters, they found that three clusters form a homogeneous sub-sample that have mature,
undisturbed gravitational potentials which satisfy the following criteria: a dominant
central dark matter halo (Mcen/Mtot > 0.95); a dominant central cluster galaxy K-
band luminosity fraction (LK,BCG/LK,tot > ∼0.5); close alignment between the cen-
ter of the mass distribution and the peak of the X-ray flux (�rpeak < 3 kpc); a sin-
gle cluster-scale dark matter halo best fit for the lens model; and circular or mildly
elliptical X-ray flux contours. The remaining seven clusters did not satisfy one or
more of these criteria and were classified as disturbed. The disturbed clusters are
much more diverse than the undisturbed clusters and typically have a bi- or tri-modal
dark matter distribution, irregular X-ray morphology and an offset between X-ray
and mass peaks. Comparison of these results with theoretical predictions indicates
that the multi-modal dark matter distribution in disturbed clusters is due to recent
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Fig. 26 Cluster samples: 3 of the 12 z ∼ 0.2 X-ray luminous clusters of galaxies selected from the XBACS
catalog (Ebeling et al. 1996) observed with the HST/WFPC2 camera. Top row is Abell 68, second row is
Abell 209 and last row Abell 267. First column is the weak shear field as measured from the HST data. The
second column is a zoom of the cluster cores, and shows for Abell 68 the predicted critical lines (black
lines). The third column is the strong lensing mass reconstruction and last column is the overlay of the
Chandra X-ray map (Smith et al. 2003)

infall of galaxy groups into the parent cluster since about z = 0.4. The exact scaling
relation between lensing mass and X-ray properties appears to be strongly dependent
on the dynamical state of the cluster. Relaxed and unrelaxed clusters appear to follow
slightly different scaling relations. Furthermore, this sample was also observed with
the wide field CFHT12k camera in three bands (B, R, I) in order to probe the wide
field mass distribution using the measured weak lensing shear signal out to the virial
radius. However, the comparison of the weak lensing determined mass to the cluster
luminosity and X-ray mass estimates reported in Bardeau et al. (2007) (see Fig. 28)
does not reveal an obvious difference between relaxed or unrelaxed clusters. There
are some strong limitations though with this dataset as there were scant constraints on
the redshift distribution of background sources, and some lingering inconsistencies
between strong and weak lensing results. These first results with only 10 clusters set
the stage for the need for larger cluster samples to understand the physical origin of
such differences.

In a parallel paper, Hoekstra (2007) investigated the lensing versus X-ray mass
relations for a sample of 20 clusters including those of Bardeau et al. (2007), although
their cluster selection was primarily driven by X-ray emission. This investigation has
lead to a more ambitious project known as the Canadian Cluster Comparison Project
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Fig. 27 Left panel: Central mass fraction (a measure of the dominance of the central dark matter halo),
Mcen/Mtot versus central K-band luminosity fraction (measures the dominance of the central galaxy),
LK,BCG/LK,tot. There is a remarkably clean separation between a homogeneous population of centrally
concentrated clusters (Mcen/Mtot > 0.95, LK,BCG/LK,tot > ∼0.55) and a much more diverse population
of less concentrated clusters. Center & right panels: Mass–LX and Mass–TX relations. The solid and
dashed lines show the best-fit relations normalized by the relaxed and unrelaxed clusters, respectively. The
error bars on each line show the uncertainty on the normalizations. The scatter in the Mass–LX relation
appears to be symmetric; in the mass–TX relation the normalization of the unrelaxed clusters appears to
be 40% hotter than the relaxed clusters at 2σ significance. Figures from Smith et al. (2005)

(CCCP) that will add 30 more X-ray selected clusters observed with the CFHT12k
or Megacam camera to the initial set of 20 clusters. Lensing results are, however, still
pending at the time of writing this review.

4.2 On-going and future cluster lensing surveys

Clusters of galaxies are complicated systems that are rapidly assembling and evolv-
ing, nevertheless they are considered to be very good tracers of the underlying cos-
mology (and in particular could probe Dark Energy) as well as a way to measure the
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Fig. 28 Left panel: Lensing 2D mass versus optical luminosity for the clusters in the Bardeau et al. (2007)
sample (12 X-ray bright clusters selected to be at z ∼ 0.2). The lensing mass is computed at the virial radius
r200 derived from the best weak lensing fits. The luminosity is computed in the R band for the cluster red
sequence galaxies. Dashed line represents a constant M/L ratio of 133 in solar units. The solid line is the
best-fit power law M ∝ L1.8. Center panel: Weak lensing 3D virial mass M200 versus X-ray luminosity.
The best-fit line has a slope α = 1.20±0.16. Right panel: Weak lensing 3D virial mass M200 versus X-ray
temperature. The straight line corresponds to a M200 ∝ T 3/2 relation while the dashed line corresponds
to the best-fit power law relation M ∝ T 4.6±0.7. Temperatures are derived from XMM data (Zhang et al.
2007), including A 2219 from ASCA data (Ota et al. 2004). The 4 clusters with cooling core or relaxed
properties are marked with empty boxes. (From Bardeau et al. 2007)

growth of structure, thus potentially sensitive to gravity and to the nature of Dark
Matter. A better understanding of clusters will be possible only with larger cluster
samples, as earlier work and conclusions therefrom were limited by statistics. The
number of massive clusters with published lensing data is steadily growing, as is the
number of cosmological surveys in which clusters can be studied with strong and
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weak lensing techniques, either directly from the survey data or by further follow-
ups.

Four techniques are avidly pursued to search for clusters:

• Photometric searches that use wide field imaging surveys such as the Sloan Dig-
ital Sky Survey (SDSS), the Red-sequence Cluster Survey (RCS), and the CFHT
Legacy Survey (CFHTLS). Furthermore, new photometric surveys have just started
or will start in the next year, namely the VST KIDS survey, the Dark Energy Survey
(DES), and the Subaru Hyper-Suprime Camera (HSC) survey.

• X-ray selected cluster searches: (i) based on the follow-up of the ROSAT All Sky
Survey: such as the MAssive Cluster Survey (MACS) (Ebeling et al. 2001) and the
REFLEX survey (Boehringer et al. 2004) (ii) based on dedicated (or serendipitous)
X-ray ROSAT or XMM imaging surveys such as: WARPS (Scharf et al. 1997),
SHARC (Collins et al. 1997), the ROSAT Deep Cluster Survey (Rosati et al. 2001),
XDCS (the XMM Deep Cluster Survey, see Fassbender et al. 2008), XCS (Romer
2008); and XMM-LSS (Pierre et al. 2007).

• SZ searches: e.g. Atacama Cosmology Telescope Cluster Survey (Hincks et al.
2010; Marriage et al. 2011; Hand et al. 2011), the South Pole Telescope Cluster
Survey (Chang et al. 2009; Vanderlinde et al. 2010; Plagge et al. 2010) and the
Planck mission (Ade et al. 2011).

• Weak and Strong lensing searches based on photometric surveys, or following up
X-ray or SZ selected clusters.

We focus on the latter techniques in the following sub-sections.

4.3 Targeted cluster surveys

4.3.1 The Local Cluster Substructure Survey (LoCuSS)

LoCuSS extends Smith et al.’s (2005) pilot study of 10 X-ray luminous clusters at
z = 0.2 to an order of magnitude larger sample at 0.15 < z < 0.3, drawn from the
ROSAT All-sky Survey Catalogues (Ebeling et al. 1998, 2000, 2004). The main
lensing-related goals of LoCuSS are to measure the mass, internal structure, and ther-
modynamics of a complete volume-limited sample of 80 clusters observable from
Mauna Kea, and thus to obtain definitive results on the mass-observable scaling re-
lations at low redshift. The normalization, shape, scatter (and any structural segrega-
tion detected) of these scaling relations will calibrate the properties of low-redshift
clusters as an input to cluster-based cosmology experiments, and to help interpret
high-redshift cluster samples.

To date LoCuSS has published weak lensing analysis of 30 clusters observed with
Suprime-CAM on the Subaru 8.2-m telescope (Okabe et al. 2010; see also Oguri
et al. 2010). The main results from this statistical study are that (i) a simple color-
magnitude selection of background galaxies yields samples that are statistically con-
sistent with negligible residual contamination by faint cluster members, albeit with
large uncertainties, (ii) cluster density profiles are curved (in log–log space), and sta-
tistically compatible with the Navarro et al. (1997) profile, and (iii) based on the NFW
profile model fits, the normalization of the mass-concentration relation of X-ray se-
lected clusters is consistent with theoretical �CDM-based predictions, although the
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slope of the observed relation may be steeper than predicted. The last of these results
is particularly interesting in the context of detailed studies of individual clusters se-
lected to have a large Einstein radius. As noted in Sect. 7, such objects are often found
to have concentrations that exceed the CDM prediction by factors of 2–3 (Comerford
and Natarajan 2007; Oguri et al. 2009). Okabe et al.’s results from 30 X-ray-selected
clusters indicate that the large Einstein radius selection in earlier work introduces a
strong bias.

Comparison of Okabe et al.’s weak lensing mass measurements with X-ray and
Sunyaev–Zel’dovich (SZ) effect probes has so far been limited by the presence of
outlier clusters in the small samples for which the relevant data are available. For
example, the well-known merging cluster A1914 strongly influences the results in
the X-ray/lensing comparison of 12 clusters for which Subaru and XMM-Newton
data are available (Okabe et al. 2010; Zhang et al. 2010). More recently, Marrone
et al. (2011) presented the first weak-lensing-based mass-SZ scaling relation based
on Subaru and Sunyaev–Zel’dovich Array (SZA) observations of 18 clusters. Encour-
agingly, this relation is consistent with self-similar predictions, although it presents
20% scatter in natural log of mass at fixed integrated Y -parameter—a factor of 2 more
scatter than found in studies that use X-ray data and assume hydrostatic equilibrium
to infer cluster mass. Indeed, the normalization of the MWL–Y relation at � = 500
(roughly 1 Mpc) for undisturbed clusters is 40% higher in mass than that for disturbed
clusters. Marrone et al. identified several of the undisturbed clusters as likely prolate
spheroids whose major axis is closely aligned with the line of sight as being largely
responsible for this segregation. These results highlight the feasibility and growing
maturity of lensing-based studies of large cluster samples, and also emphasize that
much important work remains to be done to fully understand the optimal methods for
cluster mass measurement.

4.3.2 The MAssive Cluster Survey

The MAssive Cluster Survey (MACS) is an on-going project aimed at the compila-
tion and characterization of a statistically complete sample of very X-ray luminous
(and thus, by inference, massive), distant clusters of galaxies. The primary goal of
MACS was to increase the number of known massive clusters at z > 0.3 from a
handful to a hundred. To achieve these goals, Ebeling et al. (2001) applied an X-ray
flux and X-ray hardness-ratio cut to select distant cluster candidates from the ROSAT
Bright Source catalog. Starting from a list of more than 5000 X-ray sources within
the survey area of 22,735 square degrees they use positional cross-correlations with
public catalogs of Galactic and extragalactic objects, with reference to APM colors,
visual inspection of Digitized Sky Survey images, extensive CCD imaging, and fi-
nally spectroscopic observations with the University of Hawaii’s 2.2-m and the Keck
10-m telescopes to compile the final cluster sample. The MACS cluster sample com-
prises 124 spectroscopically confirmed clusters at 0.3 < z < 0.7 (Fig. 29). Compre-
hensive follow-up observations of MACS clusters include: weak lensing mass mea-
surements using wide-field SUBARU imaging data, virial mass estimates based on
cluster galaxy velocity dispersions measured with the CFHT and Keck, SZ obser-
vations with the BIMA mm-wave radio interferometer, measurements of the clus-
ter gas and temperature distribution with Chandra, and both deep, multi-passband
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Fig. 29 The luminosity versus redshift plot comparing the MACS surveys to a number of other X-ray
surveys: EMSS, eBCS, WARPS, the 400 square degree survey. It is evident from this figure that MACS is
very efficient in selecting the most massive X-ray clusters at z > 0.3

and snapshot images with HST. A large number of MACS clusters are strong lenses
and some of them have been studied in detail: MACS J1206-0847 (Ebeling et al.
2009); MACS J1149.5+2223 (Smith et al. 2009); MACS J1423.8+2404 (Limousin
et al. 2010; Morandi et al. 2010). MACS J0025.4-1222 (Bradač et al. 2008) was iden-
tified as a merging cluster with some similarity to the “Bullet Cluster”. Zitrin et al.
(2011a) presented the results of a strong lensing analysis of the complete sample of
the 12 MACS clusters at z > 0.5 using HST images. The distribution of Einstein radii
has a median value of ∼28 arcseconds (for a source redshift of zS ∼ 2), twice as large
as other lower-z samples, making the MACS sample a truly massive cluster sample
confirmed by the numerous strong lensing discoveries. One of the most extreme clus-
ters known presently is likely MACS J0717.5+3745 (Ebeling et al. 2004) which was
recognized as a complex merger of four individual substructures, with a long tailed
filamentary structure. The four sub-structures have all been identified in a recent lens-
ing mass reconstruction by Limousin et al. (2011) and the filamentary structure was
directly measured by weak lensing measurements with a 18-pointing HST mosaic
(Jauzac et al. 2011). Horesh et al. (2010), investigated the statistics of strong lensed
arcs in the X-ray selected MACS clusters versus the optically selected RCS clusters
(see below). They measured the lensed-arc statistics of 97 clusters imaged with HST,
identifying lensed arcs using two automated arc-detection algorithms. They compile
a catalog of 42 arcs in MACS and seven arcs in the RCS. At 0.3 < z < 0.7, MACS
clusters have a significantly higher mean frequency of arcs, 1.2 ± 0.2 per cluster, ver-
sus 0.2 ± 0.1 in RCS, which can easily be explained by the nature of the selection of
these two different cluster samples.
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4.3.3 ESO distant cluster survey

Nevertheless, optical selection is still common specially for high-redshift clusters
(z > 0.6) where X-ray selection is limited. A particular focused and productive survey
is the ESO distant cluster survey (EDiSC, White et al. 2005). EDiSC is a survey of 20
fields containing distant galaxy clusters (0.4 < z < 1.0) chosen amongst the brightest
objects identified in the Las Campanas Distant Cluster Survey. They were confirmed
by identifying red sequences in moderately deep two color data from VLT/FORS2,
and further investigations with VLT in spectroscopy, the ESO Wide Field Imager,
and HST/ACS mosaic images for 10 of the most distant clusters. Using the deep
VLT/FORS2 data, Clowe et al. (2006) measured the masses for the EDiSC clusters.
In particular, they compared the mass measurements of 13 of the EDiSC clusters with
luminosity measurements from cluster galaxies selected using photometric redshifts
and find evidence of a dependence of the cluster mass-to-light ratio with redshift.

4.3.4 Red-sequence cluster surveys

Another important optically selected cluster survey is the 100 deg2 Red-Sequence
Cluster Survey (RCS, Gladders 2002, Gladders and Yee 2005) and its 1000 deg2

RCS-2 extension (Gilbank et al. 2011), which are based on shallow multi-color
imaging with the CFHT12k and Megacam cameras. RCS-2 covers ∼1000 deg2

and includes the first RCS area, it reaches 5σ point-source limiting magnitudes in
[g, r, i, z] = [24.4,24.3,23.7,22.8], approximately 1–2 magnitudes deeper than the
SDSS. RCS-2 is designed to detect clusters over the redshift range 0.1 < z < 1, build-
ing a statistically complete, large (∼104) sample of clusters, covering a sufficiently
long redshift baseline to be able to place constraints on cosmological parameters
probed via the evolution of the cluster mass function. Furthermore, a large sample
of strongly lensed arcs associated with these clusters has been derived (e.g. Gladders
et al. 2002, 2003), and weak lensing measurements from the most massive clusters
detected in RCS-2 is likely possible.

4.3.5 The Multi-Cluster Treasury: CLASH survey

The recently approved MCT (Multi-Cluster Treasury) program on HST will achieve
multi-band imaging of a sample of 25 X-ray selected clusters (Postman et al. 2011),
thus providing detailed photometric-redshift estimates for multiple images. This sam-
ple with appropriate ground based follow-up is likely to provide important insights
into many of the current unsolved problems in cluster assembly and evolution. Ded-
icated lensing studies will enable detailed investigation of their mass distributions
(Zitrin et al. 2011b, 2011c) and will help find some efficient lenses that can be
exploited to study the distant Universe by using them as gravitational telescopes
(Richard et al. 2011)—a topic that will be discussed further in the next section.

4.4 Cluster lenses in wide cosmological surveys

The previous sub-section focused on targeted cluster surveys. However, cluster lenses
can also be found in wide cosmological surveys (e.g. Wittman et al. 2001, 2003;
Hamana et al. 2004; Maturi et al. 2005). We briefly outline some of the most repre-
sentative surveys of this decade starting from the widest to the deepest.
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4.4.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey cov-
ering 10,000 deg2 (Aihara et al. 2011). Although this survey was not designed or
optimized to measure cluster lensing, interesting results have been produced from
detected strong and weak lensing measurements of clusters. Estrada et al. (2007) in-
vestigated the Sloan images of 825 SDSS galaxy clusters searching for giant arcs.
Both a visual inspection of the images and an automated search were performed, and
no arcs were found. They nevertheless report a serendipitous discovery of a bright arc
in the Sloan images of an as yet unknown cluster. Hennawi et al. (2008) presented
the first results of a strong lensing imaging survey (using the WIYN and UH 2 m
telescope) targeting the richest clusters (with 0.1 < z < 0.6) selected from SDSS.
From a total of 240 clusters followed-up, they uncovered 16 new lensing clusters
with definite giant arcs, 12 systems for which the lensing interpretation is very likely,
and 9 possible lenses which contain shorter arclets or candidate arcs which require
further observations to confirm their lensing origin. The new lenses discovered in
this survey will enable future systematic studies of the statistics of strong lensing
and their implications for cosmology and the current structure formation paradigm.
Kubo et al. (2009) and then Diehl et al. (2009) identified 10 strongly lensed galaxies
as part of the “Sloan Bright Arcs Survey”. Follow-up imaging identified the lensing
systems as group-scale lenses, an intermediate regime between isolated galaxies and
galaxy clusters (see Cabanac et al. 2007). Bayliss et al. (2011) presented the results
from a spectroscopic program targeting 26 strong lensing clusters (0.2 < z < 0.65)
visually identified in SDSS or RCS-2 revealing 69 unique background sources with
redshifts as high as z = 5.2, which will enable robust strong lensing mass models to
be constructed for these clusters (some of the most remarkable clusters discovered
are presented in Fig. 30).

On the weak lensing side, the first measurements were conducted by Sheldon et al.
(2001). Later on Rykoff et al. (2008) measured the scaling relation between X-ray
luminosity and the total mass for 17,000 galaxy clusters in the SDSS maxBCG cluster
sample. To achieve this, they stacked sub-samples of clusters within fixed ranges of
optical richness, and they measured the mean X-ray luminosity LX, and the weak
lensing mean mass, 〈M200〉. For rich clusters, they found a power law correlation
between LX and M200 with a slope compatible with previous estimates based on X-
ray selected catalogs. Furthermore, Rozo et al. (2010) used the abundance and weak
lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously
constrain cosmology and the cluster richness-mass relation. Assuming a flat �CDM
cosmology, they found that σ8(Ωm/0.25)0.41 = 0.832 ± 0.033. These constraints are
fully consistent with those derived from WMAP five-year data. With this remarkable
consistency they claim that optically selected cluster samples may produce precision
constraints on cosmological parameters in future wide-field imaging cosmological
surveys.

4.4.2 The CFHT-legacy survey

Soon after the first light of the Megacam camera at CFHT, a legacy survey (LS) was
started. It comprises a deep u,g, r, i, z (i ∼ 27.5) survey of 4 square degrees in four
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Fig. 30 SDSS discovered strong lensing clusters—(a) Abell 1703, (b) SDSS J1446+3033, (c) SDSS
J1531+3414, and (d) SDSS J2111-0114. Color composite images are made from g, r, i imaging obtained
with Subaru/SuprimeCam. All images are 75′′ × 75′′ . Background sources are bracketed by red lines and
labeled. Source labels with the same letter but different numbers (e.g. A1, A2, etc.) have the same redshifts
to within the measurement errors, and are presumed to be the same source, multiply imaged (figure from
Bayliss et al. 2011)

independent fields spread across the sky, and a wide synoptic u,g, r, i, z (i ∼ 24.5)
survey of 170 square degrees in four patches of 25 to 72 square degrees. Due to the
excellent seeing delivered by CFHT, the Legacy Survey has lead to intensive strong
and weak lensing studies.

In particular, Cabanac et al. (2007) have searched for strong lensing arcs and Ein-
stein rings around galaxies in both the deep and wide part of the CFHT-LS. Most of
the systems uncovered have deflection angles ranging between 2 and 15 arcseconds.
Such samples have thus uncovered a large population of strong lenses from galaxy
groups with typical halo masses of about 1013h−1 M�. The 13 most massive sys-
tems have been studied in detail by Limousin et al. (2009), and detailed analysis of
the mass distribution on small and large scales has been investigated by Suyu and
Halkola (2010) and Limousin et al. (2010), respectively. A weak lensing search for
galaxy clusters in the 4 square degrees of the 4 CFHT-LS deep fields was performed
and results are presented in Gavazzi and Soucail (2007). Using deep i-band images
they performed weak lensing mass reconstructions and identified high convergence
peaks. They used galaxy photometric redshifts to improve the weak lensing analysis.
Among the 14 peaks found above 3.5σ , nine were considered as secure detections
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upon cross-correlation studies with optical and X-ray catalogs. Berge et al. (2008)
conducted a joint weak lensing and X-ray analysis of (only) 4 square degrees from the
CFHTLS and XMM-LSS surveys. They identified six weak-lensing-detected clusters
of galaxies, and showed that their counts can be used to constrain the power-spectrum
normalization σ8 = 0.92+0.26

−0.30 for Ωm = 0.24. They showed that deep surveys should
be dedicated to the study of the physics of clusters and groups of galaxies, and wide
surveys are preferred for the measurement of cosmological parameters. A first cata-
logue of lensing selected cluster has been recently published by Shan et al. (2011)
on the CFHT-LS W1 field. They perform a weak lensing mass map reconstruction
and identify high signal-to-noise ratio convergence peaks, which were then corre-
lated with the optically selected cluster catalogue of Thanjavur et al. (2011). They
then used tomographic techniques to validate their most significant detections and
estimate a tomographic redshift. More weak lensing cluster analyses are expected to
be published from CFHT-LS in the near future.

4.4.3 The COSMOS survey

With only 2 square degrees the COSMOS Survey focused on the relatively high-
redshift Universe. Due to the relatively small volume probed, COSMOS is unlikely
to find the most massive structures in the Universe, but it has delivered interesting
constraints on the redshift evolution of clusters and the scaling relations between
observables. Thanks to the deep X-ray observation of COSMOS fields, clusters can
be efficiently selected in principle out to z ∼ 2. Taking advantage of the X-ray se-
lected catalog, Leauthaud et al. (2010) have investigated the scaling relation between
X-ray luminosity (LX) and the weak lensing halo mass (M200) for about 200 X-
ray-selected galaxy groups. Weak lensing profiles and halo masses were derived for
nine sub-samples, narrowly binned in luminosity and redshift. The COSMOS data
alone are well fit by a power law, M200 ∝ Lα

X, with a slope α = 0.66 ± 0.14. These
observations significantly extend the dynamic range for which the halo masses of
X-ray-selected structures have been measured with weak gravitational lensing as
shown in Fig. 31. Combining with other measurements demonstrates that the M–
LX relation is well described by a single power law with α = 0.64 ± 0.03, over two
decades in mass: M200 ∼ 1013.5–1015.5h−1

72 M�. These results confirm that clusters
do not follow the self-similar evolution model with α = 0.75 proposed by Kaiser
(1986).

5 Cluster lenses as nature’s telescopes

5.1 Magnification due to gravitational lensing

Cluster lenses magnify and distort the shapes of distant galaxies that lie behind them.
For strong lensing clusters, the amplification factor can in principle be infinite if the
source is compact enough and is located exactly behind the caustic, of course such an
event is infinitely rare! Nevertheless, in several strong lensing clusters, amplification
factors larger than 40× (∼4 magnitudes) have been measured (Seitz et al. 1998), and



Astron Astrophys Rev (2011) 19:47 Page 59 of 100

Fig. 31 The COSMOS M–LX relation from Leauthaud et al. (2010). Dark blue diamonds show individu-
ally detected clusters from Hoekstra et al. (2006) with updated masses from Madhavi et al. (2008). Sienna
cross symbols show data points from Bardeau et al. (2007). Light blue plus symbols represent the Rykoff
et al. (2008) results from a stacked analysis in the SDSS and black diamonds take into account a recent
correction to these masses due to a new calibration of the source distribution. The upper error bars have
been adjusted to account for the redshift uncertainty. Green asterisks show four data points at intermediate
masses from Berge et al. (2008). Finally, the red squares depict our COSMOS results which extend previ-
ous results to lower masses and to higher redshifts. Three arrows highlight the highest redshift COSMOS
data points. The grey shaded region shows the upper and lower envelope of the ensemble of lines with a
slope and intercept that lie within the 68 percent confidence region

in fact, amplification factors larger than 4× (∼1.5 magnitudes) are quite common
(Richard et al. 2011). It is thus not surprising that “Cluster Lenses” are often referred
to as “Nature’s Telescopes” or “Cosmic Telescopes” and have been rather effectively
used to discover and study the most distant galaxies that lie behind them.

The regions with the largest magnification are the regions closest to the critical
lines in the image plane (typically less than 1 square arcminute), and closest to the
caustic line in the source plane (typically a few tens to hundreds square arcsecond).
The cross section for high amplification will vary from cluster to cluster and de-
pends on the detailed mass distribution. To first order, the cross-section scales with
the square of the Einstein radius as well as with the ellipticity or anisotropy of the
projected mass distribution on the sky.

As the magnification is wavelength independent, the benefit of using cluster lenses
as cosmic telescopes has been exploited at various wavelengths, from X-ray to the
radio domain. Lensing clusters were first used as cosmic telescopes in the opti-
cal/NIR domain, where a large population of the most distant galaxies (at their
time of discovery) were found behind these cluster magnified regions (e.g. Yee
et al. 1996; Franx et al. 1997; Ellis et al. 2001; Hu et al. 2002; Kneib et al. 2004;
Richard et al. 2011). Lensing clusters were also used at longer wavelengths in sub-
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millimeter using SCUBA at JCMT (e.g. Smail et al. 1998) and in the mid-infrared
domain using the ESA ISO space telescope (Altieri et al. 1999; Metcalfe et al. 2003;
Coia et al. 2005a, 2005b) and now in the far-infrared using the Herschel space obser-
vatory (Egami et al. 2010; Altieri et al. 2010).

There are two important and unprecedented advantages that cluster lenses offer as
cosmic telescopes as they provide the largest field of view with high magnification:

• the potential discovery of the most distant objects and low-luminosity objects that
would otherwise remain undetected with similar blank field imaging,

• the possibility to study the morphology of distant galaxies which otherwise would
not be resolved and explore their physical properties that would otherwise be im-
possible to characterize.

Furthermore, we note that as cluster lenses magnify they also distort the shapes
of distant galaxies. In general, the further the sources, the stronger the distortions.
Hence to first order, the shape of a lensed galaxy (assuming it can be resolved), and
whether it is multiply imaged or not, can be used as a good distance indicator.

5.2 Cosmic telescope surveys

Rather similar to other galaxy surveys two distinct observational strategies that trade-
off depth with area have been explored thus far:

(1) deep mapping (in imaging or spectroscopy) of a few well modeled lensing clus-
ters to search for distant lensed sources—this allows us to probe down the lumi-
nosity function of the targeted distant source population,

(2) shallow mapping on a large cluster sample to search for rare highly magni-
fied background sources (e.g. Fig. 32), with the idea to thereafter conduct de-
tailed follow-up observations of these sources benefiting from the high amplifica-
tion/magnification to constrain important physical and morphological properties
of high-redshift sources (e.g. Lemoine-Busserolle et al. 2003).

As the strong magnification region covers typically at most about a few square
arcminutes, surveys through cluster lenses are particularly adapted to those instru-
ments/telescopes that have an instantaneous field of view comparable to the strong
lensing region. The HST cameras are particularly well matched to cluster strong lens-
ing regions and are thus very well adapted to use for the search and study of distant
sources. Incidentally, this was also the case for the SCUBA instrument on JCMT, as
well as the ISOCAM on the ISO space mission. In the near future ALMA, MUSE
(the one square arcminute integral field unit on the VLT), and the forthcoming JWST
instruments are all facilities that will most effectively exploit lensing magnification.

Of course when conducting a detailed follow-up study of highly magnified
sources, the most effective instruments are high-resolution imagers and spectro-
graphs. In particular, because of the extended nature of the most amplified sources,
integral field spectrographs are more adapted compared to long-slit instruments, and
it is thus natural to conduct follow-up studies with instruments such as SINFONI on
VLT or OSIRIS on Keck for the extremely magnified, rare, lensed sources.

Finally, an other particular observation strategy of cosmic telescope is that of “crit-
ical line mapping”. In this case, one specifically targets regions near the critical lines
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Fig. 32 Newly discovered giant arcs or multiple images as part at the SNAPSHOT HST observations
(PI. H. Ebeling) of the MACS cluster sample. These images show the diversity of morphology for these
serendipitously discovered strongly lensed galaxies (figure is from Richard et al. private communication)

using dedicated instruments such as a long-slit spectrograph (e.g. Santos et al. 2004;
Stark et al. 2007), an integral field spectrograph (Clement et al. 2011) or a millimeter
wave interferometer to blindly probe the distant Universe. In this case the effective
field of view of the instrument is small compared to the critical region, thus requiring
a mapping strategy to cover the region with the highest amplification.

5.3 “Lens redshift” measurement

As lensing distortion and magnification are a function of the redshift of the back-
ground sources, once a cluster mass distribution is well known, the lens model can
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be used to predict the redshifts for the newly identified multiple systems (e.g. Kneib
et al. 1993; Natarajan et al. 1998; Ellis et al. 2001) as well as for the arclets (Kneib
et al. 1994, 1996).

For multiple-image systems, the relative positions of the different images is a
strong function of the redshift of the background source. Although the redshift sen-
sitivity decreases with the redshift of the background source (because the DLS/DS
variation is smaller with increasing redshift) it can nevertheless be used to easily
distinguish between low- and high-redshift solution. In this respect, one can eas-
ily discriminate z ∼ 1–2 obscured galaxies from z > 4 high-redshift lensed galax-
ies, and this property has been used many times very effectively (Ellis et al. 2001;
Kneib et al. 2004; Richard et al. 2008, 2011). For the arclets, the redshift prediction
is based on the fact that on average a distant galaxy is randomly orientated, and its
ellipticity follows a relatively peaked ellipticity distribution (σε ∼ 0.25). Hence, by
conducting high-resolution imaging (e.g. with Hubble), and by measuring the ellip-
ticity and orientation of the background lensed sources in the core of massive cluster
lenses, one can statistically derive the redshift distribution of the background lensed
population. Such measurements were first introduced by Kneib et al. (1993), and de-
veloped further in Kneib et al. (1996). These predictions were tested and verified
by Ebbels et al. (1998) using spectroscopy in the case of the lensing cluster Abell
2218. Despite the successful demonstration of the technique, it never became pop-
ular due to the following limitations. First, the derived probability distribution p(z)

distribution is relatively broad, particularly, at high redshift. Therefore the method is
not really competitive with photometric-redshift determinations, except may be for
disentangling catastrophic photometric redshifts. Second, the cluster galaxy contam-
ination is high in the optical/near-infrared domain and statistical estimates always
have limited utility. Third, galaxy sizes decrease rapidly with redshift, and accurate
measurement of the galaxy shape can only be done efficiently with deep Hubble
imaging yet again limiting the use of this technique. Finally, as there are many other
good science drivers to obtain multi-band information on these massive clusters, and
as photometric-redshift determination methods are rapidly improving, the statistical
lens redshift measurements never became attractive and/or popular.

5.4 Lensing surveys in the sub-millimeter

The SCUBA (the JCMT Submillimeter Common-User Bolometer Array) Lensing
survey was likely one of the first systematic surveys to exploit distant lensed galaxies
using massive clusters. This survey first started with the mapping of two massive
clusters: Abell 370 at z = 0.37 and Cl 2244-02 at z = 0.33 (Smail et al. 1997) and
continued to map the region behind five similarly massive clusters covering a total
area of 0.01 square degree (Smail et al. 1998). Each SCUBA continuum map from
this cluster lens survey covered a total area of about 5 square arcminutes to 1σ noise
levels less than 14 mJy/beam and 2 mJy/beam at 450 and 850 micron wavelengths,
respectively.

Since SCUBA was a new instrument that achieved a sensitivity 2–3 orders of
magnitude deeper than was previously possible and thanks to the cluster magnifica-
tion, Smail et al. (1997) were the first to find the distant sub-millimeter (sub-mm)



Astron Astrophys Rev (2011) 19:47 Page 63 of 100

selected galaxy population. In total 17 sources brighter than the 50% completeness
limits (10 brighter than the 80% limit) were discovered (Smail et al. 1998). The sub-
millimeter spectral properties of these first sources indicated that the majority lie
at high redshift (1 < z < 5.5), which was confirmed later with redshift measure-
ments. Measured redshifts for a large number of these sub-mm-selected galaxies
placed the bulk of this population at z ∼ 2.5 (Ivison et al. 1998; Barger et al. 2002;
Chapman et al. 2005).

The use of cluster lenses in the case of the sub-millimeter high-redshift searches
was strongly motivated by the fact that cluster galaxy members are not sub-millimeter
sources and are therefore transparent at this wavelength, making clusters perfect tele-
scopes to preferentially probe the distant galaxy population (Blain 1997). Impor-
tantly, the use of cluster lenses increases the sensitivity of sub-mm maps and reduces
the effects of source confusion (which plagues bolometer surveys in sub-mm and
mm wavelengths) due to the dilution produced by lensing clusters. With accurate
lens models Blain (1998) first corrected the observed sub-mm source counts for lens-
ing amplification using the SCUBA lensing survey data on the first seven clusters,
thus pushing the 850 micron counts down below the SCUBA confusion limit; for
example at 1 mJy, 7900 ± 3000 galaxies per square degree were found. Down to the
0.5 mJy limit, the resolved 850 micron background radiation intensity was measured
to be (5 ± 2) × 10−10 W m−2 sr−1, comparable to the current COBE estimate of the
background, indicating for the first time that the bulk of the 850 micron background
radiation is effectively produced by distant ultra-luminous galaxies. These first sub-
mm galaxy counts were confirmed later with a larger sample of clusters mapped by
SCUBA (Cowie et al. 2002; Knudsen et al. 2008) reaching a lens-corrected flux limit
of 0.1 mJy. The first sub-mm multiple images were found in Abell 2218 (Kneib et al.
2004) and MS0451-03 (Borys et al. 2004) identified at z = 2.516 and z ∼ 2.9, respec-
tively. In particular, the source SMM J16359+6612 is gravitationally lensed by Abell
2218 into three discrete images with a total amplification factor of ∼45, implying that
this galaxy has an unlensed 850-micron flux density of only 0.8 mJy. Furthermore,
SMM J16359+6612 shows a complex morphology with three sub-components argu-
ing for either a strong dust (lane) absorption or a merger. Interestingly, these sub-mm
sources are surrounded by two other highly amplified galaxies at almost identical
redshifts within a ∼100-kpc region suggesting this sub-mm galaxy is located in a
dense high-redshift group (see Fig. 33). Further mapping at the IRAM Plateau de
Bure interferometer indicated that this source is a compact merger of two typical
Lyman-break galaxies with a maximal separation between the two nuclei of about
3 kpc, thus it bears a close similarity to comparable luminosity, dusty starbursts that
result from lower-mass mergers in the local Universe.

However, the most spectacular lensed sub-mm galaxy is certainly the recently dis-
covered SMMJ2135-0102 at redshift z = 2.3259 that is gravitationally magnified by
a factor of 32 by the massive cluster MACSJ2135-010217 (Swinbank et al. 2010;
Fig. 34). This large magnification, when combined with high-resolution sub-mm
imaging, resolves the star-forming regions at a linear scale of just ∼100 parsec. The
luminosity densities of these star-forming regions are comparable to the dense cores
of giant molecular clouds in the local Universe, but they are ∼100× larger and 107

times more luminous. The star formation processes at z ∼ 2 in this vigorously star-
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Fig. 33 (Left) A true-color image of the core of A 2218 (blue: HST F450W, green: HST F814W and red:
WHT/INGRID Ks). The 850 µm sub-mm image from SCUBA is overlayed as white contours. The three
images of the multiply imaged sub-mm galaxy are annotated as A, B and C. The sub-mm contour at the
top left corresponds to a z = 4.04 sub-mm galaxy discussed in Knudsen et al. (2010). Two other galaxies
at z ∼ 2.5, are identified: the single-image #273 and the fold-image #384 and its counter image #468. The
yellow line shows the critical line at z = 2.515. (Right) Panel of 10′′ × 10′′ images showing the INGRID
Ks-band (left column) and HST true-color image from F450W/F606W/F814W (right column) of the four
sub-mm sources in the core of A 2218. Note how each of the sub-mm sources, SMM J16359+6612.6,
SMM J16359+6612.4 and SMM J16358+6612.1, comprises a NIR source (γ ) which is bracketed by two
features in the F814W image (α and β). (From Kneib et al. 2004)

forming galaxy appear to be similar to those seen in local galaxies even though the
energetics are unlike anything found in the present-day Universe.

In the sub-mm domain, lensing has proven to be truly useful in revealing details
about high-redshift sources that would otherwise be impossible, even with the next
generation of large aperture telescopes.

5.5 Mid-infrared lensing survey

In the late 1990s, the ISOCAM camera on the ESA Infrared Space Observatory (ISO)
targeted a number of massive cluster lenses. The motivation for these observations
was to probe the faint and distant Mid-Infrared galaxy population and their contri-
bution to the cosmic mid-infrared background radiation. In particular a few well-
known massive cluster lenses were imaged deeply by ISO at 7 and 15 micron. The
deepest ISO observation of a cluster targeted Abell 2390 (Altieri et al. 1999). Cross-
identification of the numerous mid-infrared sources with optical and near-infrared
data showed that almost all 15 micron sources were identified as lensed distant galax-
ies. These observations allowed the computation of number counts in both the 7 and
15 micron bands and led to the ruling out of non-evolutionary models, and favoring
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Fig. 34 (Left) Hubble Space Telescope V, I -band color image of MACSJ2135-010217 with white con-
tours denoting the 870 micron emission of SMMJ2135-0102 with flux 106.0 ± 7.0 mJy as observed by
APEX/LABOCA. The optical counterpart is faint with IAB = 23.6 ± 0.2. The solid red lines denote the
z = 2.326 radial and tangential critical curves from the best-fit lens model. (Center) True color IRAC
3.6, 4.5, 8.0 micron image of the cluster core with contours denoting the 350 micron emission from
APEX/LABOCA. The mid-infrared counterpart is clearly visible as an extended red galaxy centered at
the sub-mm position. (Right) SMA 870 micron image of the galaxy. The map shows eight individual com-
ponents, separated by up to 4′′ in projection. The red line is the same z = 2.326 radial critical curve.
Components (A, B, C, D) represent two mirror images of the galaxy, each comprising four separate emis-
sion regions reflected about the lensing critical curve. Figure from Swinbank et al. (2010)

very strong number count evolution. By combining the data on three massive clus-
ters (Abell 370, Abell 2218 and Abell 2390), Metcalfe et al. (2003) detected a total
of 145 mid-infrared sources, and after a very careful lensing correction derived the
intrinsic counts of the background source population. It was found that roughly 70%
of the 15 micron sources are lensed background galaxies. Of sources detected only
at 7 micron, 95% are cluster galaxies in this sample. Of the 15 sub-mm sources al-
ready identified within the mapped regions of the three clusters, 7 were detected at
15 micron. Flux selected subsets of the field sources above the 80% and 50% com-
pleteness limits were used to derive source counts to a lensing corrected sensitivity
level of 30 micro-Jy at 15 micron, and 14 micro-Jy at 7 micron. The source counts,
corrected for the effects of completeness, contamination by cluster sources and lens-
ing, confirmed and extended earlier findings of an excess by a factor of ten in the 15
micron population with respect to source models with no evolution, with a redshift
distribution that spans between z = 0.4 and z = 1.5.

5.6 Lensed extremely red objects

The benefits of lensing have also been used to search for Extremely Red Objects
(EROs) behind a sample of 10 X-ray luminous galaxy clusters (Smith et al. 2002a,
2002b) imaged by both the WFPC2 camera (using F702W filter) and UKIRT in the
K-band. EROs are galaxies with R −K > 5.3 as defined by Daddi et al. (2000) as the
criterion to select distant elliptical galaxies. The other more stringent definition with
R − K > 6 was adopted by Thompson et al. (1999). In these clusters a total of about
60 EROs have been identified so far allowing the number counts of these rare objects
to be computed down to about 2 magnitudes fainter than previous work published at
that time. The exploitation of the lensing effect has also permitted a more accurate
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Fig. 35 True color R,K view
(50′′ × 50′′) of the Abell 68
cluster core (combining HST
and near-infrared UKIRT data).
The bright elliptical galaxy in
the center of the frame is the
central galaxy of the cluster.
Three images of ERO J003707
are clearly visible and are
marked as A, B and C. Each
image comprises a central red
“bulge”, surrounded by
numerous fainter blue knots of
current or recent star formation
(from Smith et al. 2002a)

study of the morphology of these peculiar galaxies, revealing in some cases spectacu-
lar disky components already in place at fairly early times (Fig. 35). In particular, for
the case of the multiply imaged ERO J003707, morphological and photometric anal-
yses reveal an L∗ early-type disk-galaxy. It has been estimated that ∼10% of EROs
with R − K > 5.3 and K < 21 have similar properties. The unique association of
passive EROs with elliptical galaxies therefore appears to be too simplistic and has
been reconsidered. More recent work on searching for lensed EROs was conducted in
A1835 and AC114 (Schaerer et al. 2007) taking advantage of complete wavelength
coverage including HST, ground based and Spitzer data. They found in these obser-
vations that most of the EROs were, in fact, young dusty starbursts at z ∼ 2–3.

5.7 Lensed Lyman-α emitters

One of the exciting current ventures is to map the critical region of massive clusters
(Fig. 36) in order to search for Lyman-alpha emitters at very high redshifts (z > 4),
compute their number density, derive their luminosity function and therefore charac-
terize this population. By pushing to very high redshift z > 7 one should get closer
to re-ionization, and the increase in neutral gas content of the Universe should block
Lyman-α photons. Thus at some point one should expect a strong evolution of the
Lyman-α emitter luminosity function. Two approaches have been pursued in the
search for Lyman-α emitters, a direct search through intense spectroscopy, and an
indirect one that relies on conducting narrow-band imaging searches in which the
wavelength range is tuned to probe a specific redshift window.
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Fig. 36 The high magnification critical region in the core of the massive cluster Abell 1689. Red lines are
the critical line for z = 7 (both radial and tangential lines are shown) and the yellow contours delimit the
regions of the sky having a magnification larger than a factor of ten

5.7.1 Spectroscopic critical line mapping

The first dedicated critical line mapping using spectroscopy was conducted at Keck,
using the long-slit mode of LRIS (Sand et al. 2004). Nine intermediate redshift, mas-
sive clusters with good lensing mass models were carefully selected, and a num-
ber of long-slit observations was conducted, sliding the long slit across the critical
line region thus achieving magnification factors generally greater than 10. Eleven
emission-line candidates were located in the range 2.2 < z < 5.6 with Lyman-α as
the line identification. The selection function of the survey takes into account the
varying intrinsic Lyman-α line sensitivity as a function of wavelength and sky posi-
tion. By virtue of the strong magnification factor, these measurements provide con-
straints on the Lyman-α luminosity function to unprecedented limits of 1040 erg/s,
corresponding to a star formation rate of 0.01 M�/yr. Combining these lensing re-
sults with other surveys, limited to higher luminosities, Sand et al. (2004) argue that
there exists evidence for the suppression of star formation in low-mass halos, as pre-
dicted in popular models of galaxy formation. The highest redshift Lyman-α emitter
discovered in this survey is the z = 5.576 pair in the cluster Abell 2218 (Ellis et al.
2001). High-resolution spectroscopic follow-up confirmed the lensing hypothesis of
the LRIS discovery by identifying the second image. The unlensed source appears to
be a very faint source with (I ∼ 30) and is compact in nature (<150h−1

65 pc). This
source is a promising candidate for an isolated ∼106 M� system seen likely produc-
ing its first generation of stars close to the epoch of re-ionization.
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Pushing to higher redshifts than z > 7 requires an infrared spectrograph. In a chal-
lenging experiment, Stark et al. (2007) blindly surveyed the critical line region of
nine massive clusters using the Keck/NIRSPEC long slit. The magnification boost
ranges from 10 to 50× for a background galaxy between ∼8 < z < ∼10, thus pushing
the sensitivity limits to unprecedented low fluxes (1041–1042 erg/s) for this redshift
range. This survey identified six promising (>5 σ ) candidate Lyman-α emitters that
lie between z = 8.7 and z = 10.2. Lower redshift line interpretations were mostly
excluded through the non-detection of secondary emission in further spectroscopy
undertaken with LRIS and NIRSPEC. Nonetheless, it is considered plausible that
at least two of the candidates are likely at z ∼ 9. If true, then given the small vol-
ume surveyed, this suggests there is an abundance of low-luminosity star-forming
sources at z ∼ 8–10, which could provide a significant proportion of the UV pho-
tons necessary for cosmic re-ionization. A parallel study was conducted using the
SINFONI 3D spectrograph at VLT, and three of the Keck/NIRSPEC candidates were
re-observed—as part of the SINFONI critical line mapping program. However, no
confirmation of the Keck/NIRSPEC detected lines was found, casting some doubt
on the real redshifts of these particular sources. The results of this survey are pre-
sented in Clement et al. (2011). Future 8–10 m class instruments such as MUSE in
the visible and MOSFIRE, KMOS and EMIR in the near infrared should, thanks to
their higher multiplexing, provide new opportunities to further conduct critical line
surveys and find more robustly numerous high-redshift Lyman-α emitters.

5.7.2 Narrow-band searches

An alternative to direct spectroscopy of Lyman-α emitters, is to conduct narrow-
band imaging. Although this technique has been very popular in blank fields, only
a few such observations have been conducted in the direction of cluster cores. Hu
et al. (2002) have discovered a redshift z = 6.56 galaxy lying behind the cluster
Abell 370 (Fig. 37). The object nicknamed HCM-6A was found in a narrow-band
imaging survey using a 118 Å bandpass filter centered at 9152 Å using LRIS on
the Keck telescope. At the time of discovery, HCM-6A was the first galaxy to be
confirmed at redshift z > 6 (its observed equivalent width is 190 Å, with a flux of
2.7 × 10−17 erg/cm2/s). Using the detailed lensing model of this cluster, a lensing
amplification factor of 4.5 was estimated as the source is situated about 1 arcminute
away from the cluster center. This discovery suggested that the re-ionizing epoch of
the Universe lies beyond z ∼ 6.6. Follow-up of this source with Spitzer (Chary et al.
2005) and in millimeter with MAMBO-2 (Boone et al. 2007, which provided an up-
per limit at 1.2 mm) have helped derive some physical parameters with relatively
high accuracy considering the distance of this source. Even more ambitious was the
narrow J-band filter NB119 survey (corresponding to Lyman-α at z ∼ 9) nicknamed
the ‘z equals nine’ (ZEN) survey conducted toward three massive lensing clusters:
Abell clusters A1689, A1835 and AC114 (Willis et al. 2008). However, no sources
consistent with a narrow-band excess were found and no detection in bluer deep opti-
cal was reported. The total coverage of the ZEN survey sampled a volume at z ∼ 9 of
approximately 1700 co-moving Mpc3 to a Ly-α emission luminosity of 1043 erg/s.
The limits from this survey still offer the best constraints at this redshift.
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Fig. 37 HST (ACS+WFC3) color V, I, J view of the HCM-6A z = 6.56 Lyman-α emitter located near
the core of the Abell 370 cluster. Note the strong detection in the F110W (J-band) filter and its bimodal
light distribution. The region shown covers 60′′ × 20′′

5.8 Lyman-break galaxies

As the number density of Lyman-break galaxies (at 3 < z < 3.5) is typically half a
galaxy per square arcminute down to R = 25 (Steidel et al. 1996), a massive cluster
will likely magnify one of them, and if we consider a wider range in redshift, the prob-
ability that one of them is multiply imaged is almost guaranteed. The first giant arc
in Cl 2244-04 at z = 2.24 is considered to be the first Lyman-break galaxy detected
in a cluster lens, although at the time of its discovery in the late 1980s, this galaxy
was not classified as such. As part of the CNOC survey, Yee et al. (1996) identified a
“proto-galaxy” at z = 2.72, the galaxy cB58 in the cluster MS1512+36. Interestingly,
they assumed that this object although being very close to the cluster center was
unlikely to be lensed. But soon after, Seitz et al. (1998) demonstrated that cB58 was
highly lensed, magnified by more than a factor of 50, thanks to the identification of its
counter image. The estimate of such a high magnification led to a number of follow-
up studies at high spectral resolution to further constrain the physical properties of
this high-redshift galaxy (e.g. Pettini et al. 2002). At about the same time, the triple
arc at z = 2.515 in Abell 2218 (Ebbels et al. 1996) was the first recognized Lyman-
break galaxy lensed by a massive cluster, however, its magnification is only ∼15×,
much less than that of cB58. Shortly afterward in the course of a spectroscopic cluster
galaxy survey of MS1358+62, Franx et al. (1997) discovered a Lyman-break galaxy
at z = 4.92 multiply imaged by the cluster. Further study and modeling by Swinbank
et al. (2010) derived a magnification factor for the brightest image of 12.5 ± 2. At the
time of discovery the arc in MS1358+62 was the most distant galaxy known. In the
massive cluster Abell 2390, Frye and Broadhurst (1998) and Pelló et al. (1999) inde-
pendently found a z = 4.04 pair, strongly lensed by the cluster. These high-redshift
discoveries have demonstrated the potential of discovering even higher redshift galax-
ies lensed by massive clusters. Thanks to deep F850LP/ACS data, following up the
z = 5.56 Lyman-α galaxy pair of Ellis et al. (2001), Kneib et al. (2004) found an
i-band dropout detected in z-band (see Fig. 38). Detection with NICMOS confirmed
a z ∼ 6.8 redshift, however, a NIRSPEC/Keck spectrum failed to detect a Lyman-α
line, but Spitzer IRAC 3.6 and 4.5 micron detections (Egami et al. 2005) provided
strong constraints on the age of the underlying stellar population, making it one of
the best studied objects at this redshift.
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Fig. 38 HST ACS color V, I, z view of Abell 2218 showing the triply imaged Lyman-break galaxy at
z ∼ 6.8 (Kneib et al. 2004)

Using the ESO/VLT instruments FORS and ISAAC, a deep imaging survey of
the clusters AC114 and A1835 was conducted by Richard et al. (2006) to search for
lensed optical and near-infrared dropout galaxies. In this work, they identified 26 op-
tical dropout candidates in both A1835 and AC114 (with H ∼ 23.5–24.0). Half of
these candidates show an SED compatible with star-forming galaxies at z > 6, and
6 of them are likely intermediate-redshift extremely red objects based on luminosity
considerations. With this dataset a first attempt was made to characterize the luminos-
ity function of these high-redshift galaxies, which are not well constrained by deeper
HST/NICMOS observations of the HUDF (Hubble Ultra Deep Field). This work lead
to the study by Richard et al. (2008) of a further six massive clusters with HST using
the NICMOS camera and complemented by Spitzer observations. The survey yielded
10 z-band and 2 J-band dropout candidates to photometric limits of J110 ∼ 26.2 AB
(5σ ). By taking into account the magnifications afforded by the clusters, they probed
the presence of z > 7 sources to unlensed limits of J110 ∼ 30 AB, fainter than those
charted in the HUDF. Taking into account the various limitations of this work, they
concluded that about half of the sample of z-band dropouts are at high redshift. An
ambitious infrared spectroscopic campaign undertaken with the NIRSPEC spectro-
graph at the Keck Observatory for seven of the most promising candidates failed to
detect any Ly-α emission.
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Behind Abell 1689, using HST/NICMOS Bradley et al. (2008) found a bright
H = 24.7 z ∼ 7.6 galaxy candidate: A1689-zD1. This source is 1.3 mag brighter
than any known z850-dropout galaxy (thanks to a cluster magnification factor of
∼9.3×). Nevertheless, no spectroscopic observations have yet confirmed the red-
shift of this candidate. In the more recent years, discoveries have been reported
using either the ground based ESO/Hawk-I infrared imager (Laporte et al. 2011)
or the new WFC3 camera installed in May 2009 onboard HST (Bradley et al.
2011; Kneib et al. 2011; Paraficz et al. 2011). In the long term, the James Webb
Space Telescope (JWST) and the Extremely Large Telescopes will uncover large
numbers of these very high-redshift systems, enabling the study of their sizes,
morphologies and physical parameters (e.g. Wyithe et al. 2011; Salvaterra et al.
2011).

5.9 Far infrared lensing surveys

With the launch of the Herschel Space Observatory in May 2009, a new window to
the Universe has been opened. The Herschel Lensing Survey (HLS) conducted deep
PACS and SPIRE imaging of 44 massive clusters of galaxies. These observations
complement the observation of 10 massive clusters by the GTO teams. In particular,
it is foreseen that the strong gravitational lensing power of these clusters will enable
penetration through the confusion noise, which sets the ultimate limit on our ability
to probe the Universe with Herschel. Although the analysis of this large dataset is
still in progress, some early results were presented in the AandA Herschel special
issue in spring 2010. In particular, Egami et al. (2010) summarized the major results
from the science demonstration phase observations of the Bullet cluster (z = 0.297).
The study of two strongly lensed and distorted galaxies at z = 2.8 and 3.2 and the
detection of the Sunyaev–Zel’dovich (SZ) effect increment of the cluster with the
SPIRE data have been reported.

By looking at Abell 2218, Altieri et al. (2010) studied the population of in-
trinsically faint infrared galaxies that lie below the sensitivity and confusion lim-
its using ultra-deep PACS 100 and 160 micron observations (Fig. 39). They de-
rived (unlensed) source counts down to a flux density of 1 mJy at 100 micron
and 2 mJy at 160 micron. In particular, the slope of the counts below the turnover
of the Euclidean-normalized differential curve could be constrained in both bands
and was found to be consistent with most of the recent evolutionary models. By
integrating the number counts over the flux range accessed by exploiting lensing
by Abell 2218 they retrieved a cosmic infrared background surface brightness of
∼8.0 and ∼9.9 nW/m2/sr, in the 110 and 160 micron bands, respectively. By com-
bining the Abell 2218 results with wider/shallower fields, the source fluxes cor-
respond to ∼60% and ∼90% of the DIRBE cosmic infrared background at 100
and 160 micron. These first Herschel results from HLS and the GTO sample will
certainly expand as the data are getting analyzed and we can envision numerous
follow-up observations at optical and near-infrared wavelengths as well as with
ALMA.

As part as the second call for observations another interesting lensing search has
been implemented in the Herschel observing program to find a larger number of ex-
ceptionally bright lensed galaxies such as the one found by Swinbank et al. (2010).
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Fig. 39 (Left) PACS 100 ?m map toward Abell 2218 with lensed and foreground sources marked with blue
circles, other sources are identified cluster members. Overlaid contours in black show the rms contours at
0.7, 1.0, 2.0 and 4.0 mJy. (Right) Number counts at 100 micron with lensing correction (red filled circles),
normalized to the Euclidean slope, against the prediction of various synthetic counts models. Errors refer
to pure Poisson statistics at 68% C.L. GOODS-N counts are contrasted in the shaded area (from Berta
et al. 2010). (Figures from Altieri et al. 2010)

This project is aiming to conduct a SPIRE snapshot survey of ∼300 X-ray-selected
massive galaxy clusters to discover the few extreme magnified objects that will then
be very easy to follow-up at various wavelengths for an in-depth study. Although this
survey is not yet finished, a number of highly amplified SPIRE sources have been
identified, and intensive multi-wavelength follow-up are in progress.

5.10 Cluster lensed supernovae

In the last two decades, Supernovae (SNe) have been used for several astro-
physical and cosmological applications. In particular, core collapse SNe trace the
star formation history while the standard candle property of Type Ia SNe can be
used for probing the expansion history of the Universe (e.g. Riess et al. 1998;
Perlmutter et al. 1999; Amanullah et al. 2010). One of the focus on current SNe
research is to probe the distant Universe. However, one strong limitation is the light
collecting power of existing telescopes.

A possible alternative to current investigation is to target these SNe in the field
of view of massive clusters. Although the idea is not new and was first discussed by
Narasimha and Chitre (1988) and then by Kovner and Paczynski (1988), it is only
recently that SNe observations in cluster fields has become more popular (Kolatt and
Bartelmann 1998; Sullivan et al. 2000; Gal-Yam et al. 2002). The most interesting
locations are of course the strong lensing regions of clusters where the amplification
is the largest, and were SNe could be multiply imaged offering the possibility to
measure the time delay between the different images.

At first SN searches were done at optical wavelengths where SNe typically emit
most of their light. For example, Gal-Yam et al. (2002) using archival HST imaging
of 9 clusters, in which they discovered two or three likely cluster SNe and three other
SNe, with one background to a cluster at redshift z = 0.985. More recently, Sharon
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et al. (2010) in a dedicated SNe HST multi-epoch ACS I -band survey of 16 massive
clusters (ranging from z = 0.5 to z = 0.9) have discovered 24 SNe, with eight of them
being background to these clusters (the highest SN redshift found is at z = 1.12).
However, none of those lensed SNe are in the regions of multiple images. At even
higher cluster redshift z ∼ 1, the Supernova Cosmology Project (PI: Perlmutter) has
targeted 25 clusters through an HST multi-epoch program in which nine clusters and
twenty other (foreground or background) SNe have been discovered (Dawson et al.
2009). However, the main focus of these cluster multi-epoch surveys was essentially
geared toward the discovery and study of cluster type Ia SNe, and thus were not
optimized to benefit from the cluster lens magnification.

On the contrary, Gunnarsson and Goobar (2003) presented the feasibility of de-
tecting high-z SNe along the line of sight of massive clusters, in particular focusing
on the SNe detection in the near infrared. Using a dedicated VLT/ISAAC multi-epoch
SN survey, Stanishev et al. (2009) and Goobar et al. (2009) reported the discovery of
a highly amplified SN at z ∼ 0.6 behind the well-studied Abell 1689 cluster. More
recently, using the new VLT/Hawk-I infrared camera, Amanullah et al. (2011) found
one of the most distant SNe ever found at z = 1.703 (measured through X-Shooter
spectroscopy of the galaxy host) thanks to the large magnification (∼4.3±0.3) of the
massive cluster Abell 1689. This study demonstrated that further SNe follow-up may
lead to important new discoveries.

6 Cosmological constraints from cluster lensing

In this section, we discuss three powerful cluster lensing based methods at various
stages of development and application that may provide competitive and important
constraints on cosmological parameters. These are: cosmography using several sets
of multiple images lensed by the same cluster; the abundance of arcs and the statis-
tics of lensed image triplets. For cosmography and triplet statistics purely geometric
constraints are obtained via the ratio of angular diameter distances, whereas the abun-
dance of arcs provides potentially strong constraints on the growth of structures and
primordial non-Gaussianity.

6.1 Cosmography with multiple images

Measurements of the Hubble diagram for Type Ia Supernovae (SNIa) (Riess et al.
1998; Perlmutter et al. 1999) combined with constraints from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP5) (Spergel et al. 2003), cosmic shear observations
(Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke et al. 2000; Wittman et al. 2000;
Semboloni et al. 2006), cluster baryon fraction (Allen et al. 2004), cluster abundances
(Vikhlinin et al. 2009) and baryon acoustic oscillations (BAO) from galaxy surveys
(Efstathiou et al. 2002; Seljak et al. 2005; Eisenstein et al. 2005) suggest that ∼72%
of the total energy density of the Universe is in the form of an unknown constituent
with negative pressure—the so-called dark energy, which powers the measured ac-
celerating expansion. These observations probe the equation-of-state parameter wX,
defined as the ratio of pressure to energy density, through its effect on the expansion
history of the Universe and the growth of structures.
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Constraining the geometry and matter content of the Universe using multiple sets
of arcs has been explored in cluster lenses using different techniques (Paczynśki and
Gorski 1981; Link and Pierce 1998; Cooray 1999a, 1999b; Golse et al. 2002; Sereno
2002; Sereno and Longo 2004; Soucail et al. 2004; Dalal et al. 2005; Meneghetti et al.
2005a, 2005b; Maccio 2005; Gilmore and Natarajan 2009; Jullo et al. 2010).

As shown in Sect. 1, the lensing deflection produced in the image of a background
source depends on the detailed mass distribution of the cluster as well as on the
ratio of angular diameter distances. The cosmological dependence arises from the
angular diameter distance ratios that encapsulate the geometry of the Universe and
are a function of both Ωm and ΩX .

The most promising technique, is using multiple sets of arcs with measured red-
shifts. By taking the ratio of their respective Einstein radii and marginalizing over
parameters of the mass distribution, one can in principle constrain the cosmological
parameters Ωm and ΩX . In this method, the angular diameter distance ratios for two
images from different sources defines the ‘family ratio’ Ξ , from the cosmological
dependence of which constraints on Ωm and wX are extracted:

Ξ(zL, zs1, zs2;Ωm,ΩX,wX) = D(zL, zs1)

D(0, zs1)

D(0, zs2)

D(zL, zs2)
, (58)

where zL is the lens redshift, zs1 and zs2 are the two source redshifts, and D(z1, z2)

is the angular diameter distance.
Link and Pierce (1998) showed that the cosmological sensitivity of the angular

size-redshift relation could be exploited using sources at distinct redshifts and de-
veloped a methodology to simultaneously invert the lens and derive cosmological
constraints. Golse et al. (2002) using simulated cluster data, showed that the recovery
of cosmological parameters was feasible with at least three sets of multiple images
for a single cluster. Soucail et al. (2004) then applied the technique to the lensing
cluster Abell 2218 using 4 systems of multiple images at distinct redshifts, and found
(Ωm < 0.37, wX < −0.80) assuming a flat Universe.

Jullo et al. (2010) have presented the results of the first application of this method
to the massive lensing cluster Abell 1689 at z = 0.184 (see Fig. 40). Based on images
from the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope
(HST) this cluster has 114 multiple images from 34 unique background galaxies, 24
of which have secure spectroscopic redshifts (ranging from z ∼ 1 to z ∼ 5) obtained
with the Very Large Telescope (VLT) and Keck Telescope spectrographs (Broadhurst
et al. 2005; Limousin et al. 2007). Their parametric model has a total of 21 free
parameters consisting of two large-scale potentials, a galaxy-scale potential for the
central brightest cluster galaxy (BCG), and includes the modeling of 58 of the bright-
est cluster galaxies. The contribution of substructure in the lens plane and along the
line of sight is explicitly included (see D’Aloisio and Natarajan 2011a, 2011b for a
detailed discussion of the systematics). Combining the lensing derived cosmological
constraints with those from X-ray clusters and the Wilkinson Microwave Anisotropy
Probe 5-year data gives Ωm = 0.25 ± 0.05 and wX = −0.97 ± 0.07 which are con-
sistent with results from other methods (see Fig. 41). Inclusion of this work with all
other techniques available brings down the current 2σ contours on the dark energy
equation of state parameter wX by about 30%.
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Fig. 40 The critical lines for a source at z = 3 are over-plotted in yellow on the HST ACS image of
Abell 1689. The lensing mass model used is the one from which we derived cosmological constraints.
In addition to two large-scale clumps and the BCG, this model includes the contribution of 58 cluster
galaxies. The positions of cluster galaxies are marked with green crosses. Over-plotted in white are the
28 multiple images arising from 12 families used in their work; the red circles mark the positions of the
rejected images (figure from Jullo et al. 2010)

As with all techniques, an accurate inventory of the key systematics and their
contribution to the error budget is also the challenge for this technique. The two
significant current limitations arise from: (i) accounting appropriately for the lensing
effect of the uncorrelated line of sight substructure (see schematic in Fig. 42) and
(ii) the simplifying scaling relations assumed to relate galaxy total mass to galaxy
light. However, the results from Abell 1689 are extremely encouraging and the future
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Fig. 41 The current
cosmological constraints in the
(Ωm, Ωλ) based on the best-fit
model of Abell 1689 from Jullo
et al. (2010): the results from
combining cosmological
constraints from WMAP5 +
evolution of X-ray clusters +
cluster strong lensing (cluster
only methods); the 1 and 2σ

contours are plotted, blue
contours constraints from
WMAP5, pink contours X-ray
clusters, orange contours cluster
strong lensing

prospects for this method look promising due to the power from combining several
clusters at various redshifts.

6.2 Arc statistics and primordial non-Gaussianity

The production of giant arcs by lensing clusters is ubiquitously observed. The abun-
dance of massive clusters available to do so is sensitive both to the expansion history
and initial conditions of the Universe. Given the scaling of the lensing efficiency with
redshift, it is known that the frequency of giant-arc formation depends on the abun-
dance and characteristics of galaxy-clusters roughly half-way to the sources. Cluster
physics, cosmological effects and the properties of the high-redshift source popula-
tion all play a role in determining the abundance of giant arcs, however, isolating
these effects is difficult. It was originally claimed by Bartelmann et al. (1998) that
the �CDM model predicted approximately an order of magnitude fewer arcs than
seen in observations. Subsequent studies (e.g. Zaritsky and Gonzalez 2003; Glad-
ders et al. 2003) substantiated this claim of a ‘giant-arc problem’. This mis-match
between observations and the concordance cosmological model predictions suggest
that either the Bartelmann et al. (1998) analysis was lacking a crucial component of
properties exhibited by real cluster lenses and the source population (Williams et al.
1999) or that the concordance cosmology is in fact inconsistent with the observed
abundance of giant arcs. A significant amount of effort has been expended toward
understanding the most important characteristics of arc-producing clusters, and how
they may not be typical of the general cluster population (e.g. Hennawi et al. 2007;
Meneghetti et al. 2010; Fedeli et al. 2010). Other studies focused on effects that
were not captured in early simulations. The mass contribution of central galax-
ies appears to have a significant effect, though not enough to entirely resolve the
Bartelmann et al. (1998) disagreement alone (Meneghetti et al. 2003a, 2003b; Dalal
et al. 2004). The probability of giant-arc formation increases with source redshift,
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Fig. 42 Schematic diagram illustrating the creation of lens planes to quantify the lensing effects of halos
along the line of sight. A rectangular slice of the Millennium Simulation box is taken and the locations
of halos are projected along the long axis and analytic NFW potentials are placed on those positions. The
NFW parameters are obtained through scaling relations with mass and redshift. The lens plane is inserted
at the appropriate redshift and a multi-plane lensing algorithm is used to trace rays. Many lens planes
between z = 0 and z = 5 are used to estimate the systematic errors at the positions of multiple images
from the structure along the line of sight

therefore the overall abundance is sensitive to uncertainties in the high-redshift
tail of the source–redshift distribution (Wambsganss et al. 2004; Dalal et al. 2004;
Li et al. 2005). However, none of these effects can account for the observed discrep-
ancy. On the other hand, taking into account a realistic source population and obser-
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vational effects, Horesh et al. (2005) claimed that the clusters predicted by �CDM
have the same arc production efficiency as the observed clusters. The effects of bary-
onic physics, such as cooling and star formation, on central mass distributions have
also been investigated (Meneghetti et al. 2010).

The amplitude of the linear matter power spectrum plays a critical role in de-
termining how severe and if there is a giant-arc problem or not. Observations
seem to be converging on σ8 ≈ 0.8 (Fu and Stockton 2008; Vikhlinin et al. 2009;
Komatsu et al. 2011), while most numerical studies on the giant-arc abundance to
date have assumed σ8 = 0.9. It is likely that adjusting σ8 from 0.9 to 0.8 will lower
the predicted giant-arc abundance significantly, increasing tension with observations
(Li et al. 2006; Fedeli et al. 2008). The cosmological model may play a role here.
In arguing that the giant-arc problem may be unavoidable if σ8 ≈ 0.8, Fedeli et al.
(2008) mention in passing that early dark energy or non-Gaussian initial conditions
may provide “a way out.” The effects of dark energy on giant-arc statistics have been
investigated in Bartelmann et al. (2003), Maccio (2005), Meneghetti et al. (2005a,
2005b), and Fedeli and Bartelmann (2007). On the other hand, the possible effects
of non-Gaussian initial conditions have only been explored recently by D’Aloisio
and Natarajan (2011a, 2011b). They argue that primordial non-Gaussianity (PNG)
can affect the probability of giant-arc formation in at least two ways.7 First, PNG
can lead to an enhanced or diminished abundance of galaxy clusters, depending on
the particular model (e.g. Matarrese et al. 2000; Lo Verde et al. 2008; Dalal et al.
2008), which would lead to a change in the number of supercritical lenses that are
available in the appropriate redshift range. Secondly, PNG is expected to influence
the central densities of halos (Avila-Reese et al. 2003; Oguri and Blandford 2009;
Smith et al. 2010). Since lensing cross sections are sensitive to central densities, we
expect corresponding changes in them as well. If a cluster lens cannot produce arcs
with length-to-width ratios above some threshold, then its cross section for giant-arc
production is zero. Roughly speaking, this corresponds to a minimum mass required
to produce giant arcs. Owing to the effects on central densities, we expect PNG to
alter this minimum mass threshold as well.

D’Aloisio and Natarajan (2011a, 2011b) quantify the impact of non-Gaussian ini-
tial conditions with the local bispectrum shape on the predicted frequency of giant
arcs. Non-Gaussianity is generally expressed in terms of fNL that characterizes the
amplitude of non-Gaussianity in the primordial curvature perturbation (Komatsu and
Spergel 2001). Using a path-integral formulation of the excursion set formalism, ex-
tending a semi-analytic model for calculating halo concentrations to the case of PNG,
they show that massive halos tend to collapse earlier in models with positive fNL, rel-
ative to the Gaussian case, leading to enhanced concentration parameters. The con-
verse is true for fNL < 0. In addition to these effects, which change the lensing cross
sections, non-Gaussianity also modifies the abundance of supercritical clusters avail-
able for lensing. These combined effects work together to either enhance (fNL > 0) or
suppress (fNL < 0) the probability of giant-arc formation (see Fig. 43). Using the best
value and 95% confidence levels currently available from the Wilkinson Microwave

7The PNG model considered here is the simplest one that gives rise to a non-zero 3-point correlation
function.



Astron Astrophys Rev (2011) 19:47 Page 79 of 100

Fig. 43 The ratio of giant-arc
cross sections in the case of
non-Gaussian and Gaussian
initial conditions. Halos have
enhanced central densities in
models with fNL > 0. Their
giant-arc cross sections are
therefore increased relative to
the Gaussian case and vice versa
(figure from D’Aloisio and
Natarajan 2011a, 2011b)

Anisotropy Probe, they report that the giant-arc optical depth for sources at zs ∼ 2 is
enhanced by ∼20% and ∼45% for fNL = 32 and 74, respectively. Conversely they
report a suppression of ∼5% for fNL = −10. These differences translate to similar
relative changes in the predicted all-sky number of giant arcs. Ideally the goal is to
use giant-arc statistics to constrain small scale PNG. The prospects are extremely
promising given upcoming all sky surveys planned by future deep wide-field imag-
ing surveys such as foreseen by the Dark Energy Survey (DES), the Large Synoptic
Survey Telescope (LSST) and future wide-field space mission (e.g. EUCLID).

6.3 Triplet statistics

Triplet statistics offer an interesting geometrical method that uses the weak gravita-
tional lensing effects of clusters to constrain the cosmological parameters Ωm and
Ω� (Gautret et al. 2000). For each background galaxy, a foreground lensing cluster
induces a magnification that depends on the local convergence κ and shear terms γ1
and γ2 and on the cosmological parameters through the angular diameter distance
ratio DLS/DOS. To disentangle the effects of these three quantities, the ellipticities
of each triplet of galaxies located at about the same apparent position in the lens
plane (although at three distinct redshifts) needs to be compared. The simultaneous
knowledge of ellipticities and redshifts of each triplet enable the building of a purely
geometrical estimator G(Ωm,Ω�) that is independent of the lens potential. This es-
timator G has the simple form of the determinant of a 3 × 3 matrix built with the
triplet values of DLS/DOS and observed ellipticities.

When G is averaged over many triplets of galaxies, it provides a global function
which converges to zero for the true values of the cosmological parameters. However,
in order to apply this method the various sources of statistical noise need to be quan-
tified. The linear form of G with respect to the measured ellipticity of each galaxy
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implies that the different sources of noise contributing to G decrease as 1/
√

N , where
N is the total number of observed lensed galaxies. From simulations that incorporate
realistic geometries and convergences for lensing clusters and a redshift distribution
for galaxies, the results are promising for a sample of 100 clusters. These 100 clus-
ters essentially need to be imaged in multiple bands to obtain accurate photometric
redshifts for the triplets. With next generation cosmological surveys the observational
data needed for this sample size would not be impossible to obtain.

7 Comparison of observed lensing cluster properties with theoretical
predictions

With the growing success of gravitational lensing analysis of clusters, it has become
possible to compare and test theoretical predictions against observations. With the
rapid progress in high-resolution cosmological simulations of dark matter we now
have a unique opportunity to directly compare properties of cluster dark matter halos
derived from lensing studies. Many important physical questions with regard to the
internal structures of halos, their dynamical evolution and the granularity of dark mat-
ter can now be tackled: the assembly process (role of merging sub-clusters); lensing
cross sections; efficiency of lensing and super-lenses; selection effects; mass profiles;
density profiles; ellipticity; alignments; abundances, and the mass concentration. We
briefly outline below the results of recent studies on this topic.

7.1 Internal structure of cluster halos

In cosmological simulations of structure formation it is found that the density profiles
of dark matter halos are well fit over many decades in mass from cluster mass scales
down to dwarf galaxy scales by the Navarro–Frenk–White profile (see Appendix A.3
for details). By combining strong and weak lensing constraints, as discussed above it
has become possible to probe the mass profile of the clusters on scales of 0.1–5 Mpc,
thus providing a valuable test of the universal form proposed by NFW on large scales
(e.g. Okabe et al. 2010; Umetsu et al. 2011). As for the inner density profile slopes
there appears to be similarly a large degree of variation, some like Cl0024+1654
(Kneib et al. 2003; Tu et al. 2008; Limousin et al. 2008) adequately fit the NFW form,
others like RXJ1347-11 are found to have slopes shallower than the NFW prediction
(Newman et al. 2011; Umetsu et al. 2011), while others like MS2137-23 are found
to have steeper slopes (Sand et al. 2004). One caveat with the NFW prediction is that
the functional form is derived from dark matter only simulations, whereas in reality it
is clear that baryons in the inner regions close to the cD/BCG play a significant role
both in terms of the mass budget and modifications to density profile slopes in the
very center.

Lensing clusters are preferentially more significantly concentrated than all clus-
ters (see Fig. 44 and Comerford and Natarajan 2007; but also: Broadhurst et al. 2008;
Oguri et al. 2009 and Meneghetti et al. 2011) and they typically tend to be outliers
on the concentration-mass relationship predicted for clusters in the �CDM model.
The origin of this enhanced concentration parameter is likely due to: (i) high inci-
dence of projected line of sight structures for massive lensing clusters; (ii) elongated
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Fig. 44 Observed cluster
concentrations and virial masses
derived from lensing (filled
circles) and X-ray (open circles)
measurements. For reference,
the solid lines depict the best-fit
power law to our complete
sample and its 1-σ scatter. The
lensing concentrations appear
systematically higher than the
X-ray concentrations, and a
Kolmogorov–Smirnov test
confirms that the lensing results
likely belong to a different
parent distribution. This figure is
from Comerford and Natarajan
(2007)

shapes that enhance lensing efficiency, factors that might observationally bias lensing
selection; (iii) baryons that could play an important role in the inner regions.

7.2 Mass function of substructure in cluster halos

Combining observed strong and weak lensing and exploiting galaxy–galaxy lensing
inside clusters, it has been possible to map the granularity of the dark matter dis-
tribution (Natarajan and Kneib 1997; Natarajan and Springel 2004; Natarajan et al.
2007) in clusters and compare them to predictions from the Millennium cosmological
simulation (Springel et al. 2005). This is done by attributing local anisotropies in the
observed shear field to the presence of dark matter sub-halos (Natarajan et al. 2009).
The mass function thus derived for several clusters agrees well with that predicted
entirely independently from high-resolution cosmological simulations of structure
formation in the standard �CDM paradigm over the mass range 1011–1013 M�. The
comparison was made with clusters that form in the Millennium Simulation (Springel
et al. 2005). This excellent agreement of the mass function derived from these two
independent methods demonstrates that there is no substructure problem (which was
claimed earlier) on cluster scales in �CDM. This is a significant result as a substruc-
ture crisis has been claimed on galaxy scales. Since �CDM is a self-similar theory,
if the substructure problem had been endemic to the model, it would have been repli-
cated on cluster scales. This suggests that the substructure discrepancy on galaxy
scales arises from the galaxy formation process or from some hitherto undiscovered
coupling between baryons and dark matter particles. Therefore, lensing clusters have
provided unanticipated insights into the dark matter model. Moving on from the Mil-
lennium Simulation, state of the art at the present time is the Mare Nostrum simu-
lation which is promising in terms of mass resolution and larger volume probed and
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offers a new test-bed for comparison with lensing data from cluster surveys like the
CLASH Hubble survey (Meneghetti et al. 2011).

7.3 Dynamical evolution of cluster halos

Exploiting strong and weak gravitational lensing signals inferred from panoramic
Hubble Space Telescope imaging data, high-resolution reconstructions of the mass
distributions are now available for clusters ranging from z = 0.2–0.5. Applying
galaxy–galaxy lensing techniques inside clusters the fate of dark matter sub-halos
can now be tracked as a function of projected cluster-centric radius out to 1–5 Mpc,
well beyond the virial radius in some cases. There is now clear detection of the
statistical lensing signal of dark matter sub-halos associated with both early-type
and late-type galaxies in clusters. In fact, it appears now that late-type galaxies in
clusters (which dominate the numbers in the outskirts but are rare in the inner re-
gions of the cluster) also possess individual dark matter halos (Treu et al. 2002;
Limousin et al. 2005, 2007; Moran et al. 2006; Natarajan et al. 2009). In the case
of the cluster Cl0024+1656 that has been studied to beyond the virial radius, the
mass of a fiducial dark matter halo that hosts an early-type L∗ galaxy varies from
M = 6.3 ± 2.7 × 1011 M� within r < 0.6 Mpc, to 1.3 ± 0.8 × 1012 M� within
r < 2.9 Mpc, and increases further to M = 3.7 ± 1.4 × 1012 M� in the outskirts.
The mass of a typical dark matter sub-halo that hosts an L∗ galaxy increases with
projected cluster-centric radius in line with expectations from the tidal stripping hy-
pothesis. Early-type galaxies appear to be hosted on average in more massive dark
matter sub-halos compared to late-type galaxies. Early-type galaxies also trace the
overall mass distribution of the cluster whereas late-type galaxies are biased tracers.
The findings in this cluster and others are interpreted as evidence for the active re-
distribution of mass via tidal stripping in galaxy clusters. Upon comparison of the
masses of dark matter sub-halos as a function of projected cluster-centric with the
equivalent mass function derived from clusters in the Millennium Run very good
agreement is found (see Fig. 45 and Natarajan et al. 2007). However, simulated sub-
halos appear to be more efficiently stripped than lensing observations suggest (see
Fig. 46). This is likely an artefact of comparison with a dark matter only simulation.
Future simulations that simultaneously follow the detailed evolution of the baryonic
component during cluster assembly will be needed for a more detailed comparison.
Lensing has proved to be a powerful probe of how clusters assemble and grow, and
it appears that our findings ratify the �CDM paradigm, hierarchical growth of struc-
ture, and the key role played by tidal stripping during cluster assembly.

7.4 Constraints on the nature of dark matter

While it is clear that clusters are vast repositories of dark matter, the nature of dark
matter remains elusive. A plethora of astronomical observations from the early Uni-
verse to the present time are consistent with the dark matter being a cold, collision-
less fluid that does not couple to baryons. However, there is potential for dark matter
self-interactions and lensing observations offer a unique window to probe this further
(e.g. Miralda-Escudé 2002). Limits on the dark matter interaction cross section can be
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Fig. 45 Comparison between substructure mass function retrieved from the galaxy–galaxy lensing anal-
ysis (red shaded histograms) and results from haloes selected from the Millennium Simulation. The black
solid line in each panel represents the average sub-halo mass function of haloes selected at the redshift of
the observed lensing cluster (see text for details). The grey shaded region represents, for each value of the
sub-halo mass, the min-max number of substructures found in the simulated haloes (figure from Natarajan
et al. 2007)

placed from lensing observation of clusters, however, these are currently not partic-
ularly constraining or illuminating. Two distinct arguments have been used to obtain
limits that strongly support the collision-less nature of dark matter. One involves the
distribution of the sizes of tidally truncated sub-halos in clusters (Natarajan et al.
2002a, 2002b); and the second involves estimates from the separation between the
dark matter and X-ray gas in the extreme merging system, the Bullet Cluster (Clowe
et al. 2006; Bradač et al. 2006) wherein they find σ/m < 4 g m−1 cm2 assuming that
the two colliding sub-clusters experienced a head-on collision in the plane of the
sky. Similar results were also found from the so-called “Baby Bullet” cluster (Bradač
et al. 2008). Exploring these merging clusters is certainly an avenue where lensing
observations may provide constraints and insights on the nature of dark matter.

8 Future prospects

Since the discovery of giant arcs in the late 1980s gravitational lensing by clusters of
galaxies has now become a powerful cosmological tool.

We list below some possible new avenues for the next exciting discoveries in the
coming years using gravitational lensing in clusters, assuming improvements in the
data quality and data volume:
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Fig. 46 Variation of the mass of a dark matter sub-halo that hosts an early-type L∗ galaxy as a function
of cluster-centric radius. The results from the likelihood analysis are used to derive the sub-halo mass for
the galaxy–galaxy lensing results and the counterparts are derived from the Millennium Simulation with
an embedded semi-analytic galaxy formation model. This enables selection of dark matter halos that host
a single L∗ galaxy akin to our assumption in the lensing analysis. The solid circles are the data points from
the galaxy–galaxy lensing analysis and the solid squares are from the Millennium Simulation. The upper
solid square in the core region marks the value of the sub-halo mass with correction by a factor of 2 as
found in Natarajan et al. (2007). The solid triangle is the galaxy–galaxy lensing data point for the sub-halo
associated with a late-type L∗ galaxy. The radial trend derived from lensing is in very good agreement with
simulations and demonstrate that tidal stripping is operational with higher efficiency in the central regions
as expected

• Dedicated lensing surveys of well defined massive cluster samples can probe in a
systematic way the cluster mass distribution at high resolution from galaxy scales
out to the virial radius using both weak and strong lensing. In particular, we can
hope to study the build-up of the mass in clusters as a function of time and disen-
tangle the time scales on which the segregation between the different mass com-
ponents occurs during the assembly process. One could also envision being able
to systematically trace the filamentary structures linking massive clusters that are
simply the nodes of the cosmic web seen in numerical simulations of the formation
and evolution of structure in the Universe.

• From wide field imaging surveys: mass selected clusters can be identified, but
likely the more interesting prospect is the ability to investigate the dark matter
mass versus stellar-mass relation and its evolution with time, thus providing useful
cosmological constraints on the growth of structure in the Universe, as well as on
the underlying geometric cosmological parameters.

• With larger cluster samples, better constraints will be obtained on density profile
slopes in the inner and outer regions of clusters thus permitting to robustly test
theoretical predictions of the �CDM model.

• Using numerous multiple images with measured redshifts in a number of massive
clusters, we should be able to provide geometrical constraints of Dark Energy in a
complementary way to other cosmological probes.

• Measuring the time delays of temporally variable phenomena such as Supernovae
or AGN when observed behind well-known massive lensing clusters, will lead to
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measurement of the Hubble parameter H(z), in a similar way as multiple quasars
behind galaxies, but with much improved accuracy. However, in order to have a
time delay of a limited number of years, these transients event must be located
close to the critical lines. While the likelihood of detecting multiple images of
such transient phenomena is extremely low, it is not insignificant provided there is
a steady increase in the volume of the Universe probed with time.

• Finally, massive cluster lenses will always be the unique places to probe the high-
redshift Universe, as they offer enhanced sensitivities at all wavelengths and en-
able mapping the detailed morphology and physical properties of the most distant
galaxies in the Universe.

In the near future lensing observations will likely be geared toward optical
and near-infrared imaging exploiting the next generation of ground based exper-
iments (DES, LSST, TMT, E-ELT), and spaced based observatories (JWST, EU-
CLID/WFIRST).

However, in the long run, it is not too unreasonable to think that cluster lensing
observations may be well conducted in the radio domain. In such an event we foresee
up to an order of magnitude improvement in lensing measurement that will result
from combining information on galaxy shapes with velocity field data (Blain 2002;
Morales 2006). Such preliminary developments will certainly come first with ALMA,
but only centimeter radio interferometers such as SKA (Square Kilometer Array) will
allow the exploration of these techniques on cosmological scales.
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Appendix: Parametric mass distributions used to model clusters

Parametric profiles have been extremely successful in modeling cluster mass distri-
butions derived from observed lensing data. A key advantage of parametric models is
their flexibility, as they can be used to probe the granularity of the mass distribution
on a range of spatial scales. For the case of clusters, this enables combining strong and
weak lensing data that derive from different regions of clusters in an optimal fashion.
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Below we outline the lensing properties of three most commonly used mass distri-
butions: the circular Singular Isothermal Sphere [SIS]; the truncated isothermal mass
distribution with a core that can be easily extended to the elliptical case [PIEMD]
and the Navarro–Frenk–White [NFW] profile. While most mass distributions can be
generalized to the elliptical case, there are not always simple and convenient analytic
expressions available for lensing quantities as readily as for the PIEMD model. The
availability of analytic expressions for the surface mass density, shear and magnifica-
tion have made the PIEMD a popular choice for modeling lensing clusters.

A.1 The singular isothermal sphere

The primary motivation for the circular singular isothermal sphere (SIS) profile de-
rives from the good fit that it provides to the observed approximately flat rotation
curves of disk galaxies. Flat rotation curves can be reproduced with a model density
profile that scales as ρ ∝ r−2. Such a profile with a constant velocity dispersion as
a function of radius appears to provide a good fit to cluster scale halo lenses as well
(see e.g. Binney and Tremaine 1987 for more details). The projected surface mass
density of the SIS is given by

Σ(R) = σ 2
v

2GR
, (59)

where R is the distance from the center of the lens in the projected lens plane and
where σv is the one-dimensional velocity dispersion of ‘particles’ that trace the grav-
itational potential of the mass distribution. The dimensionless surface mass density
or convergence is defined in the usual way in units of the critical surface density. For
the case of the SIS we have

κ(θ) = θE

2θ
; γ (θ) = θE

2θ
, (60)

where θ = R/DOL is the angular distance from lens center in the sky plane and where
θE is the Einstein deflection angle, defined as

θE = 4π

(
σv

c

)2
DLS

DOS
. (61)

Lensing properties of SIS lens model in a nutshell:

• The magnification and the shear are of the same magnitude; κ = γ and evaluated
at the Einstein radius κ = γ = 1

2 .
• The tangential critical line is the Einstein ring, and the radial critical line is reduced

to the central point.
• The central mass density is infinite, and the total mass is also infinite.

A.2 Truncated isothermal distribution with a core

Although the SIS is the simplest mass distribution, it is unphysical as it has an infi-
nite central density, an infinite total mass, and therefore cannot adequately match true
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mass distributions. More complex mass distributions have therefore been developed
to provide more realistic fits to observed clusters. The Truncated Isothermal Distribu-
tion with a Core, which has finite mass and a finite central density is quite popular as
a lensing model, and one that we have used extensively and successfully in modeling
cluster lenses.

The density distribution for this model is given by

Σ(R) = Σ0R0Rt

Rt − R0

(
1√

R2
0 + R2

− 1√
R2

t + R2

)
, (62)

with a model core radius R0 and a truncation radius Rt � R0.
The useful feature of this model, is the ability to reproduce a large range of mass

distributions from cluster scales to galaxy scales by varying only the ratio η, which
is defined as η = Rt/R0. There also exists a simple relation between the truncation
radius of the mass distribution and the effective radius Re of the light distribution for
the case of elliptical galaxies:

Rt ∼ 4

3
Re. (63)

Furthermore, this simple circular model can be easily generalized to the elliptical
case (Kassiola and Kovner 1993; Kneib et al. 1996) by re-defining the radial coordi-
nate R as follows:

R2 =
(

x2

(1 + ε)2
+ y2

(1 − ε)2

)
; ε = a − b

a + b
. (64)

Interestingly, all the lensing quantities can be expressed analytically (although using
complex numbers) and the expressions for the same were first derived in Kassiola
and Kovner (1993).

The mass enclosed within radius R for the model is given by

M(R) = 2πΣ0R0Rt

Rt − R0

[√
R2

0 + R2 −
√

R2
t + R2 + (Rt − R0)

]
, (65)

and the total mass, which is finite, is

M∞ = 2πΣ0R0Rt. (66)

Calculating κ , γ and g, we have

κ(R) = κ0
R0

(1 − R0/Rt)

(
1√

(R2
0 + R2)

− 1√
(R2

t + R2)

)
, (67)

with

2κ0 = Σ0
4πG

c2

DLSDOL

DOS
, (68)
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where DLS, DOS and DOL are, respectively, the lens–source, observer–source and
observer–lens angular diameter distances.

To obtain the reduced shear g(R), given the magnification κ(R), we solve
Laplace’s equation for the projected potential ϕ, and evaluate the components of the
amplification matrix following which we can proceed to solve directly for γ (R), and
then g(R).

ϕ = 2κ0

[√
R2

0 + R2 −
√

R2
t + R2 + (R0 − Rt) lnR

− R0 ln
[
R2

0 + R0

√
R2

0 + R2
]
+ Rt ln

[
R2

t + Rt

√
R2

t + R2
]]

. (69)

We can then derive the shear γ (R):

γ (R) = κ0

[
− 1√

R2 + R2
0

+ 2

R2

(√
R2 + R2

0 − R0

)

+ 1√
R2 + R2

t

− 2

R2

(√
R2 + R2

t − Rt

)]
. (70)

Scaling this relation by Rt gives for R0 < R < Rt

γ (R/Rt) ∝ Σ0

η − 1

Rt

R
∼ σ 2

R
, (71)

where σ is the velocity dispersion (note this is similar to the SIS case).
At larger radius, for R0 < Rt < R

γ (R/rt) ∝ Σ0

η

Rt
2

R2
∼ Mtot

R2
, (72)

where Mtot is the total mass. In the limit that R � Rt, we have

γ (R) = 3κ0

2R3

[
R2

0 − R2
t

] + 2κ0

R2
[Rt − R0]. (73)

Lensing properties of the truncated isothermal distribution with a core in a nut-
shell:

• κ �= γ .
• The tangential critical line once again corresponds to the Einstein ring, and the

radial critical line is a circle interior to the Einstein ring.
• The central mass density is finite, and the total mass is also finite.

A.3 The Navarro–Frenk–White model

Although the truncated isothermal distribution with a core is very popular, it has
never been fitted to the results of numerical simulations, in contrast to the universal
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“NFW” density profile (Navarro et al. 1997). In simulations of structure formation
and evolution in the Universe, the NFW profile was found to be a good fit for a wide
range of dark matter halo masses from 109–1015 M�. The spherical NFW density
profile has the following form:

ρ(r) = ρs

(r/rs)(1 + r/rs)2
, (74)

where ρs and rs are free parameters. It is often convenient to characterize the profile
with the concentration parameter, cvir = rvir/rs where rvir is the virial radius. By
integrating the profile out to rvir and using mvir = 200ρc(z) 4πr3

vir/3, where mvir
is defined to be the virial mass and ρc is the critical density of the universe, the
concentration parameter can be related to ρs.

We now proceed to calculate the lensing properties of the NFW profile (more
details can be found in Wright and Brainerd 2000). In the thin lens approximation, z is
defined as the optical axis and Φ(R,z) the three-dimensional Newtonian gravitational
potential, where r = √

R2 + z2. The reduced two-dimensional lens potential in the
plane of the sky is given by

ϕ(�θ) = 2

c2

DLS

DOLDOS

∫ +∞

−∞
Φ(DOLθ, z) dz, (75)

where �θ = (θ1, θ2) is the angular position in the image plane.
For convenience we introduce the dimensionless radial coordinates �x = (x1, x2) =

�R/rs = �θ/θs where θs = rs/DOL. In the case of an axially symmetric lens, the rela-
tions become simpler, as the position vector can be replaced by its norm. The surface
mass density then becomes

Σ(x) =
∫ +∞

−∞
ρ(rsx, z) dz = 2ρcrsF(x), (76)

with

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
x2−1

(1 − 1√
1−x2

arcch 1
x
) (x < 1),

1
3 (x = 1),

1
x2−1

(1 − 1√
x2−1

arccos 1
x
) (x > 1)

and the mean surface density inside the dimensionless radius x is

Σ(x) = 1

πx2

∫ x

0
2πxΣ(x)dx = 4ρcrs

g(x)

x2
, (77)

with

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln x
2 + 1√

1−x2
arcch 1

x
(x < 1),

1 + ln 1
2 (x = 1),

ln x
2 + 1√

x2−1
arccos 1

x
(x > 1).
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The lensing functions �α,κ and γ also have simple expressions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�α(x) = θ
Σ(x)

Σcrit
= 4κs

θ

x2
g(x)�ex,

κ(x) = Σ(x)

Σcrit
= 2κsF(x),

γ (x) = Σ(x) − Σ(x)

Σcrit
= 2κs

(
2g(x)

x2
− F(x)

)
(78)

with κs = ρcrsΣ
−1
crit . Noting �∇�xα(x) = (∂x1α, ∂x2α) and φ = arctan(x2/x1), we obtain

some useful relations for the following that hold for any circular mass distribution
(Golse and Kneib 2002):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(x) = 1

2θs

(
α(x)

x
+ ∂x1α(�x)

cosφ

)
0,

γ (x) = 1

2θs

(
α(x)

x
− ∂x1α(�x)

cosφ

)
,

∂x1α(�x)

cosφ
= ∂x2α(�x)

sinφ
,

κ(x) + γ (x) = α(x)

θsx
.

(79)

By integrating the deflection angle we obtain the lens potential ϕ(x):

ϕ(x) = 2κsθ
2
s h(x), (80)

where

h(x) =
{

ln2 x
2 − arcch2 1

x
(x < 1),

ln2 x
2 + arccos2 1

x
(x ≥ 1).

(81)

The velocity dispersion σ(r) of this potential, computed with the Jeans equation
for an isotropic velocity distribution, gives an unrealistic central velocity dispersion
σ(0) = 0. In order to compare the pseudo-elliptical NFW potential with other po-
tentials, we define a scaling parameter vc (characteristic velocity) in terms of the
parameters of the NFW profile as follows:

v2
c = 8

3
Gr2

s ρc. (82)

Using the value of the critical density for closure of the Universe ρcrit = 3H 2
0 /8πG,

we find

ρc

ρcrit
= v2

c

H 2
0 r2

s

= 1.8 103h−2 ×
(

rs

150 kpc

)−2(
vc

2000 km s−1

)2

.

Lensing properties of the NFW model in a nutshell:
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• κ �= γ .
• The tangential critical line is the Einstein ring radius, and the radial critical line is

a circle interior to the Einstein ring.
• The central mass density is infinite, and the total mass is also infinite (however,

only the virial mass is of interest and that is calculable), and the central velocity
dispersion is vanishing at the center.

A.4 Flexion for the singular isothermal sphere

For example, consider a Schwarzschild lens: the first flexion is by definition zero
everywhere except at the origin, as the gradient of the convergence is zero every-
where except at the origin. However, there is certainly “arciness” generated by such a
lens; this is described by the second flexion. We will provide explicit expressions for
the first and second flexion generated by the simple mass distribution of a singular
isothermal sphere. The flexion caused by the SIS at an angular vector displacement,
θ , from the lens center on the sky plane is thus simply

F = −
[

θE

2θ2

]
eiφ, (83)

where φ is the position angle around the lens, and in this case also gives the direction
of the flexion. The first flexion F for this profile is therefore circularly symmetric and
(expressed as a vector) directed radially inwards toward the lens center, as would be
expected.

Similarly, the second flexion G is

G = 3θE

2θ2
e3iφ. (84)

This has a larger maximum amplitude than the first flexion for this lens profile, fades
off with the same power law index away from the lens, and oscillates around the lens
as a spin-3 quantity rather than a spin-1 quantity. For the explicit derivation of the
flexion for more complicated density profiles, namely the softened isothermal sphere
and the cosmologically motivated Navarro–Frenk–White profile, see Fig. 47 for a
comparison as well as Bacon et al. (2006).
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