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7.1 MATERIAL SELECTION FOR MEDICAL APPLICATIONS:
REQUIREMENTS FOR SEVERAL KINDS OF MEDICAL
APPLICATIONS

A biomaterial is defined, according to the Consensus Conference of Chester

(1992), as a material intended to interface with biological systems to evaluate,

treat, increase, or replace any tissue, organ, or function of the body. According to

the American National Institute of Health, a biomaterial is also described as “any

substance or combination of substances, other than drugs, synthetic or natural in

origin, which can be used for any period of time, which augments or replaces par-

tially or totally any tissue, organ or function of the body, in order to maintain or

improve the quality of life of the individual.” Orthodontic brackets and surgical

instruments are not included in this definition (Bergmann and Stumpf, 2013).

All materials used for replacing human tissues have joint specifications such

as biocompatibility and they must also be noncytotoxic, nonallergic, nonimmuno-

genic, nonthrombogenic, and noncarcinogenic. Their specifications depend on

their applications. Biomaterials suitable for dental restoration applications should

meet these requirements:

• Nonirritating for the pulp and periodontal tissues.

• Low volumetric variation.

• Thermal insulation to protect the pulp from temperature variations.

• Esthetic and the stability of the different shades.

• Possible and simple repair and replacement.

• Easy handling.

• Resistance to water degradation and wear.

• Polishing ability to obtain a surface roughness limiting the adhesion of the

plaque and thus to avoid secondary decay and periodontal diseases.
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• Be compatible with sealing materials (bond, cement).

• Prevent leakage and saliva contamination and so dentinal hypersensitivity,

coronary re-infection of the pulped tooth, secondary carious lesions and

marginal dyschromias.

• Have mechanical properties adapted to the type of restoration and ideally the

closest to the dental tissues:

• Flexural strength greater than or equal to that of enamel ($380 MPa), and

dentin (219 MPa).

• Modulus of elasticity in the range of 90�98 GPa for enamel and

18�22 GPa for dentin.

• Hardness Vickers in the range of ,300 HVN for enamel.

• Toughness in the range of 0.7�0.8 MPa m1/2 for enamel, 2 MPa m1/2 for

dentin (Xu et al., 1998).

7.2 CHEMISTRY OF POLYMETHACRYLATES AND THEIR
COMPOSITES

7.2.1 MONOMERS

7.2.1.1 Methyl methacrylate
Polymethyl methacrylate (PMMA) is the most well-known polymer of the meth-

acrylate family, obtained from the in-chain polymerization of methyl methacry-

late. It was developed in the 1930s by Hill and Crawford for Imperial Chemical

Industries in England (Perspex), by Röhm and Haas in Germany (Plexiglas), and

by Du Pont de Nemours in the United States (Lucite). It displays several interest-

ing properties such as:

• A higher light transmission than glass (92% of visible light).

• A low density (1.18 g cm23) being about half that of glass.

• Shatter proof

• Softer and easier to scratch than glass (however, scratch-resistant coatings

may be applied).

Its first applications as aircraft windows took place during World War II.

Medical applications came later and include:

• In cardiology in pacemakers.

• For ophthalmology as artificial eye lenses for cataract surgery.

• For prosthetic dentistry in removable total and partial dentures (Fig. 7.1),

temporary fixed denture, and restorative dentistry and for orthodontic

devices.

• As bone cement for orthopedic surgery of the hip, knee, and other joints for

the fixation of polymer or metallic prosthetic implants on living bone.



7.2.1.2 Other methacrylates for dental applications
In the 1950s, composite restorations were made from PMMA. Significant poly-

merization induced volume shrinkage and heat release as well as the release of

methyl methacrylate monomers resulting in marginal discoloration, pulp reac-

tions, and secondary caries. In 1956, Bowen tried to reduce shrinkage by using a

bigger monomer: the bisphenol A surrounded by two glycidyl groups. However,

moisture tended to inhibit polymerization. Bisphenol A glycidyl methacrylate

(Bis-GMA, Fig. 7.2) was obtained by substituting end groups with methacrylate

functions and offered an excellent solution to the problem (Bowen, 1962;

Soderholm and Mariotti, 1999).

Bis-GMA has several advantages compared to PMMA, such as lower volatil-

ity, lower diffusion in dental tissues, and lower polymerization shrinkage because

of its larger size, which explains its success. In addition, its tetrafunctional struc-

ture (i.e., two double bonds) makes it possible to obtain a crosslink network with

better mechanical and physical properties.

However, Bis-GMA shows a high viscosity (1200 Pa s) (Barszczewska-

Rybarek, 2009) because of its large size, and rigidity due to the two aromatic rings

and especially its hydroxyl groups creating strong hydrogen intermolecular bonds

between them which significantly reduces the mobility and make the molecule

more hydrophilic. As it will be seen later, this involves a low conversion degree

(DC)—39% in the case of photopolymerization and a limited incorporation of fil-

lers as well as difficulty to handle the material (Sideridou et al., 2002).

Consequently, Bis-GMA is always associated with minor monomers such as

triethylene glycol dimethacrylate—TEGDMA, with a viscosity of 0.011 Pa s

FIGURE 7.1

Removable total denture.



(Ilie and Hickel, 2011; Moszner and Salz, 2001)—or other derivatives such as

bisphenol A ethoxyl dimethacrylate (Bis-EMA) (452 g mol21) and bisphenol A

propoxyl dimethacrylate Bis-PMA (480 g mol21) and having a lower viscosity than

Bis-GMA (because of its lower molar mass and the absence of hydroxyl groups).

UDMA monomers were developed in the 1970s by Forster and Walker

(1974). Those UDMAs constitute a wide family of molecules differing by their

molar mass and their structure (Fig. 7.3). The 1,6-bis(methacryloxy-2-ethoxycar-

bonylamino)-2,4,4-trimethylhexane is by far the most used and has a very low

viscosity (23.1 Pa s) (Barszczewska-Rybarek, 2009).

7.2.1.3 Composition of the matrix
Monomers

Mixtures of several monomers are currently encountered in the literature for model

and commercial materials. Usually, UDMA or Bis-GMA are used as major mono-

mers together with minor monomers such as TEGDMA, HEMA, and bis-EMA for

lowering the viscosity (Rüttermann et al., 2010; Rahim et al., 2012; Aljabo et al.,

2015; Bhamra et al., 2010; Thomaidis et al., 2013). The use of minor monomers

lowers viscosity which aims at incorporating more fillers to improve the mechani-

cal properties, and to increase the conversion degree (Floyd and Dickens, 2006).
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Activators and polymerization initiators

The initiation of the polymerization reaction requires the creation of radicals com-

ing from, for example:

• For chemopolymerization: amines (para-amino methyl acetate, para-

toluenesulphonic acids, thioureas, and ascorbic acids) and peroxides (benzoyl

peroxide as shown in Scheme 7.1, cumene peroxide, and terbutyl

hydroperoxide).

• For photopolymerization: camphorquinone (Fig. 7.4) in combination with an

aromatic amine. The camphorquinone displays an absorption in the range of

400�550 nm with a λmax at 470 nm (Leprince et al., 2013) leading to radical

generation, as illustrated in Scheme 7.2.

Polymerization inhibitors

Phenolic compounds react with free radicals and are used to avoid the possible

spontaneous polymerization occurring during monomer storage.

Coupling agents

The coupling agent is an amphiphilic molecule bonding the hydrophilic inorganic

filler and the hydrophobic resin. One of the most common molecules is

3-(Trimethoxysilyl)propyl methacrylate (Fig. 7.5).
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Some urethane dimethacrylate monomers.



7.2.2 DENTAL COMPOSITES

Composite material can be defined as a combination of two or more immiscible

materials of different chemical natures, leading to better properties than those of

the individual components used alone. They are constituted by a matrix and dis-

persed reinforcements. In the case of an organic matrix, the reinforcement is an

inorganic solid (glass, ceramic, metal) in the form of fibers, particles, or flakes.

The properties of the composite material depend on the filler volume fraction,

shape factor (or length:diameter ratio), and orientation (Kardos, 1993). The matrix

allows the transmission of the mechanical stresses to the reinforcement, the
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protection of this later against the external environment, and determines the con-

ditions of use and processing.

Their composition has evolved since their introduction in odontology more

than 50 years ago. Their clinical success would not have been possible without an

understanding of the adhesion phenomena allowing their adhesion to dental tis-

sues: enamel (Buonocore, 1955) and dentin (Nakabayashi et al., 1991).

The inorganic fillers may be silicas (SiO2) in crystalline form such as quartz,

or in amorphous form such as borosilicate glass, or heavy metal (Sn, Ba) glasses.

Their shape can be angular (obtained by grinding), rounded (obtained by melting),

or square with rounded corners (Raskin et al., 2006). Organomineral fillers are

crushed prepolymerized composites and then added to the monomer/filler mix-

ture, which makes it possible to reduce the shrinkage and to adapt the viscosity of

the composite. Organoorganic fillers (trimethylolpropane trimethacrylate) and

ceramics with grafted methacrylate groups (OrMoCers) (Raskin et al., 2006;

Raskin, 2011) can also be used.

Composites can be classified according to the particle size and distribution of

the fillers, the viscosity and the mode of polymerization, as dicussed next.

7.2.2.1 Particle size and distribution of fillers
Ferracane (2011) proposed to classify dental composites according to the fillers

size (Fig. 7.6).

1. Macrofill: The first macrofill conventional composites presented 10�50 μm
fillers, providing excellent mechanical properties, but difficulty in polishing

and degradation at the surface by abrasion.

2. Microfill: microfill composites with 40�50 nm fillers were developed to

overcome these disadvantages. They have good polishing properties, but low

mechanical properties.

3. Hybrid: Hybrid composites are a mix of the particle sizes of the two previous

families and, therefore, were used as a compromise between the mechanical,

optical, and polishing properties.

4. Midfill: The tendency was then to reduce the size of the fillers to result in the

hybrid midfill composites with charges of 1�10 μm and 40 nm.

5. Minifill: The evolution continued with the decrease in the size of the fillers

with the minifill composites, with 0.6�1 μm and 40 nm filler, from which

microhybrid composites were used for restorations in the anterior and

posterior sectors.

6. Nanofill: The most recent innovations concern the development of nanofilled

composites with 5�100 nm nanoparticules. However, this filler family has

declined because of the difficulty of incorporating nanoparticles, the presence

of numerous defects linked to the exponential increase of the matrix/fillers

interface, and their high viscosity. To solve these problems, the nanofillers

were partially sintered into nanoparticle aggregates (cluster) ranging from 5 to

75 nm in diameter (O’Brien, 2008).
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FIGURE 7.6

Classification of dental resin composites.



The size of filler particles incorporated into the resinous matrix of commercial

dental composites tends to decrease over the years (Ilie and Hickel, 2011;

Ferracane, 2011). Currently, microhybrid composites and nanohybrid composites

(i.e., microhybrides with nanoparticles) are commercially available and display

relatively close mechanical properties. Fiber-reinforced composites constitute a

relatively new class of dental composites and are drawing increasing interest

(Ballo and Närhi, 2017).

7.2.2.2 Viscosity
According to Einstein’s formula, spherical fillers lead to a viscosity increase

given by:

η5 η0Uð11 2:53φÞ (7.1)

η and η0 being, respectively, the viscosity of filled and unfilled resin, and φ the filler

ratio (in volume). Adding c. 50%�60% fillers by weight (i.e., 80% in volume) leads

to viscosity almost 30-times higher than for base resin (Papakonstantinou et al.,

2013) and can reach more than 2000 Pa s.

Reactive mixtures for dental resin composites cover a wide range of viscosities

which allow them to meet the requirements of numerous clinical indications. Fluid

composites with low viscosity have 0.4�3 μm filler, a Vf of 42%�53%, are pack-

aged as syringes (Fig. 7.7), and indicated for cervical restorations or for low-tissue

losses. The high viscosity condensable composites have Vf of 66%�70% and are

indicated for site tissue losses 1 and 2 (Sakagushi and Powers, 2012).

7.2.2.3 Polymerization mode
The composites can also be classified according to their mode of polymerization:

photopolymerization (Fig. 7.8), chemopolymerization, dual photo- and chemopo-

lymerization and more recently high-pressure high-temperature polymerization

FIGURE 7.7

Resin composite in syringe.

FIGURE 7.8

Polymerization lamp.



for industrial composite blocks suitable for CADCAM applications, which are

discussed further next (Fig. 7.9).

Photopolymerization is usually performed using lamps with 150�600 mW cm22

irradiance, for 10�60 seconds durations. Photopolymerization of dental resin com-

posites is performed using LED or halogen light curing units with, respectively, an

emission peak in the 450�470 nm (Issa et al., 2016) and 450�520 nm (Bala et al.,

2005) wavelength ranges. The emission spectra and characteristics of some commer-

cial lamps can be found in (Haenel et al., 2015).

CAD/CAM applications suitable for the manufacture of dental restorations are

currently being developed (Van Noort, 2012; Miyazaki et al., 2009) because they

obtain a constant quality. Chairside CAD/CAM can be used for prosthesis in den-

tal surgery. In addition, blocks for CADCAM applications are manufactured

industrially and so are more homogeneous and have fewer defects than handled

materials.

Two types of blocks are currently commercially available: ceramic blocks and

composite blocks. Ceramic blocks have superior mechanical properties and their

chemical inertia which give them good biocompatibility. However, they are diffi-

cult to machine and cannot tolerate plastic deformations, which leads to the risk

of fractures at the fine edges during the machining of the dental prosthesis. Thus,

reoperation is more delicate. Composite blocks have lower mechanical properties,

lower wear resistance and are less biocompatibile due to residual monomer

release from incomplete polymerization. Nevertheless, they are easier to set on

dental tissues and reoperation is easier. They also have better machinability and

polishability. Indeed, the use of composite resin blocks designs for CAD/CAM

significantly reduces the machining time and tool wear (Mainjot et al., 2016).

New technologies have been developed on polymerization and the methods

for producing the blocks in order to increase the mechanical properties of the

composites and to increase their strength, longevity, and biocompatibility.

Conventional thermopolymerization and photopolymerization have the disad-

vantage of being incomplete resulting in a low degree of conversion (56%�67%)

FIGURE 7.9

Polymer infiltrated ceramic network block suitable for CADCAM.



(Ferracane et al., 1997). Moreover, it induces internal stresses in the composite

resulting from the shrinkage and the differential polymerization between the

superficial part close to the source of irradiation and the deeper part (Ferracane,

2005).

To improve the mechanical properties of a composite, the polymerization

mode can be enhanced. A previous study has shown that high temperature

(180�C) and high pressure (250 MPa) polymerization allowed a significant

increase in the mechanical properties of commercial composites compared to con-

ventional photopolymerization (Nguyen et al., 2012).

Dispersed filler composite blocks are synthesized by thermopolymerizing

(under high pressure or not) a mixture of mixed fillers and monomers (Mainjot

et al., 2016; Nguyen et al., 2013).

PICN blocks present a particular microstructure as they are synthesized from a

sintered glass-ceramic network with a φf greater than 73.8% in the form of a

block, secondarily infiltrated by monomers, and then thermopolymerized under

high pressure. Their fundamental characteristic is that they consist of two continu-

ous networks imbricated in one another:

• A sintered glass-ceramic inorganic network with open porosity.

• An organic network constituted by the crosslinking of a dimethacrylic

monomer inside the inorganic network.

The PICN microstructure allows for a higher fillers ratio compared to classical

dispersion, and results in higher mechanical properties (Nguyen et al., 2013).

7.2.3 CHALLENGES IN IMPROVING PROPERTIES

Manufacturers try to improve dental composites performance by modifying the

formulation of monomers and photoinitiators.

Composites with other monomers such as siloxane, oxirane, or silorane have

been developed in order to attenuate the shrinkage, but do not provide significant

improvement in the mechanical properties (Lien and Vandewalle, 2010).

Alternative photoinitiation systems based on mono-acyl phosphine oxide

(MAPO), a bioacyl phosphorine oxide with a better production efficiency of free

radicals than camphorquinone, allowing an increase in conversion degree,

mechanical properties, and better polymerization in depth. These systems also

improve biocompatibility because no tertiary amines are needed to generate free

radicals. However, their absorption spectrum corresponds less to commercially

available photopolymerization lamps (Leprince et al., 2013).

Improving composites is a complex process. Several papers have been aimed

at comparing the performances of various reactive mixtures (Papakonstantinou

et al., 2013; Fonseca et al., 2017). Indeed, changing the nature or ratio of a given

component can induce undesired side effects (sometimes minor). The overall pos-

sible effects are summarized in Figs. 7.10�7.12.



7.3 METHODS FOR MATERIAL SYNTHESIS

7.3.1 RADICAL POLYMERIZATION REACTION OF PMMA
(DIFUNCTIONNAL MONOMER)

7.3.1.1 Mechanistic aspects
The anionic polymerization of MMA can be made in the presence of YCl3/lithium

amide of indoline/nBli (Ihara et al., 2007). Despite the interesting features of

anionic MMA—polydispersity index close to 1, and possibility to get block
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copolymers (Baskaran and Müller, 2007)—most of the industrial and medical

PMMA grades are obtained from radical polymerization (O’Brien, 2008; Powers

and Sakagushi, 2006).

The first step (initiation) corresponds to the creation of radicals by photo- or

thermochemical processes (see Schemes 7.1 and 7.2, respectively):

A1 heat or UV-A�

The free radicals break the CQC bonds of the monomers to form the first ele-

ments of the increasing polymer chain (Scheme 7.3). Then, during the propaga-

tion phase, polymers are formed by the successive addition of monomers

(Scheme 7.4).

The propagation reaction which corresponds to the opening of CQC double

bonds is, in essence, exothermic. The heat of polymerization is, thus, given by:

ΔHpolym 5ΔHC5C �ΔH C2Cð Þmonomer �ΔH C2Cð Þmonomer2monomer (7.2)

In PMMA, the hindering effect of acetyl groups make the third term quite low

compared to other polymers so that the heat of polymerization is lower than for
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Effect increasing minor monomers.
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other olefins (Roberts, 1950). However, the temperature in the bulk of a PMMA

made bone cement polymerizing at room temperature reach about 80�C
(Khandaker and Meng, 2015).

Finally, the termination phase closes the reaction by coupling two reactive

polymers, or a reactive polymer with a reactive monomer, resulting in the forma-

tion of a stable covalent bond (Scheme 7.5).

One of the most remarkable properties of PMMA is that it is soluble in its

monomer. In the applications of PMMA as bone cement, PMMA powder mixed

with an initator (benzoil peroxide) is hence mixed with a MMA monomer con-

taining N,N dimethyl p-toluidine (Asgharzadeh Shirazi et al., 2017). The PMMA

is, hence, dissolved in monomer which polymerizes to give a glassy solid.

7.3.1.2 Kinetic aspects
The polymerization mechanism of MMA can be represented in a simple way as

(Cardenas and O’Driscoll, 1976):

Initiation: I-2A� kd
A� 1M-A-M� ki

Propagation: A-Mi-M� 1M-A-Mi11-M� kp
Termination: A-Mi-M� 1A-Mj-M�-A-Mi1j12-A kt1

It is assumed that the termination rate constants for combination and chain

transfer to monomers are insignificant compared to the termination rate constant

for disproportionation. Under the assumption of classical chemical kinetics (stea-

dy state hypothesis on A�, and on the overall concentration in radical species

[R�]), it can be shown that:

d½AM��
dt

5 2kd A½ �2 kp AM
�½ � M�½ �2 kt M½ �� R�½ � (7.3)

d½R��
dt

5 2kd A½ �2 kt R
�½ �2 (7.4)

rpolymerization 52
d M½ �
dt

5
2kdkp A½ � M½ �

kt
(7.5)
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It can also be shown that the solution of those differential equations fairly rep-

resent the early stages of the polymerization reaction. Some values of kinetic

parameters are given in Table 7.1 (Begum et al., 2012).

During polymerization, the molar mass increases, which lowers the mobility

of radicals and the termination rate. At a certain stage, it results in observed auto-

acceleration (i.e., the “Thromsdorff effect”), as illustrated in Fig. 7.13. Cardenas

and O’Driscoll (1976) proposed to model autoacceleration by using a termination

rate constant for nonentangled growing chains and another for entangled ones.

Later, Simon and colleagues (Begum and Simon, 2011) proposed a more-refined

theory taking into account the role of free volume and its consequences on the

diffusion rate of radicals. These developments, however, are out of the scope of

this chapter.

The most interesting research deals with the copolymerization of several

chemically different monomers which is relevant with reactive mixtures presented

in Section 7.2.1.3. The theoretical treatment of copolymerization was proposed by

Mayo and Lewis (1944). To summarize, the growing chain can be terminated

either by an A or B site, which reacts either with a free A or B monomer:

Table 7.1 Approximate Values of Kinetic Parameters for Polymerization
(Initiation by AIBN)

kd s21 1015�exp(261,000/RT)
kp I mol21 s21 2.73 106�exp(210,600/RT)
kt I mol21 s21 108�exp(21400/RT)

FIGURE 7.13

Monomer conversion versus polymerization time.



---A� 1A - ---AA� kAA
---A� 1B - ---AB� kAB
---B� 1A - ---BA� kBA
---B� 1B - ---BB� kBB

The reactivity ratio kAA/kAB and kBA/kBB together with the composition of the

reactive mixture, thus, give a prediction of the polymer composition and micro-

structure (i.e., random, alternating, or block copolymer). This theory was not,

however, applied to methacrylates copolymers to the best of our knowledge.

7.3.2 POLYMERIZATION OF METHACRYLATE NETWORKS

7.3.2.1 Mechanistic aspects
Networks are used by using a tetrafunctional monomer (i.e., having two double

bonds) such as dimethacrylates presented in Section 7.2.1.2. The processes is

described in Scheme 7.6 for MMA:

This tetrafunctional behavior makes various kinds of intramolecular cycliza-

tion reactions possible together with intermolecular crosslinking as presented in

Schemes 7.7 and 7.8 (Elliott et al., 2001).
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Initiation step for network polymerization.



7.3.2.2 Polymerization kinetics
The polymerization of networks by radical polymerization is often divided into

four successive steps as schematized in Fig. 7.14 (Pascault et al. 2002a).

The first step (pregel step) corresponds to the consumption of inhibitors and

their reaction with monomers and the first propagations reaction.

The second step (“gel step”) corresponds to the appearance of the first insolu-

ble compounds. Growing chains react either with a monomer or by intramolecular

primary cyclization. It results in the formation of crosslinked compact molecules

very often called microgels, but better defined as crosslinked microparticles. The

gel point is defined by a conversion degree at 1% in theory, but is observed in

practice to be around 5% due to cyclizations. Despite the decrease in molecular

mobility due to the continuous growth of polymer chains. Monomers can still dif-

fuse and react at the periphery of the microgels in formation.

During the third step, the microgels connect to form macrogels which result in

an increase in viscosity, so that the mobility of the polymers and monomers is

reduced. At the end of this phase, the viscosity is so increased that termination

reactions involving macromolecular radicals are inhibited, leading to a sudden

autoacceleration of the polymerization rate.

The fourth step (“glassy step”) corresponds to the vitrification where polymeriza-

tion media turn to a glassy state, that is, that polymerization is frozen by lack of mac-

romolecular mobility which explains why the conversion never reaches 100%

(Dušek, 1996). The polymerization reaction can be completed only by an adequate

postcuring step at temperatures higher than the glass transition of the vitrified

network.

FIGURE 7.14

Kinetics aspects of network formation.



7.3.3 PARAMETERS INFLUENCING POLYMERIZATION

7.3.3.1 Intrinsic factors
Polymerization intrinsic factors depend essentially on the chemical composition

and method of manufacture of the composite:

1. The viscosity of monomers is an important parameter for the polymerization

kinetics and conversion of the dimethacrylate polymers by affecting the

mobility and the reactivity of the monomers (Barszczewska-Rybarek, 2009).

2. Fillers decrease the conversion by increasing the overall viscosity of the

composite and, locally, by reducing the mobility of the monomers around the

fillers. For example, adding 50% fillers leads to a strong increase in viscosity

(almost 30-times higher), but only a minor decrease in conversion degree

(about 63% vs 61%) (Papakonstantinou et al., 2013). Furthermore, fillers can

alter the photopolymerization by dispersing the photons superficially

(Leprince et al., 2013).

3. Higher concentrations of initiator increases the conversion degree.

Nevertheless, in the case of photopolymerization, when the initiator

concentration exceeds an optimum value, the conversion degree decreases due

to the excessive absorption of photons in the irradiated surface area and, thus,

a decrease in the photon transmission in depth (Musanje et al., 2009).

4. Optical properties affect the photon transmission and, therefore, influence the

conversion degree and the polymerization depth during photopolymerization.

The photon transmission will be reduced in an opaque composite with a

darker and more saturated hue, which increases the difference in degree of

polymerization between the surface and at depth (Musanje and Darvell, 2006;

Shortall et al., 1995). This is, for example, illustrated in (Aljabo et al., 2015)

where 40%-filled composites displayed a conversion degree of about 70% at

the surface versus c. 40% at a 4 mm depth.

7.3.3.2 Extrinsic factors
Temperature and pressure conditions influence polymerization. Higher tempera-

ture promotes molecular mobility. Higher pressure decreases molecular mobility

(Murli and Song, 2010), but paradoxically has some beneficial effects on the reac-

tivity (Schettino et al., 2008).

In the case of photopolymerization, the photon source affects the polymerization

by its emission spectrum, irradiation time, irradiation distance, and polymerization

protocol (Musanje et al., 2009). The effect of curing protocol on the main properties

(glass transition, modulus, conversion degree) is developed in Dewaele et al. (2009).

7.3.4 POLYMERIZATION SHRINKAGE AND ITS CONSEQUENCES

The polymerization shrinkage of dental resins composite is inherent to polymeriza-

tion reactions. This is due to the replacement of the Van der Waals bonds between



the monomers by covalent bonds and a decrease in the free volume (Kleverlaan

and Feilzer, 2005). The shrinkage is about 1.5%�5% by volume (Floyd and

Dickens, 2006; Ferracane, 2005) and depends on the concentration of the CQC of

the monomers, the volume fraction of the composite, and the conversion degree.

The polymerization shrinkage is associated with stresses at the interface

between the dental tissues and the composite restoration, and induces:

• Stresses on dental structures with fracture risks in enamel and dentine

(Ferracane, 2005; Park and Ferracane, 2006).

• Stresses at the joint between the restorative material and the dental tissues

resulting in leakage and postoperative sensitivities, marginal discolorations,

bacterial contamination, and secondary caries.

This polymerization shrinkage also provokes contraction in the composite

resin inducing internal stresses in the material (Ferracane, 2005).

7.4 PHYSICOCHEMICAL, BIOLOGICAL AND MECHANICAL
PROPERTIES

7.4.1 STRUCTURE�PROPERTIES RELATIONSHIPS AND LINK WITH
CLINICAL APPLICATIONS

7.4.1.1 Glass transition temperature and other transitions
The commonality of polymethacrylates obtained by radical polymerization is that

they are amorphous materials. The main transition is the glass transition Tg sepa-

rating the glassy and the rubbery regimes.

1. The glass transition of linear polymer (here PMMA) increases with molar

mass, as described by the Fox-Flory’s equation (Fox and Flory, 1950):

Tg 5 TgN 2
KFF

Mn

(7.6)

Some values of TgN and K are given for PMMA in Table 7.2.

Table 7.2 Flox-Flory Parameters for PMMA (Cardenas and
O’Driscoll, 1976; Lu and Jiang, 1991)

TgN (K) KFF (K kg mol21)

a-PMMA 387 2.105

a-PMMA 388 21.104

i-PMMA 318 11.104

s-PMMA 405 20.104



2. The glass transition of thermoset networks increases with crosslinking density

as, for example, illustrated in polymethylmecrylate networks crosslinked with

ethylene glycol methacrylate (Gilormini et al., 2017) or other tetrafunctional

acrylates (Loshaek, 1955).

The most general equation linking Tg increase with the conversion degree of

monomer was proposed by Pascault and Di Benedetto (Pascault and Williams,

1990):

Tg 2Tg0

TgN 2Tg0
5

λx
12 12λð Þx (7.7)

where subscripts “0” and “N” correspond to totally unreacted and totally reacted

materials, λ is the ratio of heat capacity jump a Tg of cured and uncured materials

ΔCpN/ΔCp0.

The glass transition of a fully cured network (TgN) is given by DiMarzio’s

equation (DiMarzio, 1964):

TgN 5
Tgl

12 KDMFn0ð Þ (7.8)

where KDM is the DiMarzio’s constant equal to 2.91 for tridimensional networks

such as epoxies (Bellenger et al., 1987), n0 is the crosslink density (mol kg21)5
2/Mm if network is fully cured (Mm is the mass of monomer), Tgl is the glass tran-

sition of a “virtual” linear polymer (n05 0), F is the flex parameter (kg mol21)

related to the molar mass per rotatable bond.

The calculation of parameters of DiMarzio’s law is illustrated in Bellenger

et al. (1987) and Ernault et al. (2017). Some results are given in Table 7.3. In the

case of UDMA, a good agreement is found with values obtained for materials

being almost fully cured (Chi Phan et al., 2015).

However, Eqs. (7.7)�(7.8) show that Tg decreases dramatically if networks

are not totally crosslinked, which is very often the case in networks cured at room

temperature in dentistry. This is, for example, illustrated in the case of photocured

Bis-GMA-TEGDMA (Table 7.4) (Stansbury, 2012).

The consequences of undercuring on mechanical properties at room tempera-

ture are illustrated, for example, by Ferracane et al. (1998). The main results are

summarized in Table 7.5.

Table 7.3 Theoretical Maximum Glass Transition Temperature of Fully
Cured Methacrylate Networks Used for Dental Applications

Tgl (K) F (g mol21) n0 (mol g21) TgN (K)

BisGMA 327.4 18.3 0.0039 413.2
UDMA 320.6 15.4 0.00425 399
BisEMA 320.7 17.2 0.0037 394
TEGDMA 268.4 14.7 0.00699 382.9



β transition corresponds to the activation of local mobility involving the group

of atoms belonging to a monomer. It usually corresponds to a decrease in modu-

lus: ΔEβ5 1300 MPa. In the case of PMMA, a relative jump of 20% compared

to “modulus at 0 K” (i.e., deduced from Eqs. 7.9�7.11) is reported (Gilbert et al.,

1986). This transition is, however, not documented, to the best of our knowledge,

for dental composites.

7.4.1.2 Short deformation properties
Typical stress�strain curves of PMMA at several temperatures and strain rates

are schematized in Fig. 7.15 (Moy et al., 2011).

In dimethacrylate networks (Foroutan et al., 2011), stress�strain curves usually

do not display any “hook” typical of a plastic deformation, which is why they are

quite often characterized by their values of elastic modulus and ultimate strength.

The elastic behavior of a polymer originates from its cohesive energy which

continuously decreases due to the thermal expansion increasing the interchain dis-

tance, and the activation of motions decreasing elastic modulus by ΔEi at some

given temperatures (e.g., β or γ transitions) (Gilbert et al., 1986):

E5E0� 12α� T
Tg

� �
2

X
ΔEi (7.9)

According to the linear elasticity theory, Young’s (E), bulk (K), and shear (G)

modulus values at any temperature are interrelated by Eqs. (7.10)�(7.11):

E5 3UKUð12 2vÞ (7.10)

E5 2ð11 vÞUG (7.11)

where v is the Poisson’s ratio (see later).

Table 7.4 Characteristics of Photocured Bis-GMA-TEGDMA Networks

Curing time (s) 25 45 60 15
Conversion degree (%) 36.3 47.5 55.1 68.3
Approximative Tg (�C) 15 25 50 90

Table 7.5 Effect of Curing Degree in a Bis-GMA-TEGDMA (50/50) Matrix
Reinforced with 62% Fillers

Conversion
Degree (%) E (GPa)

KIC

(MPa m1/2) σf (MPa)
Hardness
(kg mm22)

55 6.38 1.29 88.7 63.5
60 8.94 1.61 109.2 73.2
61 10.35 1.79 115.2 77.0
64 11.41 1.89 117.1 86.3
66 14.27 2.19 155.4 93.4



Their subglassy values K0 and E0 at very low temperature are shown to be

correlated the cohesive energy density (CED) according to the formula (Pascault

et al., 2002b):

K0B11UCED (7.12)

CED5
Ecoh

Vm

(7.13)

where Ecoh is the cohesive energy (J mol21), Vm is the molar volume

(cm3 mol21), CED is the density of cohesive energy (MPa1/2).

Ecoh and Vm can be calculated according to the incremental method based on

additive group’s contribution proposed by Van Krevelen and Te Nijenhuis (2009),

as shown in Table 7.6. If the Poisson’s ratio is on the order of 0.3�0.4 (see later),

the Young modulus of the matrix is, thus, expected to be close to 5 GPa.

However, experimental values are usually below these maximum values for

several reasons, two of these being:

• Firstly, the undercured characteristics of the networks. A good example of

modulus increase with conversion degree is given in Stansbury (2012) (see

FIGURE 7.15

Typical stress�strain curves in PMMA.

Table 7.6 Estimation of Cohesive Energy and Compression Modulus

Ecoh (J mol21) Vm (cm3 cm21) CED (MPa) K (GPa)

TEGDMA 89,640 184.9 485 5.3
UDMA 169,530 342.9 494 5.4
Bis-GMA 225,930 339.4 666 7.3
Bis-EMA 185,930 393.4 473 5.2
PMMA 33,830 81.9 413 4.5



also Table 7.5). The gelation is observed at a conversion degree about 7% at

which materials are a visco-elastic solid having an elastic modulus c. 100 Pa.

When the conversion degree reaches c. 20%, the modulus is close to 10 MPa.

It exceeds 100 MPa when the conversion degree is more than 0.5.

• Secondly, the existence of several thermomechanical transitions increasing the

mobility of groups, monomers, and later units made of several monomers

(e.g., the β transition presented in Section 7.4.1.1 and decreasing, step-by-step,

the modulus.

At room temperature, that is, presumably in the subglassy domain (between Tβ
and Tg), Young’s modulus values are, thus, on the order of 1 GPa for some light-

cured unfilled dimethacrylates (Sideridou et al., 2003; Bindu et al., 2013).

In the case of highly filled commercial materials, several equations describe the

effect of fillers on mechanical properties (Atai et al., 2012). One of the most well-

known is the Halpin-Tsai equation in the case of spherical fillers (Pal, 2005):

Er 5 11
5

2
�φ�

2 Ed

Em

� �
2 2

2 Ed

Em

� �
1 3

2
4

3
5 (7.14)

Despite the modulus of “pure” fully cured matrix is in the order of 5 GPa (see

Table 7.7), it is not surprising that the elastic modulus of commercial dental materi-

als increases linearly with filler content (see, e.g., Masouras et al., 2008) and can

reach values c. 10 GPa (Ferracane et al., 1998; Papadogiannis et al., 2015; Jager

et al., 2016b). It can be observed that the filler ratio influences the viscosity of the

reactive mixture and later its conversion degree (see Fig. 7.10 and Ferracane et al.,

1998) so that predicting the value of composites modulus remains intricate.

Experimentally, as illustrated in the case of PMMA (Mott et al., 2008), the

modulus at very low temperatures can be estimated from ultrasonic measurements

from a relationship between the longitudinal and the shear wave velocities (VL

and VT) of the sample immersed in water and the density:

VL 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eu

ρ
� 12 νu
ð11 νuÞð12 2νuÞ

s
(7.15)

VT 5

ffiffiffiffiffiffi
Gu

ρ

s
(7.16)

Table 7.7 Poisson’s Ratio of Polymethacrylates Used for Dental Applications

Resin Filler Poisson’s Ratio

BisGMA1 TEGDMA 40% Colloidal silica 0.01�0.09 μm 0.372
BisGMA1 TEGDMA 66% Zircone1 silica 0.01�3.5 μm 0.302
BisGMA1UDMA1BisEMA 60% Zircone1 silica 0.01�3.5 μm 0.308
BisGMA1 TEGDMA 47% Zircone1 silica 0.01�6 μm 0.393



The Poisson’s ratio (ν) in a composite can also be estimated from the volume

fraction of fillers (φ), the Poisson’s ratio of matrix, and filler νm and νf (Halpin
and Kardos, 1976):

ν5 12φð Þ�νm 1φ�νf (7.17)

Its value for matrices (0.3�0.35) increases at about 0.5 when T reaches Tg, that

is, when the polymer turns from a glassy to rubbery state at which it is incompress-

ible (Mott et al., 2008). In the case of filled dental composites (Chunga et al.,

2004), values ranging from 0.3 to 0.4 are recorded at room temperature

(Table 7.7).

Higher values are observed for commercial composites. According to several

authors, hardness and elastic modulus are well-correlated (Thomaidis et al., 2013;

Pal, 2005). Li et al. (2009a) propose, for example, a linear correlation:

EB0:153Knoop Microhardness (7.18)

E being expressed here in GPa. The positive effect of curing on the micro-

hardness is illustrated in Haenel et al. (2015) whereas Li et al (Atai et al., 2012)

also show a decrease in hardness with polymer thickness.

Ultimate flexural strength has to display a value at least equal to 50 MPa for

clinical requirements (as mentioned in Bindu et al., 2013). Typical values for den-

tal composites are given in Table 7.8 (see Barszczewska-Rybarek, 2009).

According to Eyring’s theory, plasticity originates in the jump of segments.

This phenomenon is thermally activated (with a ΔH energy corresponding to the

potential barrier) and facilitated by the activation volume vflow and the external

stress σ. The yield stress σY is, thus, linked to the strain rate _γ:

σy

2
5

ΔH

vflow
2

kT

vflow
Uln _γ0 _γ

� �
(7.19)

This equation is close to the experimental observations by Kambour, accord-

ing to which:

σY 5CU Tg 2T
� �

1σY0 (7.20)

Table 7.8 Flexural Strength, Elastic Modulus, and Brinell Hardness for Some
Unfilled Polymethacrylates Used for Dental Applications (Barszczewska-
Rybarek, 2009)

Resin σf (MPa) E (MPa) HB (N mm22)

Poly(bis GMA) 115 3800 75
Poly(TEGDMA) 85 3900 135
Poly(UDMA) 140 3500 165
Poly(bisGMA-co-TEGDMA) 95 4100 90
Poly(bisGMA-co-TEGDMA-co-UDMA) 105 2800 190



C ranges from 0.5 to 1 MPa K21 (Cooke et al., 1998; Li and Strachan, 2011).

A decrease in glass transition, thus, results in a decrease in yield stress.

At temperatures above the glass transition, thermoset networks are in a rubbery

state. Elastic behavior is given by the Flory approach according to which the

Young’s modulus is proportional to the concentration in elastically active chains n0
(Mark, 1984):

E5
3ρRT
MC

5 3�n0RT (7.21)

where ρ is the density, MC the average molar mass between crosslinks, R the gas

constant, and T the absolute temperature. Values of rubbery modulus (measured

at 175�C) of several bis-GMA1HEMA networks close to 25 MPa are given in

Park et al. (2009). This means that the average molar mass between crosslink

nodes is c. 400�500 g mol21 (i.e., n0 c. 2 mol kg21). This is the expected order

of magnitude in these materials (see Table 7.3) since the HEMA comonomer con-

tributes to an increase of the molar mass between crosslinks.

The correlation between rubbery modulus and conversion degree is illustrated

in the case UDMA by Sadoun and colleagues (Chi Phan et al., 2015). Identically

to glassy modulus, it increases with filler content (Munhoz et al., 2017) as

described by Guth (1945):

E5E0:ð11 2:5φ1 14:1φ2Þ (7.22)

where 14.13φ2 expresses the filler�filler interaction effect on elasticity and is

particularly relevant for highly filled matrices such as dental composites.

Even if Young’s modulus on the rubbery plateau is not itself helpful data for

practitioners, it is noteworthy that it allows an estimation of the concentration in

elastically active chains, expected to decrease during hydrolytic degradation (see

Section 7.5.3).

7.4.1.3 Ultimate properties
The toughness expresses the ability of a material to absorb energy and plastically

deform without fracturing. According to the Griffith’s equation, the stress inten-

sity factor in an infinite plate with a crack of 2a length is:

KI 5 yUσUða:πÞ1=2 (7.23)

that is, that sample fails either if the stress σ, or the size of the crack a, exceed a

critical value.

PMMA toughness can be easily studied using a common tensile test sample.

In the case of dental composites, various methods are proposed, for example,

using notched disks (Watanabe et al., 2008) allowing to study failure in mode I or

II. The values of toughness are shown to depend on the load rate, but stay close

to 1.5 MPa m1/2 (Wada, 1992). These values are actually very close to unrein-

forced poly(UDMA) (Phan et al., 2014) and, more unexpectedly, in filler rein-

forced composites (Atai et al., 2012; Guth, 1945; Ornaghi et al., 2014).



Reversely, the toughness can reach about 2.5 MPa m1/2 for resins reinforced with

7.5% short glass fibers (Bocalon et al., 2016). The presence of rubbery fillers has

a positive effect on toughness (Mante et al., 2010; Omran Alhareb et al., 2017).

The impact strength is typically measured using a Charpy impact test on

notched or unnotched samples. The typical value for PMMA is about 5 kJ m22

with possible improvements by reinforcing with various kinds of rubbery particles

(NBR (Omran Alhareb et al., 2017) or poly(methyl methacrylate-b-butyl acrylate-

b-methyl methacrylate) (MAM) (Lalande et al., 2006). In unfilled poly(UDMA),

poly(Bis-GMA), poly(TEGDMA), and their mixtures the value is higher and can

reach c. 9 kJ m22 (Barszczewska-Rybarek, 2009).

Lastly, it is noteworthy that the combined effect of fillers and low monomer

viscosity lead to porosities (Balthazard et al., 2014) which are quite detrimental to

the ultimate mechanical properties. It must also be highlighted that the difference

between the thermal coefficient dilatation of the polymer filler induces stresses at

the polymer/filler interface (Ferracane, 2005) which becomes an area of weakness

where a crack will easily propagate and reduces the toughness of the material.

7.4.2 BIOCOMPATIBILITY

The biocompatibility of dental resins may affect both the patient and the dentist.

In the case of samples immersed in water, it can be observed that a part of the

mass is lost presumably because of the migration of low molecular mass com-

pounds (Sideridou and Karabela, 2011).

Those phenomena are usually quantified by measuring the soluble fraction,

being the relative mass decrease of a composite resin before immersion and after

immersion and complete drying. If the results clearly depend on the curing pro-

cess, it seems that this soluble part can represent from 0.1% to 1% by weight of

the polymer mass in common light-cured dimethacrylate matrices (Rüttermann

et al., 2010; Sideridou et al., 2003). This quantity can even be higher if low

molecular mass compounds produced from the partial hydrolytic or enzymatic

degradation of networks, which will be addressed in the following of this chapter.

As expected with uncompletely cured networks, a great part of soluble (eluted

from resins) compounds contains unreacted monomers and photoinitiators

(Munhoz et al., 2017; Ferracane, 2006). The migration of a chemical out of a

polymer is, in great part, controlled by its molar mass (expressing the architec-

ture) of compounds so that it is quite likely that dimers or trimers diffusion is

slow enough to be neglected in the first approach.

Quite interestingly, it was observed that the fraction of UDMA and Bis-GMA

extracted from UDMA-TEGDMA or Bis-GMA/TEGDMA was systematically

higher than their fraction in the polymerization mixture. Since their higher molar

mass makes them less mobile than TEGDMA monomers, this suggests that Bis-

GMA and UDMA are not randomly polymerized with TEGDMA (Floyd and

Dickens, 2006) (see Section 7.3.1.2).



The toxicity of several kinds of chemicals involved in the formation of dental

composites was addressed by Thonemann et al. (2002). According to TC50 mea-

surements performed on several kinds of cells, Bis-GMA seems by far to display

the highest cytotoxicity compared to UDMA and MMA.

Wear debris are produced from attrition and abrasion of resin composite dental

restorations (Heintze, 2006). Ingestion of filler particles could result in potential

harm to the liver, kidney, or intestine (Gatti and Rivasi, 2002; Gatti, 2004).

Nevertheless there is no scientific evidence that swallowed particles induce a sig-

nificant health risk for patients (Heintze, 2006).

Besides this, polishing, shaping, and grinding composites result in particle

dust (,5 μm particles including nanoparticles ,100 nm) which can be inhaled

and penetrate the lungs (Van Landuyt et al., 2012), provoking cell toxicity in

human bronchial epithelial cells (Cokic et al., 2016)—for exposure under rela-

tively high particle concentrations compared to standard use.

The fiber-reinforced composites were recently introduced and seem to offer a

good combination of reinforcement of mechanical properties and low toxicity

(Ballo and Närhi, 2017).

7.5 LONG-TERM BEHAVIOR
Let us recall that there are two kinds of ageing phenomena:

• Physical ageing, where the polymer backbone remains unmodified, whereas

the free volume is changed by physical relaxation, the ingress of an external

penetrant, or the loss of an adjuvant (typically a plasticizer).

• Chemical ageing where the polymer backbone or its lateral groups undergo

chain scissions or crosslinking induced by any kind of chemical reaction.

In the specific case of polymeric dental materials, the main mechanisms were

listed by Ferracane (2006). The most relevant ones for acrylates will be addressed

next.

7.5.1 AGING BY PHYSICAL RELAXATION

This kind of mechanism is common to every glassy polymer. When cooled from

elevated temperatures, the specific volume decreases, but the decrease rate is

below the Tg of the polymer. Lower than this temperature, the polymer can be

considered as in an “out-of-equilibrium” state. The primary thermodynamic prop-

erties (volume, enthalpy, etc.) decreases slowly during the storage at an ageing

temperature (Ta) lower than Tg (Fig. 7.16).

Meanwhile, the necessary enthalpy for initiating rubbery phase motions is

increased when reheating above Tg, generating the enthalpy overshoot commonly



observed by DSC (Diaz-Calleja et al., 1987) and a slight increase of Tg toward a

“fictive temperature” (Tf) given by:

Tf 5Tg 2
Δh

ΔcP
(7.24)

The enthalpy overshoot tends toward an asymptotical value given by:

ΔhN 5ΔcPU Tg � Ta
� �

(7.25)

where ΔcP5 cPl�cPg is the heat capacity jump at Tg, and Ta is the temperature at

which physical ageing occurs.

From a practical point of view, the distance to equilibrium increases with

decreasing temperature, but the rate decreases very strongly when temperature

decreases, so that this ageing mechanism is typically significant in the tempera-

ture range [Tg; Tg2 60�C] (Pethrick and Davis, 1998).

Physical ageing is described by a distribution of relaxation times:

φ tð Þ5 exp 2
t

τ

� �β
	 


(7.26)

The function seems to depend on the experimental technique (e.g., dynamic

modulus, dilatometry, calorimetry) used for measuring (Pérez et al., 1991).

τ is the relaxation time that can be predicted by two models (Hodge, 1994):

1. Tool�Narayanaswamy�Moynihan model predicts the relaxation time from

the value of “fictive” temperature (Narayanaswamy, 1971):

τ5 τ0�exp
xΔh

�

RT
1

12 xð ÞΔh
�

R:Tf

	 

(7.27)

2. Kovacs�Aklonis�Hutchinson�Ramos (KAHR) (Grassia and Simon, 2012;

Grassia and D’Amore, 2011):

τ5 τR�exp θ� TR 2Tð Þ½ ��exp 2 12 xð Þ� θ�δ
Δη

	 

(7.28)
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FIGURE 7.16

Mechanism of physical relaxation ageing. Tg is the glass transition temperature, Tβ the

highest temperature of subglassy transition, and v is the specific volume (Struik, 1978).



where τR is the relaxation time at the reference temperature TR, θ is linked to

activation energy, x is an adjustable parameter ranging from 0 to 1, η is parame-

ter specific to the value under study (i.e., depending on heat capacity [cP] for

enthalpic relaxation, dilatation coefficient α for volumetric relaxation).

The full description of these models is out of the scope of this chapter.

Since ageing by physical relaxation results in a decrease of free volume quan-

tity, all physical and mechanical properties related to free volume are changed,

for example:

• Yield stress is increased, possibly because the activation volume vflow (see

Eyring’s equation) is linked to the residual free volume.

• Creep resistance (Hutchinson and Bucknall, 1980)

• Toughness (Arnold, 1995),

• Loss tangent is decreased in the domain of the subglassy transition (c. 320K in

the case of PMMA) (Diaz-Calleja et al., 1987; Etienne et al., 2007) (see

Fig. 7.17).

A final consequence is worth being investigated. It seems clear that physical

ageing relaxation induces free volume collapse, i.e., a decrease in the size of

nanovoids present in the polymer (Pethrick and Davis, 1998) with possible conse-

quences on the water ingress in the composite.

7.5.2 HUMID AGEING

The penetration of water is an environmental factor that can drastically limit the

performance of polymers. Two subcases can be distinguished:

• Water diffuses into the polymer, but does not change the polymer’s

architecture.

• Water diffuses and reacts with the polymer, generating scission of lateral or

skeletal bonds (Section 7.5.3).

7.5.2.1 Water solubility
The mechanism of the polymer�water interaction can be, firstly, described by the

shape of the sorption isotherm where the ratio of water in the polymer�water

mixture is plotted by the function of water activity (or partial pressure), as illus-

trated in Fig. 7.18.

Several shapes of sorption isotherms are described for the sorption of gases

into polymers. In the case of water penetration, three main cases exist:

1. Henry’s law is the simplest theory for water dissolution. It is associated to a

very dilute solution behavior in which dissolved water molecules are few and

far between. It assumes that maximum (equilibrium) water uptake is directly

proportional to the external water partial pressure:

C5 sUP (7.29)



where C is solubility expressed, for example, in cc(STP)/cc(polymer).

s is the solubility coefficient (expressed in mol L21 Pa21) expected to

obey Van’t Hoff law:

s Tð Þ5 s0�exp 2
ΔHS

RT

� �
(7.30)

P is the water partial pressure (expressed in Pa) obeying Clapeyron’s law:

P Tð Þ5P0�exp 2
ΔHvap

RT

� �
(7.31)
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The effect of physical ageing on PMMA at 363 K after thermal annealing on: (A) loss

factor; and (B) specific heat.

Reused with permission of Elsevier.



The apparent activation energy for water equilibrium concentration is,

thus, given by:

ES 52ΔHS �ΔHvap (7.32)

ΔHvap is close to 43 kJ mol21.

In PMMA, ΔHS B 243 kJ mol21 so that water uptake does not depend

on temperature as in the first approach (Barrie and Machin, 1971).

2. An isotherm which is linear at low activity and displays an upturn at higher

water pressures (such as B isotherm in Fig. 7.18) is associated to a type III

isotherm in the BET classification and is sometimes called a Flory Huggins

isotherm. This upturn has two explanations:

a. Due to clustering of solvent molecules.

b. Due to plasticization of the polymer matrix induced by solvent sorption.

The mathematical description of Flory Huggins isotherms is given by:

ln P=P0 5 lnð12φpÞ1φp 1χφ2
p (7.33)

where φp is the volume fraction of the polymer in the water�polymer mixture.

is the Flory parameter describing the polymer�water affinity, expressed by:

χ5
Vmwater

RT
� δpolymer2δwater
� �2

(7.34)

where Vmwater is the molar volume of water, δpolymer, and δwater are, respec-
tively, the solubility parameters of polymer and water, R the ideal gas constant

and T the absolute temperature.

In the case of PMMA-water association, both solubility parameters are

known: δPMMA 5 19.0 MPa1/2 and δwater 5 47.9 MPa1/2. However, the

resulting χ parameter seems to be an overestimation (5.91 at 35�C) compared

to the value deduced from sorption isotherms (3.48). One possible explanation

FIGURE 7.18

Shape of sorption isotherms in polymers.



is that this estimation of χ from the solubility parameter values is not refined

enough for taking into account the various kinds of interactions (e.g.,

dispersive, dipole-dipole, hydrogens, etc.).

Another explanation is the presence of water clusters, which can be

observed by dielectric measurements at high water uptake (Garden and

Pethrick, 2017). The clustering function was defined by Zimm and Lundberg

(1956) as:

fZL 5
G11

ν1
52 12φ1

� �� @a1=φ1

@a1

	 

T ;P

2 1 (7.35)

When fZL is below a value of �1, no clustering occurs. Means cluster size

(MCS) is given by:

MCS5 11φ1UG11=v11 (7.36)

It was, hence, shown (Davis and Elabd, 2013) that water molecules

associate to form “dimers” when water external partial pressure (or activity)

exceeds 0.2, which is typically the case when PMMA is immerged in water.

3. The Langmuir isotherm describes the equilibrium between the absorption (rate

constant k1) and desorption (rate constant5 k21) of molecules on a surface;

the rate being propositional to water external partial pressure (P) and the

concentration of sorbed water (c), as described by:

k1UPU 1 � cð Þ5 k21Uc (7.37)

which can be reformulated under the general form:

c5
A�p

11B�p (7.38)

In some cases, the sorption of a penetrant can be modeled by the dual sorption

theory, which is the combination of Henry and Langmuir sorptions:

c5 s�p1 A�p
11B�p (7.39)

Some cases corresponding to this dual sorption mode are presented in Vieth

et al. (1976).

There are several values for water-uptake in methacrylates immerged in water

(Sideridou et al., 2003, 2008; Delpino Gonzales et al., 2016; Smith and Schmitz,

1988). Some of these are provided in Table 7.9.

The water affinity of a given polymer can be expressed as the number of water

molecules absorbed per monomeric unit (Morel et al., 1985):

H5
wm�M
1800

5
X

niHi (7.40)

where M is the molar mass of the repetitive unit, ni is the number of groups able

to bind with Hi molecules of water.



Hi can be estimated from several polymers or chemicals (ideally with only

one kind of functional group). For example, data for PMMA (Table 7.8) suggest

Hester B 0.1. However, this simple theory can fail for several reasons:

• The contribution of hydroxyl group (HOH) might be weaker than in linear

polymers such as PVOH because of the possibility of intramolecular hydrogen

bonds (Kalachandra and Kusy, 1991) as observed when OH are hydrogen-

bonded with heteroatoms (nitrogen atoms at the crosslink node for epoxy/

diamine networks (Morel et al., 1985), oxygen for Bis-GMA.

• Water can have a very specific interaction with other water molecules

(clustering).

• This simple theory considers the presence of polar and apolar groups, but not

their molecular arrangements and the subsequent possibility to create

“complexes” with water molecules.

Lastly, Kerby et al. (2009) also observed that the water uptake value is corre-

lated with water contact angle: hydrophilic samples display a lower contact angle

than hydrophobic ones.

7.5.2.2 Water diffusion
The diffusion of water in a polymer is expected to be described by the second

Fick’s law, provided that diffusivity does not depend on the water concentration:

@c

@t
5Dw�

@2c

@r2
(7.41)

This equation was solved analytically by Crank (1975), for example, in the

case of an “infinite” plate having a 2e thickness:

m tð Þ2m0

mN 2m0

5 12
8

π2
∙
XN
n50

1

ð2n11Þ2 ∙exp 2
D∙ 2n11ð Þ2∙π2∙t

4e2

� �
(7.42)

It is easy to verify that Eq. (7.42) describes fairly the sorption curves dis-

played in Fig. 7.19A. Increasing the number of terms of the index n allows a bet-

ter description of the curve in the earliest sorption times.

Table 7.9 Water Equilibrium Mass Uptake in Several Methacrylate Polymers

w/w Reference

PMMA 23�C 1.90% Smith and Schmitz (1988)
BisGMA 37�C 3.57%�3.86% Sideridou et al. (2008)
TEGDMA 37�C 5.74%26.25% Sideridou et al. (2008)
UDMA 37�C 2.39%�3.10% Sideridou et al. (2008)
BisEMA 37�C 1.92%�2.11% Sideridou et al. (2008)
D3MA 37�C 0.65%�0.66% Sideridou et al. (2008)



This equation can be simplified into:

• at low penetrant uptake (m/mN, 0,6):

ΔmðtÞ
ΔmN

5
4

e
∙

ffiffiffiffiffiffiffi
D∙t
π

r
(7.43)

• at high penetrant uptake:

ΔmðtÞ
ΔmN

5 12
8

π2
∙exp 2

Dπ2

e2
t

� �
(7.44)

In other words, if mass uptake varies linearly with the square root of time

at low mass uptake values, it means that diffusion obeys Fick’s law. The

initial slope can, thus, be used to estimate the apparent diffusivity. It seems

that the water diffusion into methacrylate-based polymers obeys Fick’s law

(Sideridou and Karabela, 2011; Barrie and Machin, 1971; Dhanpal et al., 2009;

FIGURE 7.19

The general shape of mass uptake in a polymer in the presence of water in the case of a:

(A) Fick Diffusion model; and (B) Langmuir diffusion model.



Sideridou et al., 2004). Some values are given in Table 7.10 that show differences

between experiments performed in sorption mode compared to desorption mode

(Sideridou and Karabela, 2011; Dhanpal et al., 2009; Sideridou et al., 2004).

Since samples actually differ from infinite plates (length [L] and width [l] are

finite values), Shen and Springer (1976) proposed a correction for taking into

account the geometry of samples:

Dréel 5
Dapp

11 2e
L
1 2e

l

� �2 (7.45)

D is expected to obey to Arrhenius law:

D Tð Þ5D0:exp 2
ED

RT

� �
(7.46)

In PMMA, ED would be on the order of 45 kJ mol21 (Barrie and Machin, 1971),

which seems to be quite common with other values reported for amorphous polymers

in their glassy state (Li et al., 2009b). Values slightly lower (30�35 kJ mol21) are

observed in some matrices of dental composites (Dhanpal et al., 2009).

In some cases, the sorption curves display two plateaus which are attributed to

the existence of polymeric sites inducing strong interactions with water mole-

cules. Water molecules present in the polymer matrix divide into two parts:

• Free water which diffuses.

• Bound water being in strong interaction with some specific sites of the

polymer.

This Langmuir-type diffusion was mathematically described by Carter and

Kibler (1979) by denoting:

• n(t) the concentration in “free” water.

• N(t) the concentration in “bound” water.

Table 7.10 Values of Diffusion Coefficient in Several Resins (Sideridou and
Karabela, 2011; Barrie and Machin, 1971)

T (K) D (cm2 s21) Reference

PMMA 313.7 5.23 1028 Barrie and Machin (1971)
323.4 8.93 1028 Barrie and Machin (1971)
333 1.53 1027 Barrie and Machin (1971)
343.2 2.43 1027 Barrie and Machin (1971)

BisGMA 310 1.13 1027 Sideridou and Karabela (2011)
BisEMA 310 0.743 1027 Sideridou and Karabela (2011)
UDMA 310 0.693 1027 Sideridou and Karabela (2011)
TEGDMA 310 0.153 1027 Sideridou and Karabela (2011)
D3MA 310 0.623 1027 Sideridou and Karabela (2011)



• γ the probability that “free” water becomes “bound” water.

• β the probability that “bound” water becomes “free” water.

The equilibrium is described by:

γUnN 5 βUNN (7.47)

The system is described via a system of differential equations:

@n

@t
1

@N

@t
5D� @

2n

@x2
(7.48)

@N

@t
5 γn2 βN (7.49)

By denoting:

κ5
π2D

ð2eÞ2 (7.50)

Its solution can be approximated:

• at short absorption times:

NðtÞ
N

5
4

π3=2
� β

β1 γ

� �
� ffiffiffiffiffi

κt
p

(7.51)

• at high absorption times:

NðtÞ
N

5 12
γ

β1 γ
�exp 2 βtð Þ (7.52)

The “pseudo plateau” value can be approximated by:

Npseudo equilibre

N
5

β
β1 γ

(7.53)

However, such a process has not been reported, to the best of our knowledge,

for the case of any methacrylate-based materials.

The rate at which water diffuses is influenced by the penetrant architecture

and polymer free volume, as proposed by Cohen and Turnbull (1959):

D5D0Uexp 2b=Vf

� �
(7.54)

where, b is related to penetrant size and Vf to polymer “empty” space allowing

penetrant jumps.

“Free volume” theory is, for example, well-illustrated in the case of epoxy net-

works when correlating the measured value of diffusivity (determined from the

classical gravimetric method) with the volume of nanoholes (expected to be linked

to free volume) (Frank and Wiggins, 2013). In the case of methacrylate-based poly-

mers, it was observed that the diffusivity values in networks-based tetrafunctional

methacrylates was lower than in analogous methacrylates, presumably because of

the highly crosslinked nature of the networks and the lower free-volume content

(Kalachandra and Kusy, 1991).



Theories linking diffusivity with the capability of polymer segments to facili-

tate diffusion are also illustrated in polymers having a subglassy transition (also

named β transition) where Halary observed a good correlation between the occur-

rence of this transition and the diffusivity of water (Halary, 2000).

It seems, also, that the ageing by physical relaxation (see Section 7.5.1) can

influence the overall-water ageing process, since the decrease in free volume is

accompanied by an overall lower penetration of water, as illustrated by Siu-Wai

Kong (1986) in the case of epoxies resins.

Contrarily to theories considering diffusion being mainly influenced by the

amount of free volume, Verdu and colleagues (Merdas et al., 2002) observed that

for a family of epoxy resins, diffusivity was inversely correlated with solubility.

Since this later mainly originated from polar groups (such as isopropanol in

epoxies) inducing a strong interaction with water, they suggested that these later

decrease the diffusivity. The following mechanism was proposed:

[P1. . .W]-P11W Dissociation of water/polymer complex
W - Jump of a water molecule from P1 to P2

W1P2-[P2. . .W] Formation of a new water/polymer complex

This theory is verified in part by Dhanpal et al. (2009) for some dental compo-

sites, where the differences are few.

7.5.2.3 Consequences of physical ageing on mechanical properties
Water is a small molecule characterized by a low Tg (Tg5 136K for water; Angell

et al., 1978). It is, thus, not surprising that the main consequence of water penetra-

tion in acrylate polymers is a decrease of glass transition temperature (Smith and

Schmitz, 1988), which can be tentatively described by several models, such as:

1. The DiMarzio’s equation is the simplest law for describing the Tg depletion

for a polymer in presence of a plasticizer:

1

Tg
5

w1

Tg1
1

w2

Tg2
(7.55)

2. A thermodynamic theory was proposed by Couchmann and Karasz (ten

Brinke et al., 1983):

lnTg 5
w1�ΔCp1�lnTg1 1w2�ΔCp2�lnTg2

w1�ΔCp1 1w2�ΔCp2

(7.56)

where ΔCp is change of heat capacity at Tg for each component of the mixture

equal to ΔCP1 5 1.94 J (g K)21 for PMMA and ΔCP2 5 0.318 J (g K)21 for

water.

3. Ellis and Karasz (1984):

Tg 5
w1�ΔCp1�Tg1 1w2�ΔCp2�Tg2

w1�ΔCp1 1w2�ΔCp2

(7.57)



4. Kelley and Bueche (1961):

Tg 5
Δα�Tg2�φ2 1α1�Tg1�φ1

Δα�φ2 1α1φ1

(7.58)

where α1 is the diluent coefficient of cubic expansion, and Δα is the change

of coefficient of cubic expansion for the polymer at Tg for which it is consid-

ered as an universal value close to 4.83 1024 K21.

The effect of water absorption in PMMA is illustrated on the depletion of elas-

ticity modulus in the glassy state from 3700 to 3000 MPa when water fraction

increases from 0% to 1.4% (Delpino Gonzales et al., 2016).

Tg 5
f �w1�ΔCp1�Tg1 1w2�ΔCp2�Tg2

f �w1�ΔCp1 1w2�ΔCp2

(7.59)

where f is considered as the fraction of water active for reducing Tg (i.e., 1 � f is

the fraction of water absorbed in microvoids).

In fully cured networks, water plasticization results in a decrease in compres-

sive strength and microhardness (Ferracane et al., 1998; Kalliyana Krishnan et al.,

1997). A good illustration is given in the case of Bis-GMA1HEMA networks in

Park et al. (2009), the results of which are schematized in Fig. 7.20.

According to the Kambour’s theory, yield stress depends on the value of Tg
(see Section 7.4.1). A decrease in glass transition results in a decrease in yield

stress as illustrated by Leger et al. (2013): according to these authors, changes in

mechanical properties induced by solvent ingress leading to a given temperature

decrease (e.g., 20�C) are equivalent to the mechanical properties decrease induced

by the same temperature increase (i.e. 20�C).

FIGURE 7.20

Schematic thermomechanical behavior of virgin (full line) and water-aged (dashed line)

bis-GMA1HEMA resin (in the case of physical ageing without chemical reactions).



It is worth noting that physical ageing is, in principle, characterized by an

equilibrium state, i.e., physical properties are expected to plateau after a long-

exposure time. However, since dental composites are sometimes undercured, the

decrease in Tg and subsequent macromolecular mobility increase may also induce

an increase in conversion degree and later in some mechanical properties

(Ferracane et al., 1998; Malacarne-Zanon et al., 2009).

7.5.2.4 Role of the interface
A supplementary level of complexification is observed in composites. It was also

observed that the polymer/fillers interface displays usually weaker properties than

the “bulky” polymer matrix, as illustrated in numerous papers dealing with Tg
measurements of organic matrices at the boundary with the interface (Tillman

et al., 2002; Joliff et al., 2013). It is, thus, observed that water solubility and dif-

fusivity in composites are higher than those predicted by a simple mixture law

(i.e., assuming that water does not diffuse into the filler) as observed by

Chateauminois et al. (1994) in the case of reinforced epoxies.

This was also illustrated by Kalachandra (1989) in the case of PMMA filled

with barium-based particles (Table 7.11). The detrimental effects of the interface

can be partially attenuated by the use of proper coupling agents (such as

4-methacryloxyethyl trimellitic anhydride).

Other examples are reported for the case of dimethacrylates used in dentistry

where:

• Water solubility reaches 1.2%�1.7% even for composites with c. 75% weight

fillers (Wei et al., 2011), that is, higher than expected from the water-uptake

value for pure resin (see Table 7.8).

• The diffusivity is observed to be higher in composites than in the pure matrix

(Dhanpal et al., 2009).

Table 7.11 Water Sorption Parameter at 37�C in PMMA and Its Composites

Material
%
Polymer

Diffusion
Coefficient
(3 108 cm2 s21)

% Water Uptake

Calulated Experimental

PMMA 100 2.26 2.28
PMMA1barium sulfate 31 33.18 0.71 1.23
PMMA1barium
sulfate1 coupling agent

30 10.08 0.68 1.27

PMMA1barium glass
silance coated

25 10.55 0.57 1.23

PMMA1barium glass
silance coated1 coupling
agent

23 9.42 0.52 1.04



The water solubility and/or diffusivity are higher than in the pure matrix, thus,

needing a much more complex modeling (Joliff et al., 2014).

In terms of mechanical properties, these observations are consistent with the

results obtained by Jager et al. (2016a) who found highly filled matrices to be the

most sensitive to water permeation.

7.5.2.5 Effect of penetrant composition mixture
It seems that, in a first approach, water has almost the same effect than various

artificial salivas, as illustrated by Al-Mulla et al. (1989).

Ethanol is also more soluble in dimethacrylates than water (Malacarne-Zanon

et al., 2009), consistent with its lower solubility parameter (26.5 MPa1/2) than water.

The effect of water and more acidic media (coke, orange juice) was compared

by Rahim et al. (2012) showing that:

• Diffusion mechanism remains Fickian in every case.

• The water diffusion coefficient remains about constant.

• The maximum fluid uptake and the fraction of solubilized compounds increases.

This last result can be explained due to better leaching of unreacted monomers

and soluble materials and/or a possible hydrolysis reaction, which will be next.

7.5.3 CHEMICAL AGEING BY HYDROLYSIS

A supplementary effect of water penetration is the possible hydrolysis of ester

groups. In the case of biomaterials, these reactions were proposed:

1. In the case of PMMA where chain scission occur on side chains (Ayre et al.,

2014; Ali et al., 2015; Semen and Lando, 1969; Du et al., 2006) (Scheme 7.9).

The hydrolytic degradation is, thus, expected to firstly modify the polarity of

the material (since each elementary reaction converts one ester group into a

carboxylic acid group).

2. In the case of TEGDMA in the presence of enzymes such as cholesterol

esterase (Ferracane, 2006; Finer and Santerre, 2004) (Scheme 7.10).

In ideal networks (no dangling chains or loops), one has:

n5 n0 � 3s (7.60)
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SCHEME 7.9

Mechanism of PMMA hydrolysis.



But, this relation is no longer valid when networks differ from the ideal (since

each chain scission generates two dangling chains). The complete mathematical

treatment is proposed in Richaud et al. (2014).

In networks such as Bis-GMA, the ratio of ester bond needed for the “degela-

tion” of the network (i.e., the total disappearance of elastically active chains and

the possible solubilization of the material in a good solvent) is given by

(Gilormini et al., 2014):

xd 5 12
1ffiffiffiffiffiffiffiffiffiffiffi
11 2

L

q (7.61)

L being the number of reactive units (here hydrolysable ester groups) per elas-

tic chain.

Since carboxylic acids are efficient catalysts of the hydrolysis reaction, the

hydrolysis degradation can display a certain autoaccelerated behavior (Richaud

et al., 2014). The kinetic aspects of ageing are depicted in Fig. 7.21.
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Mechanism of TEGDMA hydrolysis.

FIGURE 7.21

Typical kinetic curves for various ageing processes involving water.



Lastly, it must be mentioned that the kinetics of water ageing may be con-

trolled by the rate of water diffusion from the edge to the bulk (El Yagoubi et al.,

2012). This means that the general equation for water consumption in any layer

of the polymer is given by (Jacques et al., 2002):

@w

@t
5Dw�

@2w

@x2
2 kh�w�e (7.62)

where Dw is the water diffusivity, kh is the rate constant for hydrolysis, e and w are,

respectively, the concentrations in water and in hydrolysable groups (namely ester).

This equation can be adapted for several practical cases (e.g., the existence of

several kinds of reactive groups, or the possibility of noncatalyzed and catalyzed

hydrolysis), but in the simplest case, the thickness of degraded layer can be

approximated by:

zdegraded 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw�ws

kh

r
(7.63)

In other words, the final properties of the polymer correspond to the average

of the undegraded bulk and the degraded edges.

7.5.4 CHEMICAL AGEING BY RADIOLYSIS

Radiolytic processes are involved in the sterilization of some polymers before

implantation (Barton et al., 2013). Results obtained on PMMA unambiguously

show the decrease of molar mass, which is ascribed to the mechanisms shown in

Scheme 7.11.

The number of scissions induced by an irradiation dose D per unit mass is

given by:

s5G sð Þ�D (7.64)

where G(s) denotes the radiochemical yield of PMMA (in mol J21). The radio-

chemical yield G(s) should be close to 1�23 1027 mol J21 in PMMA (Schnabel,

1978; Thominette et al., 1989; Babu et al., 1984; Charlesby and Moore, 1964).

Even if it is not of clinical interest, the case of the radiolysis of networks obtained

from dimethacrylate remains an open question since the reactivity of esters (i.e.,

the radiochemical yield for chain scission) present in dimethacrylate might differ

from the reactivity of esters present in PMMA (Gilormini et al., 2017).
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The mechanisms of chain scission in PMMA.



7.5.5 CREEP AND FATIGUE

Let us first recall that there are two kinds of fatigue experiments:

1. Those made on unnotched samples: they lead to Wohler curves where

mechanical stress is plotted versus the number of cycles. The Wohler curves

of bulk- and reinforced-PMMA are compared in Baleani et al. (2003). The

report shows that filler would have a detrimental effect on fatigue resistance.

2. Those made on notched samples (fatigue crack propagation): they lead to

the plot of crack growth rate (da/dN) versus the intensity factor

(ΔK5Δσ�a�π1/2�f5Kmax2Kmin, Kmax, and Kmin are defined as the

maximum and minimum stress intensity experienced by the crack and f being

a geometric factor). The classical curve for fatigue crack propagation is

depicted in Fig. 7.22.

The left side of the curve leads to the minimal value of stress intensity factor

(also named fatigue crack inception or threshold ΔKi or ΔKth) leading to crack

propagation. Higher values of ΔKi correspond to tougher samples. ΔKi is slightly

higher than 0.1 MPa m1/2 in PMMA (Ramsteiner and Armbrust, 2001) and c.

five-times higher for composites used in dental restoration (Shah et al., 2009).

The right side of the curve is a vertical asymptote reached at a stress intensity

value KC close to the sample toughness (see Section 7.4.1) and linked to the criti-

cal size of a defect leading to brittle failure:

aC 5
1

π
�

ffiffiffiffiffiffiffi
KC

Δσ

r
(7.65)

FIGURE 7.22

Schematic results of fatigue crack propagation experiment.



In the intermediary domain, a linear dependence between crack growth rate

and stress intensity factor is observed, which is described by the Paris law (Paris

et al., 1961):

da

dN
5C�ΔKm (7.66)

In the case of thermoplastic polymers, the positive effect of average molar

mass is illustrated in Skibo et al. (1977). The most probable explanation is that

longer polymer chains produce effective entanglements and better fatigue resis-

tance of the crazes.

Fig. 7.23 illustrates a comparison of crack growth rate on PMMA aged in air

and that grown in a Ringer solution (Ayre et al., 2014) and illustrates the com-

plexities of the effect of ageing on fatigue properties. m would be on the order

of 5 for hydrolytically aged dental composites made of Bis-GMA, UDMA,

Bis-EMA, and a small amount of TEGDMA, together with 60% of silica and

zirconia fillers. Moreover, SEM observations show that the cracks propagate

at the particle matrix interface and cause possible matrix-filler debonding

(Shah et al., 2009).

From a practical point of view, it is noteworthy that polymers are bad thermal

conductive materials and that a high frequency for fatigue test can induce signifi-

cant self-heating. Temperature can for example exceed 100�C in a PMMA sub-

mitted to a 50 Hz cyclic stress, meaning that sample reaches is rubbery domain

and sample fails at a very low number of cycles (Justice and Schultz, 1980).
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FIGURE 7.23

Crack growth rate of a PMMA bone cement aged in air or in Ringer’s solution



7.6 CONCLUSION AND PROSPECTS FOR THE FUTURE OF
THESE MATERIALS

PMMA and methacrylates polymers are easily obtained by radical in-chain poly-

merization which makes composites easy to use for surgeons and dentists as bio-

materials and matrices.

In this chapter, we presented various methods for synthesis and the structure-

properties relationships aimed for designing materials.

However, they are sensitive, in particular, to water resulting that the initial

properties cannot be maintained in vivo. The main degradation mechanisms

expected to occur at moderate temperature, during use or sterilization by irradia-

tion were presented and might be helpful to avoid complications induced by long-

term ageing. One of the scientific challenges remains to take into account the

presence of fillers complicating the lifetime prediction.

In the future, researches should pursue improving the dispersion of fillers and

the development of materials that offer a good compromise between low viscosity

and improved mechanical properties. The properties could also be improved by

new polymerization strategies involving, for example, enhanced hydrostatic pres-

sure to limit the presence of porosities which are known to dramatically decrease

the mechanical properties of composites and increasing composites’ water uptake

(Soles et al., 2000).
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