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Abstract 

Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new 

muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment 

composed of a wide variety of factors, such as numerous secreted molecules and different cell 

types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, 

fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue 

stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, 

differentiation or renewal and return to quiescence. In this review, we attempt to give a brief 

overview of the most important players in the niche and their mutual interaction with SCs. We 

address the importance of the niche to SC behavior under physiological and pathological 

conditions, and finally survey the significance of an artificial niche both for basic and 

translational research purposes. 
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Satellite cells 

Over the past half a century, the focus of research on muscle regeneration has shifted from 

other myogenic cells of muscle tissue to satellite cells (SCs), from developmental myogenesis 

to adult muscle regeneration, from cell-intrinsic properties of SCs to the relevance of extrinsic 

factors delivered by their niche. SCs,  small, inactive cells wedged between the myofiber and 

the surrounding extracellular matrix (ECM), have attracted the attention of scientists since their 

discovery 56 years ago (1). The astonishing translational potential of SCs continues to 

fascinate, and the ever expanding knowledge of SCs and their microenvironment paves the way 

for the development of novel cell and gene therapies, in vitro disease models and preclinical 

drug testing paradigms. Here, we discuss different aspects of SC biology and the niche in health 

and disease. For a more detailed assessment of the particularities of SCs and the SC niche, we 

direct readers to several recent reviews focusing on the extracellular matrix (2), blood vessels 

(3), bioengineering (4), SC function from a cell-intrinsic perspective (5) and an extensive 

review on SC biology (6). 

Skeletal muscle regeneration and muscle stem cells 

Comprising approximately 40% of body weight, skeletal muscle can be considered as the 

largest organ in the human body (7). Muscle not only supports breathing and movement, but is 

also a very important metabolic and endocrine organ. It comes as no surprise that skeletal 

muscle has a remarkable capability to repair damage caused by injuries or simple everyday 

wear-and-tear. As numerous animal studies demonstrate, skeletal muscle is able to regain near 

original morphology and functionality within several weeks of serious damage caused by 

injection of myotoxic agents (e.g. cardiotoxin, bupivacaine, barium chloride or notexin), 

freezing, crushing, or complete mincing and re-transplantation (8-12). However, aging, 

traumatic injuries in humans resulting in volumetric muscle loss and various myopathies result 

in impaired functionality and inability of the tissue to regain homeostatic conditions.  
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SCs are the main cells responsible for sustaining skeletal muscle morphology and functionality 

throughout the lifetime of an individual. They are largely lineage-committed adult stem cells 

located at the periphery of muscle fibers, situated between the sarcolemma (the myofiber 

membrane) and basal lamina (BL) (1), in close proximity to blood vessels (3) and the 

neuromuscular junction (13). This specific environment surrounding SCs is known as the SC 

niche. 

Under resting conditions, SCs are in the G0 phase (non-cycling state) and quiescent, with a 

heterochromatic nucleus and a thin rim of cytoplasm containing scarce organelles. These cells 

are most commonly distinguished by the expression of the paired box transcription factor Pax7. 

SCs have a tremendous myogenic potential and self-renewal capabilities, as demonstrated by 

single-fiber (14) as well as single cell (15) implantation in irradiated muscles of 

immunodeficient mice.  

The classical cascade of regeneration resembles that of prenatal skeletal muscle development 

(16). In response to injury or other stimuli, SCs become activated, increase in size and begin 

proliferation. The majority of the progeny reduces Pax7 and induces MyoD expression. After 

several rounds of proliferation, these myoblasts start to express myogenin and exit the cell 

cycle as myocytes. The myocytes subsequently fuse in order to form new or repair existing 

myofibers (depending on the severity of injury). The myofibers then express MRF-4 and grow, 

supported by hypertrophy, until reaching their pre-injury size. At the same time, a part of the 

SC progeny reacquires high Pax7 levels and returns to quiescence, thereby replenishing the SC 

pool and maintaining sufficient reserves for future rounds of regeneration.  

Besides SCs, several other cell types, such as muscle side population cells, muscle-derived 

stem cells, bone marrow stem cells, PW1+ interstitial cells, CD133+ cells, mesoangioblasts and 

pericytes, can successfully regenerate muscles and some can even reconstitute the niche upon 
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transplantation into damaged muscle (17). However, the contribution of these cells seems to be 

very low under physiological conditions and dependent on SCs, which are essential for skeletal 

muscle regeneration and therefore represent the true stem cells of muscle tissue (18-21). 

According to their gene expression profiles and their characteristics in vitro, SCs stemming 

from different muscle groups (e.g. head vs. limb muscles) are heterogeneous. Nevertheless, 

SCs from the masseter muscle (head) are able to regenerate the extensor digitorum longus 

(EDL) muscle (limb) as efficiently as SCs from the EDL muscle (22), attesting to the enormous 

influence of the in vivo microenvironment on the behavior and functionality of SCs, which in 

some cases can overcome the intrinsic differences between SCs. 

The heterogeneity of satellite cells and its dependence on the niche 

Several studies have addressed the heterogeneity of SC populations in regard to their renewal 

potential. Interestingly, SC heterogeneity was not only reported between different muscle beds, 

but also observed between SCs on the same muscle fibers, thereby implicating additional 

factors besides ontogeny and composition of the fiber type as possible causes. According to 

these studies, only a small proportion of SCs are bona fide stem cells, whereas the vast majority 

are committed progenitors with limited stemness. For example, Chakkalakal et al. discovered 

heterogeneity among SCs based on their proliferative history, suggesting that cells that cycle 

less frequently have higher self-renewal potential (23). On a related note, Rocheteau et al. 

evaluated differential DNA strand segregation, where one daughter cell retains the template 

strands, stays in the niche and returns to quiescence, while the other daughter cell receives 

newly synthesized DNA strands, continues to proliferate and finally differentiates (24). It was 

suggested that such DNA strand segregation would prevent accumulation of proliferation-

associated mutations in the stem cell, and therefore provide a lifelong supply of progenitors. 

Similarly, in a lineage tracing experiment with Myf5-Cre/ROSA-YFP mice, Kuang et al. found 
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that the majority of SCs are Pax7+/Myf5+, and only small subset are Pax7+/Myf5- cells (25). 

Upon isolation and transplantation, both cell populations are capable of proliferating and 

differentiating, but only Myf5- SCs occupy the niche in the transplanted muscle. In addition, 

after in vivo activation, Pax7+/Myf5+ (committed progenitors) are exclusively prone to 

symmetrical division, giving rise to more committed progenitors, whereas Pax7+/Myf5- (true 

stem cells) on the other hand can divide both symmetrically and asymmetrically, producing 

uncommitted and committed daughter cells. Mechanistically, the asymmetrical distribution of 

the Par complex results in p38α/β MAPK activation and MyoD expression only in the 

committed daughter (26). Importantly, the capability to control the orientation of the cell 

division is tightly coupled to the SC niche. Following asymmetric division, the uncommitted 

progenitor remains in the niche in contact with the BL, whereas the committed progenitor is 

pushed towards the muscle fiber, thus losing contact with the niche. In contrast, both daughter 

cells retain contact with the BL and the myofiber during a stem cell pool expansion through 

symmetric division of Pax7+/Myf5- cells. 

The satellite cell niche in quiescence and regeneration 

SC quiescence, activation, proliferation, differentiation and renewal are intricately connected 

to the niche. There is a plethora of cell-cell and cell-matrix interactions, numerous paracrine 

and endocrine molecules (e.g. growth factors and cytokines), as well as biophysical properties 

of muscle that have a direct effect on the SC. However, this communication is bidirectional, as 

the SCs themselves also influence their local environment.  

The extracellular matrix 

In homeostatic conditions, SCs are situated just outside the muscle fiber, in direct contact with 

the sarcolemma and the ECM. The ECM surrounding muscle fibers is called the basal 

membrane (BM) and it consists of two parts – the reticular lamina (RL) and the BL, the latter 
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being in direct contact with the fiber. The BM is a mesh composed of various glycoproteins 

and proteoglycans with sequestered growth factors. The main components of the RL are 

fibrillar collagens, whereas the main components of the BL are laminin-2 (α2β1γ1) and non-

fibrillar collagen IV (27). The laminins and collagen of the BL self-assemble into networks 

that are cross-linked by the glycoprotein nidogen. This network provides binding sites for 

components of the RL on one, and the sarcolemma and SC membrane on the other side. In 

addition, proteoglycans such as perlecan are anchored to the main BL mesh and bind 

polypeptidic growth factors with their glycosaminoglycan chains. These growth factors, 

including fibroblast growth factors (FGFs), epidermal growth factor (EGF), insulin-like growth 

factors (IGFs) and hepatocyte growth factor (HGF), are secreted by various components of the 

niche, such as muscle fibers, interstitial cells and SCs, or can be delivered to the niche by blood 

vessels.  

Integrins on the SC membrane and the sarcolemma bind to laminins in the BL, forming focal 

adhesions and contributing to mechanical stability between the ECM and intracellular 

cytoskeleton. However, these interactions also have important signaling functions. The main 

integrin isoforms on SCs are α7 and β1, which bind to laminin-2 on the BL side (28). After SC 

activation, the expression of integrins on the SC membrane changes, along with the preference 

for binding partners in the BL. For example, activated, but not quiescent SCs express the β3 

integrin isoform, which probably binds to fibronectin in a complex with the αv chain (29). Both 

quiescent and activated SCs also express the transmembrane heparin sulfate proteoglycans 

syndecan-3 and syndecan-4. These proteins form complexes with different tyrosine kinases 

such as c-Met and FGF receptor (FGFR) on the SC membrane and are consequently important 

not only for cell adhesion to the BL, but also for SC activation (30).  

Expression profiles of quiescent and activated SCs suggest that SCs actively contribute to 

maintaining niche quiescence while remaining highly sensitive to activating stimuli (31). 
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Quiescent SCs express the protease inhibitors Serpin and Tfpi2 as well as metalloprotease 

inhibitor Timpf4. Upon activation, however, these genes become downregulated, and instead, 

SCs start expressing the matrix metalloproteases MMP-2 and MMP-9 (32). MMPs are major 

enzymes responsible for ECM degradation.  

Activated SCs also produce fibronectin (FN), an ECM glycoprotein whose role in SC 

maintenance by enabling their attachment to the niche has recently been demonstrated (33). 

SC-produced FN potentiates Wnt7a signaling through the receptor complex syndecan-

4/Frizzled-7, thereby supporting symmetric division of SCs and expansion of the stem cell pool 

(34). Specific knock-down of FN in SCs leads to a drastic reduction in symmetric division, in 

particular in the Pax7+/Myf5- population, leading to a drop in SC numbers during regeneration. 

Collagen VI is another BL component essential for preserving the SC pool. Fibroblasts are the 

prime producers of this protein as well as many other BL components. Collagen VI knock-out 

mice exhibit reduced regeneration and an inability to maintain SC numbers following injury. 

This defect is, however, rescued by transplanting wild-type fibroblasts, demonstrating the 

critical importance of non-SC-autonomous ECM factors in SC maintenance (35). 

The muscle fiber 

On the apical side, SCs are bound to a muscle fiber, and M-cadherin is the main adhesion 

protein supporting the connection between these two cell types. Myofibers are important 

regulators of SC state: for example, myofiber damage or stretch induces nitric oxide (NO) 

synthesis in the BL, which is able to activate MMPs, and through that action liberate ECM-

bound HGF, allowing its binding to the c-Met receptor on SCs. This HGF signaling through c-

Met has been proposed as an initial activation signal for SCs (36).  

SCs are furthermore affected by the Notch and Wnt signaling pathways in regard to quiescence, 

activation, proliferation and differentiation (6). Proof-of-concept was provided in different 
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studies, e.g. by ablation of RBP-Jκ, a downstream mediator of Notch., This ablation leads to 

spontaneous activation and differentiation of SCs without a proliferative phase, precipitating 

depletion of the SC pool and thus indicating that Notch signaling is essential for SC quiescence 

(37, 38). Upon injury, damaged fibers express Delta, a ligand of the Notch receptor, which 

stimulates SC proliferation. In addition, regenerating fibers synthesize Wnt7a, which induces 

SC symmetrical cell division by binding to the Frizzled7 receptor (39).  

In regeneration, myofibers secrete stromal cell-derived factor-1 (SDF-1), which binds to the 

receptor CXCR4 on SCs and induces SC chemoattraction (40). Injured fibers and other cells 

of the niche also secrete FGFs, EGF and IGFs, which further regulate SC proliferation and 

differentiation. For instance, FGF-2 induces proliferation and represses differentiation of 

progenitor cells by binding to the tyrosine kinase FGFR and activating the Ras/MAPK pathway 

(41). Likewise, IGF-II supports proliferation, while the pleiotropic functions of IGF-I include 

stimulation of SC proliferation, differentiation, migration and anti-inflammatory effects on the 

niche (reviewed in (42)). These effects of IGF-I are mediated through several signal 

transduction pathways, all initiated by IGF-I binding to the tyrosine receptor kinase IGF1R. 

The situation is further complicated by the existence of multiple IGF-I isoforms, as well as IGF 

binding proteins (IGFBPs) secreted by activated SCs, whose function is to transport IGFs and 

modulate their half-life (reviewed in (43)). On the other hand, myofibers also secrete myostatin 

(Mstn), a member of the transforming growth factor β (TGF-β) family and negative regulator 

of muscle growth that has been implicated in reducing SC activation and self-renewal (44).  

Much attention has been given to metabolic reprograming of SCs, that is, the effects of the 

metabolism of a SC on its fate (45). Some research proposes that in quiescence, SCs primarily 

rely on fatty acid oxidation (46), whereas upon activation, they increase substrate utilization 

through glycolysis, and finally switch to oxidative phosphorylation during differentiation (47). 

Other studies suggest that activated SCs depend more on oxidative phosphorylation (45, 48, 
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49). It also remains unclear how metabolic substrate utilization in skeletal fibers (the SC niche) 

influences the SC state. Experiments with caloric restriction have suggested that the increased 

fatty acid oxidation and mitochondrial activity in the fiber in this context probably induce SC 

activation through increased oxidative phosphorylation (49).  

Effects of fiber metabolism on SCs are furthermore implied by the observation that resting SC 

numbers are considerably higher in oxidative slow-twitch compared to glycolytic fast-twitch 

myofibers (50). Moreover, a similar difference in SC numbers can be achieved by endurance 

exercise, which promotes a switch from glycolytic to oxidative fibers (51, 52). Although a 

conclusive explanation for the correlation between SC numbers and the oxidative fiber type 

remains elusive, the metabolic properties and the vascularization have been linked to this 

observation. The existence of a denser blood vessel network in slow fibers is of particular 

interest given close vicinity of the majority of SCs to blood vessels (3). However, this simple 

view has recently been challenged. Namely, mice with myofiber-specific overexpression of 

peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nodal modulator of 

oxidative metabolism, exhibit both a switch to oxidative fibers and increased capillarity (53), 

but nevertheless have fewer SCs, albeit with an increased myogenic capacity (54). In fact, in 

regard to most metabolic and contractile traits, PGC-1α transgenic, bona fide oxidative and 

endurance-trained muscles are indistinguishable. Interestingly, the muscle fiber PGC-1α 

transgene affects expression of BM components FN and tenascin-C (54), which might account 

for the increased myogenic potential of the SCs. However, a possible influence of other 

differences in the microenvironment, for instance the increased percentage of M2 macrophages 

in resting conditions in these animals, should not be overlooked (11, 55). Therefore, an 

alternative explanation for the correlation between SC number and fiber type could be a 

difference in ECM organization. For example, the slow soleus muscle has double the amount 

of collagen IV and half the amount of laminin-2 compared to the fast rectus femoris in rats 
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(56). However, the link between SC number and fiber type-specific ECM composition is still 

poorly understood and thus awaits further research. 

Blood vessels, oxygen, (peri)endothelial cells and secreted systemic factors 

The close proximity of SCs and capillaries suggests that blood vessels are an important part of 

the niche. Indeed, the close correlation between a well-developed capillary network and 

successful skeletal muscle regeneration has been demonstrated (57, 58). This is not surprising 

given the fact that a myriad of factors and cells that modify the satellite cell niche, such as 

hormones and monocytes, are delivered by blood vessels. In addition, endothelial cells can 

secrete growth factors (EGF, IGF-I, bFGF) including vascular endothelial growth factor 

(VEGF) and platelet-derived growth factor BB (PDGF-BB), which promote SC proliferation 

(59). Conversely, differentiating myogenic cells also secrete VEGF, thereby stimulating 

angiogenesis (60). Interestingly, peri-endothelial cells, such as smooth muscle cells, secrete 

angiopoietin 1 (Ang1), which regulates the SC state by binding to the Tie-2 receptor that is 

highly expressed in resting SCs. This interaction in turn induces the expression of quiescence 

markers and blocks the expression of differentiation markers in SCs through ERK1/2 signaling 

(61), resulting in a return to quiescence at the end of regeneration. 

A reduction in partial oxygen pressure has also emerged as an essential factor in SC biology. 

Hypoxia is a critical factor for many stem cells, with a strong link between low oxygen levels 

and the undifferentiated cell state (62). Myoblasts cultured under hypoxic conditions show 

increased quiescence and higher self-renewal efficiency upon transplantation in vivo (63). 

Finally, systemic, circulating factors facilitate the adjustment of SCs to distal processes away 

from the niche. For example, calcitonin, a thyroid hormone that is secreted in response to high 

blood calcium levels, is important for SC dormancy and sub-laminar location. It exerts its 

effects by binding to the calcitonin receptor (Calcr), which is expressed by resting, but not by 
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activated SCs (64). A specific knock-out of Calcr in SCs results in their relocation from the 

niche and loss by apoptosis (65). Likewise, SC-specific knock-out of the androgen receptor, 

which is expressed in this cell population (66), leads to induction of Mstn expression, a fiber-

type switch and a reduction in muscle mass and strength (67).  

Motor neurons, fibroblasts, fibro/adipogenic progenitors and immune cells 

In slow-twitch muscles, SCs are located in close proximity to the neuromuscular junction 

(NMJ) (13), and the difference in SC numbers between slow and fast-twitch fibers is correlated 

with the pattern of neuron firing (50). When denervated, skeletal muscle fibers undergo 

atrophy, to which SCs initially respond with activation and proliferation similar to what is 

observed in damaged muscle, but after several weeks of denervation, SC number declines due 

to loss of proliferative capacity and apoptosis (68, 69). Conversely, it has been shown that 

developing muscle produces neurotrophins, which function as retrograde survival factors for 

the motor neuron (70), and SCs secrete the axonal guidance factor semaphorin 3A with possible 

implications in muscle regeneration (71). Although initially found to have a role in neuron 

survival, neurotrophins are emerging as important modulatory factors for various cell 

populations and tissues including skeletal muscle. For example, nerve growth factor (NGF) is 

expressed by regenerating fibers, which implies its involvement in muscle regeneration. 

Similarly, SC expression of brain-derived neurotrophic factor (BDNF) is important for SC 

maintenance, and consequently affects muscle regeneration (72, 73).  

Fibroblasts contribute to the niche by secreting growth factors and structural components of 

the BL. Temporary thickening of the ECM coupled with an increase in the number of muscle 

tissue fibroblasts is a hallmark of muscle regeneration (74). Furthermore, interactions between 

Tcf4+ fibroblasts and SCs are necessary for successful regeneration. Selective, conditional 

ablation of SCs in Pax7CreERT2/+;R26RDTA/+ mice leads to insufficient proliferation of fibroblasts 
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in the initial phases of regeneration and fibrosis at the later stages, whereas the partial ablation 

of fibroblasts in Tcf4CreERT2/+;R26RDTA/+ mice causes reduced proliferation and precocious 

differentiation of SCs, resulting in a decreased diameter of regenerated muscles and depletion 

of the SC pool (21).  

Skeletal muscle-resident mesenchymal progenitors expressing PDGFRα are known as 

fibro/adipogenic progenitors (FAPs) due to their ability to differentiate into adipocytes and 

fibroblasts (75). In homeostatic conditions, these cells are in close proximity to blood vessels 

(76), and their number quickly rises in the event of muscle damage. FAPs facilitate myofiber 

formation and myoblast differentiation by secreting specific ECM components and cytokines, 

respectively (77). These cells also display the ability to remove necrotic tissue (78), thereby 

supporting muscle regeneration. Interestingly, proper signaling from myotubes and eosinophils 

prevents FAP differentiation into adipocytes (75). 

Immune cells are additional important players in defining the SC niche in regeneration. Some 

of these cells, like tissue macrophages and mast cells, are permanent members of the niche, but 

their importance in modulating the SC microenvironment in quiescence is likely limited. 

However, they take on an active role upon sterile injury, which induces muscle fiber damage 

and necrosis. Resident immune cells react by secreting cytokines and chemokines including 

tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and macrophage inflammatory protein 2 

(MIP-2), which primarily drive the extravasation of neutrophils (79, 80). Next, neutrophils 

secrete MIP-1α, monocyte chemoattractant protein-1 (MCP-1) and other cytokines attracting 

monocytes from blood vessels, which rapidly become the most abundant inflammatory cell 

type in the damaged tissue (81). Depending on the milieu of inflammatory signals and immune 

cells present in the niche, the macrophages derived from the monocytes can acquire the M1 or 

M2 type. M1 macrophages secrete proinflammatory cytokines (TNF-α, IL-1β) and are 

characteristic of the early post-injury stages. They are essential for the removal of necrotic 
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tissue and promote SC proliferation. Upon clearance of cellular debris, the altered conditions 

in the niche promote an increase in the number of M2 macrophages, which secrete anti-

inflammatory cytokines (IL-4, IGF-I, TGF-β) and support the differentiation stages of 

regeneration (82, 83). Temporal regulation of the inflammatory cascade is crucial in the 

process. For example, suppression of M1 macrophages leads to reduced SC proliferation, 

persistence of necrosis and results in fat and fibrotic tissue accumulation. Likewise, 

suppression of the switch from the M1 to the M2 type negatively affects myogenesis and 

myofiber growth (84-86). In addition to paracrine signaling, macrophages establish direct 

contact with myoblasts and myotubes through cell adhesion interactions (e.g. via VCAM-1-

VLA-4, ICAM-1-LFA-1, PECAM-1-PECAM-1 and CX3CL1-CX3CR1), which prevent 

apoptosis of myogenic cells (87). Apart from innate immunity, cells of the adaptive immune 

system are also central to regulating SC behavior during sterile injury. An instrumental role of 

T regulatory cells in proper SC expansion and muscle regeneration, as well as in the M1 to M2 

macrophage switch after injury has been described (88, 89). 

The biophysical properties of muscle 

Aside from other factors of the niche, rigidity of the microenvironment can profoundly affect 

SC behavior. The elastic stiffness of uninjured skeletal muscle is ~12kPa, and ECM deposition 

during regeneration increases this value (90). SCs can sense and react to this biophysical 

property of the environment through focal adhesions (91). When cultured on rigid plastic dishes 

(~106kPa), SCs quickly lose their quiescence and stemness. Myoblasts cultured on hydrogels 

prefer a substrate stiffness of ~21kPa, while softer (~ 3kPa) and stiffer (~ 80kPa) gels reduce 

their proliferative rate (92). In line, SCs cultured on soft hydrogels that mimic the stiffness of 

natural muscle (12kPa) are able to self-renew and significantly improve their contribution to 

muscle regeneration upon transplantation (93).  
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The satellite cell niche in pathological contexts 

Aging, muscle dystrophies and related pathologies invariably lead to perturbed conditions of 

the SC niche. These changes can cause a reduction or an expansion in the SC pool, 

irresponsiveness to stimuli and therefore a reduced SC activation rate, aberrant proliferation 

and precocious or reduced differentiation, or SC senescence and apoptosis upon activation. For 

example, a disproportion of symmetric and asymmetric SC division might tip the balance 

towards SC loss in aging and a pathological SC expansion with a reduced number of myogenic 

progenitors in dystrophic conditions (94). Irrespective of the dysregulation, the outcome is 

diminished SC regenerative capacity in both contexts.  

Although some of the pathological changes are SC intrinsic, altering the niche can alleviate the 

underlying condition in many cases. Nevertheless, it is difficult to precisely discriminate 

between intrinsic and extrinsic origins of the SC pathology due to the bidirectional signaling 

between SCs and their microenvironment. Importantly, the niche can induce modifications in 

SC properties that can persist even after removal of SCs from the niche, and are hence 

perceived as “intrinsic”.  

The satellite cell niche in aging 

With advanced age, skeletal muscle mass and neuromuscular performance diminishes, a 

condition termed sacropenia. Decreased fiber and motor neuron numbers, reduced fiber size, a 

myofiber switch towards the oxidative type and loss of myonuclei resulting in an increase in 

myonuclear domain size are all common observations in aging, collectively resulting in a 

marked decrease of the efficiency of muscle regeneration (95, 96). The reduction of the SC 

pool has been proposed as an explanation for the underlying condition (51). However, based 

on conflicting results in different studies (97), the prevailing opinion is that a drop in the 

myogenic potential of SCs might be the causative factor of the impaired regenerative capacity.  
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Some changes in the aged niche are precipitated by aberrant signaling. For instance, lack of 

Delta upregulation by injured aged muscles leads to reduced Notch signaling in SCs and hence 

reduced SC proliferation – a phenotype that can be overcome by alternative Notch activation 

(97). Interestingly, experiments with heterochronic, parabiotic pairings (a shared circulatory 

system between a young and an old animal) demonstrated that systemic factors at least partially 

account for the perturbed SC biology, as the exposure to young blood restored otherwise 

reduced Notch signaling and improved SC proliferation in old mice (98). The subsequent 

search for rejuvenating humoral factors led to the implication of the hormone oxytocin (99) 

and growth factor GDF11 (100, 101) as systemic factors that decline with age and whose 

induction is able to revert aging-related SC pathology. However, the function of GDF11 in 

promoting muscle and cardiac health in aging has been largely discredited in more recent 

studies (102-104). Exacerbated canonical Wnt signaling due to elevated circulating Wnt 

activators in aged mice was also suggested as being responsible for aging-related tissue fibrosis 

and conversion of myoblasts into fibroblasts, a process that can be curbed by Wnt inhibitors 

(105). Increased NF-κB and TGF-β signaling in aged muscles are additional examples of how 

the immediate niche can negatively impact the regenerative potential of SCs (106, 107). 

ECM deposition in the aged niche in general is thought to act as a damper and therefore exert 

a negative influence on the activation potential of SCs, e.g. by increasing tissue stiffness. For 

example, slow muscles boost the expression of collagen IV while fast muscles elevate the levels 

of laminin with aging (56). The ensuing imbalance in the components of the BL in old muscle 

disturbs the signal transduction pathways that govern SCs in the niche, such as those triggered 

by higher levels of TGF-β, a negative regular of SC proliferation (107), and FGF-2. FGF2 

signaling through FGFR1 results in SC loss based on unmitigated cycling. Importantly, this 

effect can be reverted by increasing Spry1 in SCs, an inhibitor of FGF signaling and preserver 

of SC quiescence (23). The p38α/β MAPK pathway, downstream of FGF signaling, is 
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consequently overactivated in aged SCs, leading to reduced asymmetric division and higher 

numbers of committed daughter cells, hence resulting in diminished self-renewal. Improving 

the SC environment by transplanting old SCs into a young host could not revert this condition, 

in contrast to the successful pharmacological inhibition of the p38α/β MAPK pathway in SCs 

(108, 109). Most likely triggered by increased IL-6 blood levels, the JAK/STAT signaling 

pathway is also overactivated in aged SCs and results in a reduction of symmetric division and 

self-renewal, which can be reverted with pharmacological inhibitors (110, 111). In geriatric 

mice (30 months of age), SCs lose their ability for reversible quiescence by switching to pre-

senescence. At that age, the respective stimuli fail to induce SC activation and proliferation, 

but instead prompt senescence in a process termed geroconversion. Silencing of p16INK4a, a cell 

cycle inhibitor that triggers the switch to pre-senescence, is able to restore the activation and 

proliferation potential of SCs (112). Intriguingly, blocking autophagy in young SCs causes 

senescence, while its restoration in old age reestablishes the regenerative potential of SCs 

(113). Furthermore, loss of FN from the aged BL prevents sufficient attachment of SCs to the 

niche and thus disturbs signaling through focal adhesion kinase, thereby precipitating SC loss 

(33). In addition, mislocalization of integrin β1 on aged and dystrophic SCs leads to impaired 

sensitivity to FGF-2, consequently causing reduced SC proliferation and ultimately SC 

depletion, resulting in impaired regeneration. In both models, activation of β1-integrin reverts 

the impairment of SC function (114). 

Hormonal and pharmacological interventions, calorie restriction as well as cell therapy have 

been proposed for the prevention and treatment of sarcopenia. However, to date, physical 

activity remains the most efficacious approach to combating this disease (115), e.g. by boosting 

the number and myogenic capacity of SCs (51, 116). Although an SC pathology is most likely 

not the only driving force for development of sacropenia, SC dysfunction contributes to 

impaired muscle regeneration and increased fibrosis (105). Recent advances in understanding 
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aberrant signal transduction pathways and communication between aged SCs and their niche 

will potentially offer new pharmacological avenues in the treatment of sarcopenia that could 

circumvent the inherent problems of exercise interventions in geriatric patients.  

The satellite cell niche in dystrophic conditions 

Muscular dystrophies are a heterogeneous group of sporadic and inherited disorders that lead 

to progressive muscle wasting and weakness. Fiber size variation, fiber necrosis followed by 

inflammation, and muscle tissue replacement by fat and scar tissue are often hallmarks of these 

pathologies, depending on the severity of the dystrophy in question (117). Many dystrophies 

are caused by a mutation in structural proteins of the cytoskeleton, membrane or ECM, which 

comprise a part of the SC niche. 

One of the most common and extensively studied dystrophy is Duchenne muscular dystrophy 

(DMD), which arises due to a genetic mutation in the structural protein dystrophin. Lack of 

dystrophin, a member of the membrane-bound protein complex, leads to the improper 

connection of the cytoskeleton to the ECM, rendering fibers more prone to mechanical damage. 

As a consequence, recurring rounds of degeneration and regeneration form a vicious cycle and 

impose proliferative pressure on SCs. It has been proposed that progressive worsening of the 

disease over time is at least partially due to telomere shortening and ultimately loss of the 

regenerative potential of SCs (118). 

Infiltrating macrophages and T cells induce fibrosis through secretion of pro-fibrotic cytokines, 

which in chronic diseases such as muscular dystrophies result in fibrotic tissue formation at the 

expense of functional muscle tissue (119). For instance, in acute injury, a wave of TNFα-

secreting M1 macrophages induces a reduction of the preceding FAP expansion, thereby 

limiting ECM accumulation. Under chronic conditions, however, loss of proper control of 

macrophage polarization results in exacerbated TGF-β secretion that in turn causes FAP 
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persistence and fibrosis (120). Therefore, anti-inflammatory drugs like corticosteroids, despite 

their potential pro-atrophic side effects, are the current standard of care for DMD. A big portion 

of current DMD therapy-related research focuses on intercepting the pathways implicated in 

fibrotic tissue formation, namely those triggered by TGF-β and Mstn (121).  

Interestingly, SC fate conversion from the myogenic to the fibrogenic lineage can contribute 

to fibrosis development in DMD. Thus, increased Wnt signaling in dystrophic muscle triggers 

TGF-β2 secretion, which in turn induces pro-fibrotic gene expression in SCs, thereby limiting 

their myogenic potential (122). Besides progressive fibrosis, the SC niche in DMD is affected 

by other events, such as alterations in the BL with differential expression of laminin α2, laminin 

β1 and collagen IV, which are implicated in the direct interactions with SCs (123), as well as 

that of decorin and biglycan, proteoglycans linked to TGF-β sequestration (124). These 

changes presumably also contribute to alterations in muscle stiffness, which further affects SC 

behavior. In addition, perturbed conditions can alter the differentiation of several multipotent 

progenitor populations in the muscle, including FAPs, resulting in extracellular fat 

accumulation (75). Of note, these alterations to the SC niche can be extrapolated to other 

dystrophies and muscle pathologies with prominent fibrosis and fat accumulation, even 

diseases such as type 2 diabetes (125, 126).  

The niche has been the primary focus of research on SC dysfunction in DMD, mainly due to a 

body of literature suggesting that dystrophin expression is limited to differentiated myofibers. 

However, recent findings suggests a direct role of SCs in the pathology based on the discovery 

that dystrophin is also expressed in activated SCs and is important for establishing cell polarity, 

thus enabling asymmetric SC division (127). Lack of SC dystrophin therefore results in reduced 

numbers of committed progenitors and differentiated myocytes, as well as a higher numbers of 

Myf5- progenitors. However, both increased and decreased SC numbers have been reported in 

DMD, a discrepancy that could be due to the difference in age of the subjects in the studies in 
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question (128, 129). Given the reciprocal regulation between SCs and fibroblasts (21), it will 

be interesting to further explore the role of SC dystrophin in fibrotic tissue accumulation and 

other DMD symptoms.  

Dysferlinopathy is another example of a muscular dystrophy with a complex etiology. In this 

disease, a mutation in the structural protein dysferlin primarily prevents myotubes from 

patching contraction-induced small ruptures in the sarcolemma. However, dysferlinopathy also 

affects proper muscle regeneration, where impairment in the release of cytokines upon injury 

results in reduced neutrophil recruitment and leads to a prolonged inflammatory phase, creating 

a suboptimal environment for successful regeneration by SCs (130).  

Despite extensive efforts, no treatment for most of these debilitating diseases has been found 

so far. Therapies are mainly symptomatic and palliative, relying on corticosteroids as well as 

pulmonary and cardiac management in the case of DMD (131). Experimental treatments 

centered on stem cell therapy (e.g. SC transplantation), gene therapy (e.g. antisense 

oligonucleotide exon skipping, viral delivery of mini-dystrophin, CRISPR/Cas9-mediated 

deletion) and pharmacology (e.g. Mstn blockade) might, however, result in therapeutic 

breakthroughs in the future (132-135).  

Future directions – an artificial niche 

Autologous SC therapy represents one of the most promising treatments both for dystrophies 

and sacropenia. In sacropenia, enhancement of the myogenic potential of SCs and expansion 

of bona fide SCs in vitro prior to their transplantation in order to boost regeneration would 

most likely be sufficient, while in dystrophic conditions, the approach would comprise stem 

cell and gene therapy, including correction of a relevant genetic mutation in vitro. However, 

several hurdles impede the success of such trials. For example, the inability of SCs to home in 

on muscle with systemic delivery (136), poor migration when delivered intramuscularly (137), 
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as well as reduced proliferation, immediate differentiation, and apoptosis of injected cells have 

been reported. These effects are further compounded by the rapid and irreversible loss of SC 

stemness in culture, resulting in reduced myogenic potential upon transplantation (138). Thus, 

as expanding the stem cell population is a necessary step prior to implantation, improving the 

intrinsic myogenic potential of SCs, e.g. by overexpressing PGC-1α, can help to lead to 

enhanced early muscle tissue formation after transplantation (139). Furthermore, attempts have 

been made to mimic the SC niche in vitro to circumvent some of the aforementioned problems.  

Bioengineering efforts have made progress in creating 3D biomimetics as acellular or cellular 

scaffolds for use in regenerative therapy (140). From cylindrically shaped, collagen I-based 

gels to various natural hydrogels and finally fibrin gels, conditions conductive to increasing 

cell survival, fusion and maturation are constantly improving (4). For example, in the case of 

trauma-induced volumetric muscle loss, acellular biodegradable materials filled with anti-

fibrotic and pro-myogenic factors on one, and angiogenic and neurotrophic factors on the other 

hand, would possibly provide optimal conditions to tip the balance towards functional muscle 

tissue instead of scar tissue formation when transplanted in a timely manner (141, 142). These 

scaffolds would provide not only fast infiltration and proper activation of the myogenic cells 

of the host, but also support fast establishment of the vascular and neural network necessary to 

support the newly formed muscle tissue. Other conditions such as aging and dystrophies 

require, however, more intricate cellular approaches, with biomaterials that closely resemble 

the satellite cell niche in terms of stiffness and composition, enabling the cell-matrix 

interactions that are crucial for proper SC function. In that regard, polyethylene glycol 

hydrogels cross-linked with laminin have been used successfully in improving satellite cell 

self-renewal in vitro and engraftment in vivo (93). This substrate, in combination with 

pharmacological inhibition of the p38α/β MAPK pathway, was also able to reverse the age-

related SC pathology (108).  
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Besides identification of ECM proteins as crucial components of an artificial niche, the search 

for extrinsic factors that would enable SC expansion in vitro without loss of cell stemness has 

led to the discovery of a cocktail of four cytokines. Intrigued by the role of CD4+ and CD8+ T 

cells in regeneration, Fu and colleagues identified T cell-derived factors that are responsible 

for increased SC proliferation. They defined a pro-inflammatory cytokine combination 

composed of IL-1α, IL-13, TNF-α and INF-γ that is sufficient and necessary to maintain SC 

potency in vitro (143). This combination of cytokines promoted proliferation and limited 

differentiation of SCs for 20 passages. The gene expression profile of cells expanded in this 

way suggests that these cells retain at least some of the features of freshly isolated SCs, such 

as high Pax7 and low MyoD expression. SCs expanded under such conditions were not only 

able to engraft efficiently and occupy the niche upon transplantation into muscle, but also to 

respond to secondary injury by undergoing activation and self-renewal (143). In addition, the 

transplantation efficiency of such expanded cells in vitro was comparable to freshly isolated 

SCs. Since the cocktail in question has been optimized for murine SCs, efforts will have to be 

made to find proper conditions and factors for human SCs. 

Recently, Quarta and colleagues successfully mimicked the in vivo microenvironment of SCs 

by using a defined serum-free quiescence medium and artificial muscle fibers. A 3D 

microscaffold with an elasticity between 1-2kPa based on collagen, recombinant laminin and 

α4β1 integrin provided optimal stiffness and enabled signaling pathways to keep the cells in 

reversible quiescence (144). This method proved effective in keeping both murine and human 

SCs in a quiescent state for up to a week. With this system, the engraftment potential and self-

renewal of cultured cells upon transplantation surpassed that of freshly isolated SCs and was 

comparable to SCs associated with their native fibers. These results confirm the importance of 

the niche and mimicking the in vivo microenvironment for maintaining SC stemness in vitro 

(144). 
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These studies provide crucial insights into the optimal conditions for keeping SCs in a 

quiescent state in vitro, SC propagation, and preservation of the stemness for subsequent in 

vivo transplantation. Importantly, an artificial niche not only enables disease modeling and 

gene therapy, but also provides an amenable experimental system for toxicology screenings of 

novel drugs, thereby reducing the burden of animal studies (145, 146). Together with novel 

imaging and cell tracking techniques (147), the increasing knowledge about SC biology, the 

importance of the niche, and the interplay of SCs with myofibers and other cell types will 

hopefully result in novel therapeutic approaches to treating sarcopenia, muscular dystrophies 

and other skeletal muscle-associated pathologies. 
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Figure Legends 
 
Figure 1. The quiescent niche 
 
Under homeostatic conditions, the SC and its niche are in a quiescent (q) state. 
The qSC receives signals that keep it dormant, such as angiopoietin 1 (Ang1) 
from periendothelial cells (PECs) and calcitonin (Calc) from the bloodstream, but 
at the same time actively contributes to the niche state by secreting protease 
inhibitors (Serpin, Tfpi2, Timpf4). The SC is attached with M-cadherin to the 
myofiber (MF) and with integrin to the basal lamina (BL). Fibro/adipogenic 
progenitors (FAPs) and macrophages (MAs) are present in low numbers and are 
mainly inactive. (EC – endothelial cell, FI – fibroblast, RL – reticular lamina, Calcr 
– calcitonin receptor, Tie-2 – receptor for Ang1)                           
 
Figure 2. The activated niche 
 
The damaged myofiber (dMF) changes the signaling balance in the niche and 
causes activation (a) of the SC by liberating hepatocyte growth factor (HGF). The 
aSC increases in size and begin secreting matrix metalloproteases (MMPs), as 
well as fibronectin, which together with Wnt7a supports SC proliferation 
through the Frizzled 7 and syndecan 4 receptors. The dMF expresses Delta and 
secretes Wnt7a, SDF-1 and growth factors (GFs) that further regulate SC 
behavior. GFs are also secreted by fibroblasts (FIs), endothelial cells (ECs) and 
are delivered by the bloodstream to the niche. In addition, cytokine secreting 
fibro/adipogenic progenitors (FAPs) and macrophages (MAs) increase in 
number.  The result is higher density of the basal lamina (BL) and reticular 
lamina (RL). (PEC – periendothelial cell, Notch – receptor for Delta, c-Met – 
receptor for HGF, CXCR4 – receptor for SDF-1) 
 
Figure 3. The aged niche 
 
The aged myofiber (agMF) has a smaller diameter, fewer myonuclei and reduced 
levels of Delta, a ligand of Notch, which is crucial to SC proliferation. Further 
changes to the niche include increased fibroblast numbers and a denser basal 
and reticular lamina (BL, RL) with reduced fibronectin levels, active 
macrophages (MAs) secreting TGF-β, as well as increased levels of FGF-2, IL-6 
and Wnt signaling molecules. (PEC – periendothelial cell, EC – endothelial cell, 
FAP – fibro/adipogenic progenitor) 
 
Figure 4. The dystrophic niche 
 
The dystrophic fiber (dyMF) is smaller in diameter with centrally located nuclei, 
a hallmark of ongoing damage and regeneration. As a result, dySCs are under 
high proliferative pressure. Similar to the aged niche, elevated levels of TGF-β 
and Wnt, as well as increased numbers of fibroblasts (FIs), are common features 
of the dystrophic niche. In addition, inflammation caused by high numbers of 
fibro/adipogenic progenitors (FAPs) and macrophages (MAs) contributes to the 
formation of fat and scar tissue (a denser basal and reticular lamina – BL, RL) at 
the expense of muscle tissue. (PEC – periendothelial cell, EC – endothelial cell)  
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