65 research outputs found

    Total antioxidant activity and trace elements in human milk: the first 4 months of breast-feeding

    Get PDF
    The content of many nutrients in breast milk are dependent on the nutritional status of the lactating woman. This is particularly true for fat and water-soluble vitamins, some of which have antioxidant properties. The aim of the study entertained herein was to evaluate the changes in total antioxidant status of human milk during the first 4 months of lactation, and to correlate such changes with the contents in specific antioxidant oligoelements (Cu, Zn, Mn and Se). Milk samples were collected from (31) lactating women recruited at the Service of Obstetrics of the Hospital de São João in Porto, after 1, 4, 8, 12 and 16 weeks after birth. The total antioxidant status (TAS) of human milk was measured by the Randox® commercial kit and trace metals by ICP-MS (inductively coupled plasma-mass spectrometry). The results found for TAS and oligoelements under study show a decrease in the concentration of these parameters from 7 days to 4 months of breast-feeding and significant correlations (p < 0.05) were found between TAS and Cu, Zn and Se (not Mn). The decreases of Cu, Zn and Se were also correlated, but not proportional between them, suggesting diverse excretion mechanisms for all. Between primipara and multipara women, a significant difference was found only for Cu and Zn concentrations at 7 days of lactation, but not for the other metals or TAS. With respect to the mother’s age, no correlation was found, either for trace metal concentrations or TAS

    Lutzomyia longipalpis urbanisation and control

    Full text link

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]&lt;2.20(2.56) and Γ[Ξb(6333)0]&lt;1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances
    corecore