500 research outputs found
Impact of medical specialists' locus of control on communication skills in oncological interviews
SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Radiofrequency ablation of lung tumours
Pulmonary radiofrequency ablation (RFA) has become an increasingly adopted treatment option for primary and metastatic lung tumours. It is mainly performed in patients with unresectable or medically inoperable lung neoplasms. The immediate technical success rate is over 95%, with a low periprocedural mortality rate and 8–12% major complication rate. Pneumothorax represents the most frequent complication, but requires a chest tube drain in less than 10% of cases. Sustained complete tumour response has been reported in 85–90% of target lesions. Lesion size represents the most important risk factor for local recurrence. Survival data are still scarce, but initial results are very promising. In patients with stage I non-small-cell lung cancer, 1- and 2-year survival rates are within the ranges of 78–95% and 57–84%, respectively, with corresponding cancer-specific survival rates of 92% and 73%. In selected cases, the combination of RFA and radiotherapy could improve these results. In patients with colorectal lung metastasis, initial studies have reported survival data that compare favourably with the results of metastasectomy, with up to a 45% 5-year survival rate. Further studies are needed to understand the potential role of RFA as a palliative treatment in more advanced disease and the possible combination of RFA with other treatment options
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Minor psychiatric disorders among Brazilian ragpickers: a cross-sectional study
BACKGROUND: Ragpickers are informal workers who collect recyclable materials to earn a small wage. Their life and working conditions are extremely difficult. We examined minor psychiatric disorders (MPD) among a cohort of ragpickers in Pelotas, a city in southern Brazil. METHODS: Ragpickers were matched by sex, age, and years of schooling with a sample of non-ragpickers from the same poor neighborhoods. The cross-sectional study gathered data by interview on 990 individuals in 2004. MPD were assessed using a standard self-reporting questionnaire, the SRQ-20. RESULTS: The prevalence of MPD among ragpickers was 44.7%, higher than reported by neighborhood controls (33.6%; p < 0.001). MPD were more common among females, those of lower economic level, smokers and alcoholics. Among occupational characteristics, MPD prevalence was associated with frequent static postures, low job satisfaction and recent work accidents. CONCLUSION: Ragpickers more frequently report MPD than other poor workers living in the same neighborhoods, with many of the same life conditions. Improving the work lives of these precarious workers should address not only the physical hazards of their jobs but their mental and emotional health as well
The importance of considering community-level effects when selecting insecticidal malaria vector products
BACKGROUND\ud
\ud
Insecticide treatment of nets, curtains or walls and ceilings of houses represent the primary means for malaria prevention worldwide. Direct personal protection of individuals and households arises from deterrent and insecticidal activities which divert or kill mosquitoes before they can feed. However, at high coverage, community-level reductions of mosquito density and survival prevent more transmission exposure than the personal protection acquired by using a net or living in a sprayed house.\ud
\ud
METHODS\ud
\ud
A process-explicit simulation of malaria transmission was applied to results of 4 recent Phase II experimental hut trials comparing a new mosaic long-lasting insecticidal net (LLIN) which combines deltamethrin and piperonyl butoxide with another LLIN product by the same manufacturer relying on deltamethrin alone.\ud
\ud
RESULTS\ud
\ud
Direct estimates of mean personal protection against insecticide-resistant vectors in Vietnam, Cameroon, Burkina Faso and Benin revealed no clear advantage for combination LLINs over deltamethrin-only LLINs (P = 0.973) unless both types of nets were extensively washed (Relative mean entomologic inoculation rate (EIR) ± standard error of the mean (SEM) for users of combination nets compared to users of deltamethrin only nets = 0.853 ± 0.056, P = 0.008). However, simulations of impact at high coverage (80% use) predicted consistently better impact for the combination net across all four sites (Relative mean EIR ± SEM in communities with combination nets, compared with those using deltamethrin only nets = 0.613 ± 0.076, P < 0.001), regardless of whether the nets were washed or not (P = 0.467). Nevertheless, the degree of advantage obtained with the combination varied substantially between sites and their associated resistant vector populations.\ud
\ud
CONCLUSION\ud
\ud
Process-explicit simulations of community-level protection, parameterized using locally-relevant experimental hut studies, should be explicitly considered when choosing vector control products for large-scale epidemiological trials or public health programme procurement, particularly as growing insecticide resistance necessitates the use of multiple active ingredients
A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts
Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality
Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions
Background: The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites.
Methods: A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 x 9.1 x 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations.
Results: This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature.
Conclusions: This study presents proof-of-principle that populations of important African malaria vectors can be established within environmentally realistic, contained semi-field settings. Such SFS will be valuable tools for the experimental study of vector ecology and assessment of their short-term ecological and longer-term evolutionary responses to existing and new vector control interventions
Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants
RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination
Socially and biologically inspired computing for self-organizing communications networks
The design and development of future communications networks call for a careful examination of biological and social systems. New technological developments like self-driving cars, wireless sensor networks, drones swarm, Internet of Things, Big Data, and Blockchain are promoting an integration process that will bring together all those technologies in a large-scale heterogeneous network. Most of the challenges related to these new developments cannot be faced using traditional approaches, and require to explore novel paradigms for building computational mechanisms that allow us to deal with the emergent complexity of these new applications. In this article, we show that it is possible to use biologically and socially inspired computing for designing and implementing self-organizing communication systems. We argue that an abstract analysis of biological and social phenomena can be made to develop computational models that provide a suitable conceptual framework for building new networking technologies: biologically inspired computing for achieving efficient and scalable networking under uncertain environments; socially inspired computing for increasing the capacity of a system for solving problems through collective actions. We aim to enhance the state-of-the-art of these approaches and encourage other researchers to use these models in their future work
Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill?
BACKGROUND\ud
\ud
The most common pesticide products for controlling malaria-transmitting mosquitoes combine two distinct modes of action: 1) conventional insecticidal activity which kills mosquitoes exposed to the pesticide and 2) deterrence of mosquitoes away from protected humans. While deterrence enhances personal or household protection of long-lasting insecticidal nets and indoor residual sprays, it may also attenuate or even reverse communal protection if it diverts mosquitoes to non-users rather than killing them outright.\ud
\ud
METHODS\ud
\ud
A process-explicit model of malaria transmission is described which captures the sequential interaction between deterrent and toxic actions of vector control pesticides and accounts for the distinctive impacts of toxic activities which kill mosquitoes before or after they have fed upon the occupant of a covered house or sleeping space.\ud
\ud
RESULTS\ud
\ud
Increasing deterrency increases personal protection but consistently reduces communal protection because deterrent sub-lethal exposure inevitably reduces the proportion subsequently exposed to higher lethal doses. If the high coverage targets of the World Health Organization are achieved, purely toxic products with no deterrence are predicted to generally provide superior protection to non-users and even users, especially where vectors feed exclusively on humans and a substantial amount of transmission occurs outdoors. Remarkably, this is even the case if that product confers no personal protection and only kills mosquitoes after they have fed.\ud
\ud
CONCLUSIONS\ud
\ud
Products with purely mosquito-toxic profiles may, therefore, be preferable for programmes with universal coverage targets, rather than those with equivalent toxicity but which also have higher deterrence. However, if purely mosquito-toxic products confer little personal protection because they do not deter mosquitoes and only kill them after they have fed, then they will require aggressive "catch up" campaigns, with behaviour change communication strategies that emphasize the communal nature of protection, to achieve high coverage rapidly
- …