43 research outputs found

    A review of spatial downscaling of satellite remotely sensed soil moisture

    Get PDF
    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed

    Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions : the Murray-Darling basin in Australia as a test case

    Get PDF
    The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help to reduce errors and uncertainties in soil moisture and evapotranspiration simulations with a large-scale conceptual hydro-meteorological model. In addition, this study aims to investigate whether such a conceptual modelling framework, relying on parameter calibration, can reach the performance level of more complex physically based models for soil moisture simulations at a large scale. We use the ERA-Interim publicly available forcing data set and couple the Community Microwave Emission Modelling (CMEM) platform radiative transfer model with a hydro-meteorological model to enable, therefore, soil moisture, evapotranspiration and brightness temperature simulations over the Murray-Darling basin in Australia. The hydrometeorological model is configured using recent developments in the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application and to data availability and computational requirements. The hydrological model is first calibrated using only a sample of the Soil Moisture and Ocean Salinity (SMOS) brightness temperature observations (2010-2011). Next, SMOS brightness temperature observations are sequentially assimi-lated into the coupled SUPERFLEX-CMEM model (20102015). For this experiment, a local ensemble transform Kalman filter is used. Our empirical results show that the SUPERFLEX-CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set-up using the Community Land Model (CLM). This shows that a simple model, when calibrated using globally and freely available Earth observation data, can yield performance levels similar to those of a physically based (uncalibrated) model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72 for the surface and root zone soil moisture. The assimilation of SMOS brightness temperature observations into the SUPERFLEX-CMEM modelling chain improves the correlation between predicted and in situ observed surface and root zone soil moisture by 0.03 on average, showing improvements similar to those obtained using the CLM land surface model. Moreover, at the same time the assimilation improves the correlation between predicted and in situ observed monthly evapotranspiration by 0.02 on average

    Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes

    Get PDF
    The scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and similarities between CRNP observations, and surface soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the METOP-A/B Advanced Scatterometer (ASCAT), the Soil Moisture Active and Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), as well as simulations from the Global Land Data Assimilation System Version 2 (GLDAS2). Six CRNPs located on five continents have been selected as test sites: the Rur catchment in Germany, the COSMOS sites in Arizona and California (USA), and Kenya, one CosmOz site in New South Wales (Australia), and a site in Karnataka (India). Standard validation scores as well as the Triple Collocation (TC) method identified SMAP to provide a high accuracy soil moisture product with low noise or uncertainties as compared to CRNPs. The potential of CRNPs for satellite soil moisture validation has been proven; however, biomass correction methods should be implemented to improve its application in regions with large vegetation dynamics

    Soil Moisture Active Passive Mission L4_SM Data Product Assessment (Version 2 Validated Release)

    Get PDF
    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public Version 2 validated release scheduled for 29 April 2016. The assessment of the Version 2 L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to up-scaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the wide geographic range of the sparse network sites, and the global assessment of the assimilation diagnostics, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 2 validation and supports the validated release of the data. An analysis of the time average surface and root zone soil moisture shows that the global pattern of arid and humid regions are captured by the L4_SM estimates. Results from the core validation site comparisons indicate that "Version 2" of the L4_SM data product meets the self-imposed L4_SM accuracy requirement, which is formulated in terms of the ubRMSE: the RMSE (Root Mean Square Error) after removal of the long-term mean difference. The overall ubRMSE of the 3-hourly L4_SM surface soil moisture at the 9 km scale is 0.035 cubic meters per cubic meter requirement. The corresponding ubRMSE for L4_SM root zone soil moisture is 0.024 cubic meters per cubic meter requirement. Both of these metrics are comfortably below the 0.04 cubic meters per cubic meter requirement. The L4_SM estimates are an improvement over estimates from a model-only SMAP Nature Run version 4 (NRv4), which demonstrates the beneficial impact of the SMAP brightness temperature data. L4_SM surface soil moisture estimates are consistently more skillful than NRv4 estimates, although not by a statistically significant margin. The lack of statistical significance is not surprising given the limited data record available to date. Root zone soil moisture estimates from L4_SM and NRv4 have similar skill. Results from comparisons of the L4_SM product to in situ measurements from nearly 400 sparse network sites corroborate the core validation site results. The instantaneous soil moisture and soil temperature analysis increments are within a reasonable range and result in spatially smooth soil moisture analyses. The O-F residuals exhibit only small biases on the order of 1-3 degrees Kelvin between the (re-scaled) SMAP brightness temperature observations and the L4_SM model forecast, which indicates that the assimilation system is largely unbiased. The spatially averaged time series standard deviation of the O-F residuals is 5.9 degrees Kelvin, which reduces to 4.0 degrees Kelvin for the observation-minus-analysis (O-A) residuals, reflecting the impact of the SMAP observations on the L4_SM system. Averaged globally, the time series standard deviation of the normalized O-F residuals is close to unity, which would suggest that the magnitude of the modeled errors approximately reflects that of the actual errors. The assessment report also notes several limitations of the "Version 2" L4_SM data product and science algorithm calibration that will be addressed in future releases. Regionally, the time series standard deviation of the normalized O-F residuals deviates considerably from unity, which indicates that the L4_SM assimilation algorithm either over- or under-estimates the actual errors that are present in the system. Planned improvements include revised land model parameters, revised error parameters for the land model and the assimilated SMAP observations, and revised surface meteorological forcing data for the operational period and underlying climatological data. Moreover, a refined analysis of the impact of SMAP observations will be facilitated by the construction of additional variants of the model-only reference data. Nevertheless, the Version 2 validated release of the L4_SM product is sufficiently mature and of adequate quality for distribution to and use by the larger science and application communities

    Synergistic optical and microwave remote sensing approaches for soil moisture mapping at high resolution

    Get PDF
    Aplicat embargament des de la data de defensa fins al dia 1 d'octubre de 2022Soil moisture is an essential climate variable that plays a crucial role linking the Earth’s water, energy, and carbon cycles. It is responsible for the water exchange between the Earth’s surface and the atmosphere, and provides key information about soil evaporation, plant transpiration, and the allocation of precipitation into runoff, surface flow and infiltration. Therefore, an accurate estimation of soil moisture is needed to enhance our current climate and meteorological forecasting skills, and to improve our current understanding of the hydrological cycle and its extremes (e.g., droughts and floods). L-band Microwave passive and active sensors have been used during the last decades to estimate soil moisture, since there is a strong relationship between this variable and the soil dielectric properties. Currently, there are two operational L-band missions specifically devoted to globally measure soil moisture: the ESA’s Soil Moisture and the Ocean Salinity (SMOS), launched in November 2009; and the NASA’s Soil Moisture Active Passive (SMAP), launched in January 2015. The spatial resolution of the SMOS and SMAP radiometers, in the order of tens of kilometers (~40 km), is adequate for global applications. However, to fulfill the needs of a growing number of applications at local or regional scale, higher spatial detail (< 1 km) is required. To bridge this gap and improve the spatial resolution of the soil moisture maps, a variety of spatial enhancement or spatial (sub-pixel) disaggregation approaches have been proposed. This Ph.D. Thesis focuses on the study of the Earth’s surface soil moisture from remotely sensed observations. This work includes the implementation of several soil moisture retrieval techniques and the development, implementation, validation and comparison of different spatial enhancement or downscaling techniques, applied at local, regional, and continental scale. To meet these objectives, synergies between several active/passive microwave sensors (SMOS, SMAP and Sentinel-1) and optical/thermal sensors (MODIS) have been explored. The results are presented as follows: - Spatially consistent downscaling approach for SMOS using an adaptive moving window A passive microwave/optical downscaling algorithm for SMOS is proposed to obtain fine-scale soil moisture maps (1 km) from the native resolution (~40 km) of the instrument. This algorithm introduces the concept of a shape-adaptive window as a central improvement of the disaggregation technique presented by Piles et al. (2014), allowing its application at continental scales. - Assessment of multi-scale SMOS and SMAP soil moisture products across the Iberian Peninsula The temporal and spatial characteristics of SMOS and SMAP soil moisture products at coarse- and fine-scales are assessed in order to learn about their distinct features and the rationale behind them, tracing back to the physical assumptions they are based upon. - Impact of incidence angle diversity on soil moisture retrievals at coarse and fine scales An incidence angle (32.5°, 42.5° and 52.5°)-adaptive calibration of radiative transfer effective parameters single scattering albedo and soil roughness has been carried out, highlighting the importance of such parameterization to accurately estimate soil moisture at coarse-resolution. Then, these parameterizations are used to examine the potential application of a physically-based active-passive downscaling approach to upcoming microwave missions, namely CIMR, ROSE-L and Sentinel-1 Next Generation. Soil moisture maps obtained for the Iberian Peninsula at the three different angles, and at coarse and fine scales are inter-compared using in situ measurements and model data as benchmarks.La humedad del suelo es una variable climática esencial que juega un papel crucial en la relación de los ciclos del agua, la energía y el carbono de la Tierra. Es responsable del intercambio de agua entre la superficie de la Tierra y la atmósfera, y proporciona información crucial sobre la evaporación del suelo, la transpiración de las plantas y la distribución de la precipitación en escorrentía, flujo superficial e infiltración. Por lo tanto, es necesaria una estimación precisa de la humedad del suelo para mejorar las predicciones climáticas y meteorológicas, y comprender mejor el ciclo hidrológico y sus extremos (v.g., sequías e inundaciones). Los sensores pasivos y activos en banda L se han usado durante las últimas décadas para estimar la humedad del suelo debido a la relación directa que existe entre esta variable y las propiedades dieléctricas del suelo. Actualmente, hay dos misiones operativas en banda L específicamente dedicadas a medir la humedad del suelo a escala global: la misión Soil Moisture and Ocean Salinity (SMOS) de la ESA, lanzada en noviembre de 2009; y la misión Soil Moisture Active Passive (SMAP) de la NASA, lanzada en enero de 2015. La resolución espacial de los radiómetros SMOS y SMAP, del orden de unas decenas de kilómetros (~40 km), es adecuada para aplicaciones a escala global. Sin embargo, para satisfacer las necesidades de un número creciente de aplicaciones a escala local o regional, se requiere más detalle espacial (<1 km). Para solventar esta limitación y mejorar la resolución espacial de los mapas de humedad, se han propuesto diferentes técnicas de mejora o desagregación espacial. Esta Tesis se centra en el estudio de la humedad de la superficie terrestre a partir de datos obtenidos a través de teledetección. Este trabajo incluye la implementación de distintos algoritmos de recuperación de la humedad del suelo y el desarrollo, implementación, validación y comparación de distintas técnicas de desagregación, aplicadas a escala local, regional y continental. Para cumplir estos objetivos, se han explorado sinergias entre diferentes sensores de microondas activos/pasivos (SMOS, SMAP y Sentinel-1) y sensores ópticos/térmicos. Los resultados se presentan de la siguiente manera: - Técnica de desagregación espacialmente consistente, basada en una ventana móvil adaptativa, aplicada a los datos SMOS Se propone un algoritmo de desagregación del píxel basado en datos obtenidos de medidas radiométricas de microondas en banda L y datos ópticos, para mejorar la resolución espacial de los mapas de humedad del suelo desde la resolución nativa del instrumento (~40 km) hasta resoluciones de 1 km. El algoritmo introduce el concepto de una ventana de contorno adaptativo, como mejora principal sobre la técnica de desagregación presentada en Piles et al. (2014), permitiendo su implementación a escala continental. - Análisis multiescalar de productos de humedad del suelo SMAP y SMOS sobre la Península Ibérica Se han evaluado las características temporales y espaciales de distintos productos de humedad del suelo SMOS y SMAP, a baja y a alta resolución, para conocer sus características distintivas y comprender las razones de sus diferencias. Para ello, ha sido necesario rastrear los supuestos físicos en los que se basan. - Impacto del ángulo de incidencia en la recuperación de la humedad del suelo a baja y a alta resolución Se ha llevado a cabo una calibración adaptada al ángulo de incidencia (32.5°, 42.5° y 52.5°) de los parámetros efectivos, albedo de dispersión simple y rugosidad del suelo, descritos en el modelo de transferencia radiativa � − �, incidiendo en la importancia de esta parametrización para estimar la humedad del suelo de forma precisa a baja resolución. El resultado de las mismas se ha utilizado para estudiar la potencial aplicación de un algoritmo activo/pasivo de desagregación basado en la física para las próximas misiones de microondas, llamadas CIMR, ROSE-L y Sentinel-1 Next Generation. Los mapas de humedad recuperados a los tres ángulos de incidencia, tanto a baja como a alta resolución, se han obtenido para la Península Ibérica y se han comparado entre ellos usando como referencia mediciones de humedad in situ.Postprint (published version

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large résolution spatiale (25-50 km) n’en font pas un outil adéquat pour des applications hydrologiques à une échelle locale telles que la modélisation et la prévision hydrologiques. Dans de nombreuses études, une désagrégation d’échelle de l’humidité du sol des produits satellites micro-ondes est faite puis validée avec des mesures in-situ. Toutefois, l’utilisation de ces données issues d’une désagrégation d’échelle n’a pas encore été pleinement étudiée pour des applications en hydrologie. Ainsi, l’objectif de cette thèse est de proposer une méthode de désagrégation d’échelle de l’humidité du sol issue de données satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) à différentes résolutions spatiales afin d’évaluer leur apport sur l’amélioration potentielle des modélisations et prévisions hydrologiques. À partir d’un modèle de forêt aléatoire, une désagrégation d’échelle de l’humidité du sol de SMAP l’amène de 36-km de résolution initialement à des produits finaux à 9-, 3- et 1-km de résolution. Les prédicteurs utilisés sont à haute résolution spatiale et de sources différentes telles que Sentinel-1A, MODIS et SRTM. L'humidité du sol issue de cette désagrégation d’échelle est ensuite assimilée dans un modèle hydrologique distribué à base physique pour tenter d’améliorer les sorties de débit. Ces expériences sont menées sur les bassins versants des rivières Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situés aux États-Unis. De plus, le modèle assimile aussi des données d’humidité du sol en profondeur issue d’une extrapolation verticale des données SMAP. Par ailleurs, les données d’humidité du sol SMAP et les mesures in-situ sont combinées par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilé dans le modèle hydrologique pour tenter d’améliorer la prévision hydrologique sur le bassin versant Au Saumon situé au Québec. Les résultats montrent que l'utilisation de l’humidité du sol à fine résolution spatiale issue de la désagrégation d’échelle améliore la représentation de la variabilité spatiale de l’humidité du sol. En effet, le produit à 1- km de résolution fournit plus de détails que les produits à 3- et 9-km ou que le produit SMAP de base à 36-km de résolution. De même, l’utilisation du produit de fusion SMAP/ in-situ améliore la qualité et la représentation spatiale de l’humidité du sol. Sur le bassin versant Susquehanna, la modélisation hydrologique s’améliore avec l’assimilation du produit de désagrégation d’échelle à 9-km, sans avoir recours à des résolutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la résolution spatiale la plus fine à 1- km qui offre les meilleurs résultats de modélisation hydrologique. L’assimilation de l’humidité du sol en profondeur issue de l’extrapolation verticale des données SMAP n’améliore que peu la qualité du modèle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon améliore la qualité de la prévision du débit, même si celle-ci n’est pas très significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Suivi des ressources en eau par télédétection multi-capteur: désagrégation de données spatiales et modélisation descendante des processus hydrologiques

    Get PDF
    Certaines variables extraites par télédétection sont potentiellement très utiles en hydrologie. C'est le cas de l'humidité du sol en surface qui contrôle la partition des précipitations en évaporation du sol, infiltration et ruissellement de surface. C'est aussi le cas de la température de surface qui lorsque l’énergie n’est pas limitante est une signature de l’évapotranspiration. Pourtant la résolution spatiale à laquelle ces données sont disponibles depuis l’espace n'est pas toujours compatible avec les échelles d'application. Dans ce contexte, la désagrégation de données apparaît comme un moyen d'améliorer la résolution spatiale des observations disponibles et de spatialiser les processus hydrologiques à des échelles multiples à l’aide de modèles descendants, c’est-à-dire basés sur les données spatiales. Au cours de cet exposé, je présenterai 1) des méthodes de désagrégation des données d’humidité du sol et de température de surface, 2) des modèles descendants de l’évaporation du sol et de l’évapotranspiration des surfaces et 3) une généralisation de ces approches permettant à long terme une spatialisation d’autres données spatiales et des processus hydrologiques associés

    Toward vicarious calibration of microwave remote-sensing satellites in arid environments

    Get PDF
    The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact
    corecore