74 research outputs found

    Table 2: Example applications of the use of remote sensing technologies to detect change in vegetation.

    Get PDF
    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops

    Polymethacrylates.Material Selection For Medical Applications:Requirements For Several Kinds of Medical Applications

    Get PDF
    This chapter reviews several cases of methacrylate-based polymers used for medical applications. The main chemicals and fillers used for elaborating biomaterials are presented, together with the main synthesis reactions. Their properties are recalled and discussed using the well-established structure-properties relationships of polymer physicochemistry. Last, the main degradation mechanisms are recalled, together with their consequences on the engineering properties of polymethacrylates, in order to predict the long-term in vivo behavior of such complex materials

    Multicriteria Decision Analysis: A Comprehensive Decision Approach for Management of Contaminated Sediments

    Get PDF
    Contaminated sediments and other sites present a difficult challenge for environmental decision makers. They are typically slow to recover or attenuate naturally, may involve multiple regulatory agencies and stakeholder groups, and engender multiple toxicological and ecotoxicological risks. While environmental decision-making strategies over the last several decades have evolved into increasingly more sophisticated, information-intensive, and complex approaches, there remains considerable dissatisfaction among business, industry, and the public with existing management strategies. Consequently, contaminated sediments and materials are the subject of intense technology development, such as beneficial reuse or in situ treatment. However, current decision analysis approaches, such as comparative risk assessment, benefit-cost analysis, and life cycle assessment, do not offer a comprehensive approach for incorporating the varied types of information and multiple stakeholder and public views that must typically be brought to bear when new technologies are under consideration. Alternatively, multi criteria decision analysis(MCDA) offers a scientifically sound decision framework for management of contaminated materials or sites where stakeholder participation is of crucial concern and criteria such as economics, environmental impacts, safety, and risk cannot be easily condensed into simple monetary expressions. This article brings together a multidisciplinary review of existing decision-making approaches at regulatory agencies in the United States and Europe and synthesizes state-of-the-art research in MCDA methods applicable to the assessment of contaminated sediment management technologies. Additionally, it tests an MCDA approach for coupling expert judgment and stakeholder values in a hypothetical contaminated sediments management case study wherein MCDA is used as a tool for testing stakeholder responses to and improving expert assessment of innovative contaminated sediments technologies

    A new dimension in algal cultivation – 3D printed structures with a range of buoyancies

    No full text
    The free-floating cultivation of macroalgae is a fundamental requirement for the efficient bioremediation of land-based waste streams as this cultivation mode fully utilises the water column available for production, translating to improved areal biomass productivities. To achieve the free-floating cultivation of species grown from propagules and dependent on the attachment to surface structures, we have used 3D printed structures made of polymers with negative, neutral and positive buoyancies to investigate the potential to manipulate the position in the water column for cultivation. Small wheel-shaped structures with internal protected spokes were designed, manufactured and seeded with zoids of Ulva tepida. Their settlement was quantified at different locations of the settlement structure and, although similar across polymer types, approximately 80% less zoids were on the outside of the wheel shaped structures made of polyethylene compared to protected locations 3 days post-seeding. Subsequently, all structures were maintained over 31 days as free-floating cultures under outdoor cultivation in aerated buckets and paddle wheel driven high rate algal ponds (HRAPs). Both negatively and positively buoyant polymers maintained their buoyancies with increasing algal biomass over time in the static test, while the neutrally buoyant polymer showed the highest variation and became exclusively positively buoyant after 14 days of cultivation. Productivities were generally higher and more variable in aerated buckets ranging up to 28.4 ± 1.7 g dw m−2 day−1, than in HRAPs ranging up to 18.9 ± 3.9 g dw m−2 day−1. There was no clear effect of polymer type, and consequently buoyancy, on algal productivity. Similarly, all tested polymers had maximum productivities between 12 and 22 days for cultivation in aerated buckets and 7–17 days in HRAPs. This study highlights the potential to use 3D printing to create settlement structures with a range of buoyancies for land-based cultivation
    corecore