9,078 research outputs found

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Full text link
    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy (NV) color centers. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable d.c. magnetometry in solution. We estimate the d.c. magnetic field sensitivity based on variations in ESR line shapes to be ~50 microTesla/Hz^1/2. This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques.Comment: 29 pages, 13 figures for manuscript and supporting informatio

    Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements

    Full text link
    We report, for the first time, a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique which allows parallel measurements at different locations, by combining a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM is calculated by using the spherical wave approximation and makes it possible to produce several diffraction limited laser spots, either aligned or spread over the field of view. To attain fast enough imaging rates, the camera has been used in different acquisition modes, the fastest of which leads to a time resolution of 100 Ό\mus. We qualified the experimental set-up by using solutions of sulforhodamine G in glycerol and demonstrated that the observation volumes are similar to that of a standard confocal set-up. To demonstrate that our mFCS method is suitable for intracellular studies, experiments have been conducted on two stable cell lines: mouse embryonic fibroblasts expressing eGFP-actin and H1299 cells expressing the heat shock factor fusion protein HSF1-eGFP. In the first case we could recover, by analyzing the auto-correlation curves, the diffusion constant of G-actin within the cytoplasm, although we were also sensitive to the complex network of interactions with F-actin. Concerning HSF1, we could clearly observe the modifications of the number of molecules and of the HSF1 dynamics during heat shock

    System of System Integration for Hyperspectral Imaging Microscopy

    Get PDF
    Hyperspectral imaging (HSI) has become a leading tool in the medical field due to its capabilities for providing assessments of tissue pathology and separation of fluorescence signals. Acquisition speeds have been slow due to the need to acquire signal in many spectral bands and the light losses associated with technologies of spectral filtering. Traditional methods resulted in limited signal strength which placed limitations on time sensitive and photosensitive assays. For example, the distribution of cyclic adenosine monophosphate (cAMP) is largely undetermined because current microscope technologies lack the combination of speed, resolution, and spectral ability to accurately measure Forster resonance energy transfer (FRET). The work presented in this dissertation assesses the feasibility of integrating excitation-scanning hyperspectral imaging methods in widefield and confocal microscopy as a potential solution to improving acquisition speeds without compromising sensitivity and specificity. Our laboratory has previously proposed excitation-scanning approaches to improve signal-to-noise ratio (SNR) and showed that by using excitation-scanning, most-to-all emitted light at each excitation wavelength band can be detected which in turn, increases the SNR. This dissertation describes development and early feasibility studies for two novel prototype concepts as an alternative excitation-scanning HSI technology that may xvi increase acquisition speeds without compromising sensitivity or specificity. To achieve this, two new technologies for excitation-scanning HSI were conceptually designed: - LED-based spectral illumination for widefield microscopy - Supercontinuum-laser-based spectral illumination for spinning disk confocal microscopy. Next, design concepts were theoretically evaluated and optimized, leading to prototype testing. To evaluate the performance of each concept, prototype systems were integrated with other systems and subsystems, calibrated and feasibility assays were executed. This dissertation is divided into three main sections: 1) early development feasibility results of an excitation-scanning widefield system of systems prototype utilizing LED-based HSI, 2) Excitation-scanning HSI and image analysis methods used for endmember identification in fluorescence microscopy studies, and 3) early development feasibility of an excitation-scanning confocal SoS prototype utilizing a supercontinuum laser light source. Integration and testing results proved initial feasibility of both LED-based and broadband-based SoSs. The LED-based light source was successfully tested on a widefield microscope, while the broadband light source system was successfully tested on a confocal microscope. Feasibility for the LED-based system showed that further optical transmission optimization is needed to achieve high acquisition rates without compromising sensitivity or specificity. Early feasibility study results for the broadband-based system showed a successful proof of concept. Findings presented in this dissertation are expected to impact the fields of cellular physiology, medical sciences, and clinical diagnostics by providing the ability for high speed, high sensitivity microscopic imaging with spectroscopic discrimination
    • 

    corecore