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Abstract Soil moisture (SM) is a key hydrologic state variable that is of significant importance for
numerous Earth and environmental science applications that directly impact the global environment and
human society. Potential applications include, but are not limited to, forecasting of weather and climate
variability; prediction and monitoring of drought conditions; management and allocation of water
resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as
wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change.
Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM
information that links the water, energy, and carbon cycles, significant efforts and resources have been
devoted in recent years to advance SMmeasurement andmonitoring capabilities from the point to the global
scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM
remote sensing techniques at various spatial and temporal scales and identifies critical future research needs
and directions to further advance and optimize technology, analysis and retrieval methods, and the
application of SM information to improve the understanding of critical zone moisture dynamics. Despite the
impressive progress over the last decade, there are still many opportunities and needs to, for example,
improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for
novel applications of SM information for water resources management, sustainable environmental
development, and food security.

1. Introduction

Soil moisture (SM) is a key hydrologic state variable that links land surface and atmospheric processes
(Robinson et al., 2008). Detailed knowledge about the state of SM and its spatial and temporal dynamics
is of crucial importance for numerous meteorological, climatologic, and hydrologic applications and to
improve our understanding of the water, energy and carbon cycles, as well as for forecasting of extreme
climate events (Li et al., 2007; Robock & Li, 2006; Seneviratne et al., 2010; Vereecken et al., 2014). In
general, in situ gravimetric measurements and electromagnetic (EM) sensor networks are considered
as the most reliable means for direct and accurate determination of moisture within the soil profile.
However, in situ measurements may be prone to uncertainties due to, for example, high salinity levels,
loss of intimate contact between sensors and the surrounding soil because of shrinkage or biological
activity, or lack of calibration, especially for soils with high specific surface areas. In addition, implemen-
tation of such methods is destructive, expensive, and laborious (Rahimzadeh‐Bajgiran et al., 2013; Zhang
et al., 2014) and they only provide localized information about SM dynamics and are not always repre-
sentative of the larger surrounding area (Petropoulos et al., 2013). Because of the high spatial and tem-
poral SM variability due to spatiotemporal variations of associated meteorological (precipitation,
temperature, solar radiation, wind speed, and humidity) and biogeophysical (soil properties, topographic
features, and vegetation characteristics) parameters, measurement, and monitoring of large‐scale SM
dynamics is challenging.

During the last decade numerous noninvasive techniques have been developed and employed to analyze SM
patterns and dynamics across various spatial and temporal scales. For example, at the field and catchment
scales, noninvasive proximal sensing techniques have been successfully applied to measure profile SM
dynamics (Huisman et al., 2003; Kiseleva et al., 2014; Loijens, 1980; Moghadas et al., 2010).

©2019. American Geophysical Union.
All Rights Reserved.

REVIEW ARTICLE
10.1029/2018RG000618

Key Points:
• Recent soil moisture measurement

and monitoring techniques and
estimation models from the point to
the global scales and their
limitations are presented

• The importance and application of
soil moisture information for
various Earth and environmental
sciences disciplines such as
forecasting weather and climate
variability, modeling hydrological
processes, and predicting and
monitoring extreme events and their
impacts on the environment and
human society are presented

Correspondence to:
M. Tuller,
mtuller@email.arizona.edu

Citation:
Babaeian, E., Sadeghi, M., Jones, S. B.,
Montzka, C., Vereecken, H., & Tuller,
M. (2019). Ground, proximal, and
satellite remote sensing of soil moisture.
Reviews of Geophysics, 57. https://doi.
org/10.1029/2018RG000618

Received 17 JUL 2018
Accepted 12 MAR 2019
Accepted article online 21 MAR 2019

BABAEIAN ET AL. 1

https://orcid.org/0000-0001-7902-3763
https://orcid.org/0000-0002-1404-7534
https://orcid.org/0000-0002-3804-8785
https://orcid.org/0000-0003-0812-8570
https://orcid.org/0000-0002-8051-8517
https://orcid.org/0000-0003-3659-2768
http://dx.doi.org/10.1029/2018RG000618
http://dx.doi.org/10.1029/2018RG000618
mailto:mtuller@email.arizona.edu
https://doi.org/10.1029/2018RG000618
https://doi.org/10.1029/2018RG000618
http://publications.agu.org/journals/


Today, ground‐based and airborne and spaceborne remote sensing (RS) techniques provide an exceedingly
powerful means for characterization andmonitoring of large‐scale near‐surface soil properties and processes
at reasonable temporal and spatial resolutions. Numerous studies have provided surface and near‐surface
SM estimates based on reflectance and/or emission of EM radiation within the optical (Sadeghi et al.,
2015; Schnur et al., 2010; Zhang et al., 2014), thermal (Lei et al., 2014; Rahimzadeh‐Bajgiran et al., 2013;
Verstraeten et al., 2006), active (Bartalis et al., 2018; Ulaby et al., 1982; Vinnikov et al., 1999; Wagner
et al., 2012), and passive (Chen et al., 2018; Jackson et al., 2010; Kerr et al., 2016; Koike et al., 2004; Njoku
& Entekhabi, 1996) microwave frequency ranges at various spatial scales that include the field scale
(Jonard et al., 2011; Wigneron et al., 2007), the catchment scale (Baatz et al., 2014; Rosenbaum et al.,
2012; Western et al., 2004), the regional scale (Louvet et al., 2015; Romshoo, 2004; Zhao et al., 2013), and
the continental/global scale (Entin et al., 2000; Li & Rodell, 2013; Renzullo et al., 2014). Because of the lim-
ited measurement depth of microwaves, novel data assimilation techniques have been developed and imple-
mented in hydrological models to establish links between remotely sensed near‐surface and root‐zone SM
(Das et al., 2008; Draper et al., 2012; Dumedah et al., 2015; Montzka et al., 2011).

Accurate monitoring of large‐scale SM status is essential for the management of agricultural water resources
to not only improve knowledge of plant water availability, water use efficiency, and water productivity but
also to reduce the risks of detrimental anthropogenic environmental impacts. SM is an effective indicator for
drought conditions and flood risks, two major meteorological hazards, and thus plays a unique role in their
prediction (e.g., under drought conditions the SM anomaly typically proceeds the anomaly of the vegetation
indices). Saturated soils are not able to absorb additional water, which leads to an increase in surface runoff
and subsequently to flooding. Detailed information about the soil water status aids in improving flood pre-
diction accuracy and provides means for near‐real‐time (NRT) flood forecasting. Continuously monitoring
the root‐zone SM status of agricultural crops aids in detection of plant water stress and the onset of drought
conditions as well as provides the basis for precision irrigation management for provision of a water stress‐
free rhizosphere environment, while preventing leaching of agrochemicals and potential groundwater con-
tamination. SM also influences precipitation patterns by controlling evapotranspiration, which affects the
development of the daytime atmospheric boundary layer and thereby the initiation and intensity of convec-
tive rainfall events. Feedbacks between SM and precipitation are of significant importance for weather fore-
casting (Koster et al., 2004) and the regional hydroclimatic variability (Ines & Mohanty, 2008a; Mahmood &
Hubbard, 2007).

Because of the significance and wide‐ranging applicability of SM information, related research and techno-
logical advances have gained substantial scientific and public attention in recent years. Of late, SM has been
included in the list of the 50 most essential climate variables (Dorigo et al., 2015) in order to support inter-
national organizations with the assessment of climate change impacts. In 2010, the Global Climate
Observing System initiative has defined SM as a fundamental climate variable (Global Climate Observing
System, 2010). This has prompted the European Space Agency (ESA) to incorporate SM in the climate
change initiative (CCI; Hollmann et al., 2013). During the past decade, several instruments such as the
Japan Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer (AMSR‐E on
the National Aeronautics and Space Administration's [NASA] Aqua satellite and Advanced Microwave
Scanning Radiometer 2 [AMSR‐2] on the Global Change ObservationMission‐Water [GCOM‐W1] satellite),
the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Advanced
SCATterometer (ASCAT), the ESA Soil Moisture and Ocean Salinity (SMOS), the NASA Aquarius, the
NASA Soil Moisture Active Passive (SMAP), and the ESA Sentinel‐1 that operate in the microwave fre-
quency range are dedicated to the measurement of land surface SM (Entekhabi et al., 2010; Kerr et al.,
2001; Njoku et al., 2003; Paloscia et al., 2013; Wagner et al., 2013). Seneviratne et al. (2010) have discussed
the role of SM in climate and atmospheric processes with focus on SM‐temperature and SM‐precipitation
feedbacks. Dobriyal et al. (2012) have provided an overview of landscape‐scale SM estimation methods with
emphasis on water resources sustainability and management. Vereecken et al. (2014) have discussed the
state of the art of characterizing spatiotemporal field‐scale SM dynamics and provided an overview of
advanced measurement techniques. Petropoulos et al. (2015) have provided a comprehensive overview of
efforts invested over the last 20 years in surface SM retrieval from microwave sensors. Noninvasive techni-
ques for characterization of SM dynamics at the field to basin scales have been presented in Bogena
et al. (2015).
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This review is aimed at (1) an inclusive presentation and discussion of recent advances in ground, proximal,
and airborne and spaceborne RS techniques that provide novel means for characterization and continuous
monitoring of SM dynamics across various spatial scales and (2) summarizing the available SM data
resources and rapidly expanding repositories to promote and stimulate future research about novel applica-
tions of SM information. The review is organized in 10 sections. After introducing the importance and wide‐
ranging impact of SM information, section 2 provides a definition of SM and its relationship to various spa-
tial scales. Section 3 presents ground‐based point measurement techniques and SM sensor networks.
Section 4 is devoted to proximal sensing techniques for SM retrieval. In section 5, an overview of RS techni-
ques for SM retrieval from optical, thermal, and microwave RS information is provided. Section 6 describes
available data and monitoring resources such as global sensor networks and microwave satellite and air-
borne RS missions and provides an evaluation of microwave satellite retrievals. After a discussion of the
basic principles of analytical and numerical root‐zone SM derivations from remotely sensed SM information
and data assimilation in section 7, spatial and temporal variability inherent to RS of SM applications is pre-
sented in section 8. In section 9, potential applications of SM information are presented and an outlook for
future research opportunities is provided. Finally, a summary and conclusions are provided in section 10.

2. Definition of SM

The SM or soil water content, which may be expressed on a gravimetric, θm, or volumetric, θv, basis repre-
sents the amount of water present in the soil at a given matric potential (Tuller & Or, 2005a). The matric
potential, Ψm (or matric head, h), is synonymous with the combined capillary and adsorptive surface forces
that hold water within the solid soil matrix and are uniquely related to SM under hydrostatic conditions. The
highly nonlinear relationship between SM and Ψm is termed the soil water characteristic and exhibits a very
distinctive shape for each individual soil texture (Figure 1). A comprehensive discussion about the origin of,
Ψm, and the measurement and modeling of the soil water characteristic are provided in Tuller and Or
(2005a) and Tuller et al. (1999).

The gravimetric SM, θm (g/g), which can be directly determined by oven drying a wet bulk soil sample at
105 °C, is defined as the ratio of the mass of water within the soil sample and the mass of the oven‐dry solid
material. The volumetric SM, θv (cm

3/cm3), defined as the volume of water within a given soil volume may
be expressed in terms of θm as (Robinson, Campbell, et al., 2008)

θv ¼ θm
ρb
ρw

� �
(1)

where ρb is the dry bulk density (g/cm3) of the soil and ρw is the density of water (g/cm3). When all pores are
filled with water, θv is termed saturated water content, θs. In some instances, it is advantageous to express SM
in terms of relative saturation, Se = θv/θs, which is the volumetric SM content normalized to θs (i.e., pore
volume; Wagner et al., 2013). In theory, Se ranges from zero, when the soil is completely dry, to 1, when
all soil pores are completely filled with water. In practice, however, it is not possible to attain complete
dry or saturated conditions. There is always a residual moisture content, θr, present under dry conditions,
and it is virtually impossible to completely de‐air soil as air bubbles remain entrapped in dead‐end pores
and cavitation nuclei are held tightly in crevices of rough particle surfaces (Sadeghi et al., 2018). To account
for residual moisture, relative saturation is commonly defined as

Se ¼ θv−θr
θs−θr

(2)

Under wet conditions, due to air entrapment in the soil pores, the maximum attainable Se ranges from about
0.94 to 0.97 (−) for fine‐textured (i.e., clay) and coarse‐textured (i.e., sand) soils, respectively.

For agricultural applications, a plant available (or extractable) soil water content, θPAW, is often defined as
the difference between the water content at field capacity, θFC, and the water content at the permanent wilt-
ing point, θPWP (see Figure 1; Kabat & Beekma, 1994). The θFC is defined as the water content after internal
redistribution of water within the soil matrix due to gravity (free drainage) and for practical purposes is often
assumed to coincide with a matric potential of −330 cm. This definition is not entirely correct as θFC is
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dependent on the soil texture. For example, θFC for a sandy soil more
likely coincides with Ψm = −100 cm. Below the permanent wilting point
that is defined as the water content at −15,000 cm matric potential, water
is so tightly bound within the soil matrix that plants are no longer able to
recover their turgidity and irreversibly wilt. Again, this is only an approx-
imation, as the permanent wilting point is dependent on plant physiology.
Desert plants, for example, can withstand significantly lower matric
potentials (drier conditions; Hupet et al., 2005). For water balance calcu-
lations it is convenient to express SM in length units to be consistent with
other variables such as precipitation or evapotranspiration. This so‐called
equivalent depth of wetting is obtained bymultiplying θvwith the depth of
the soil layer of interest.

2.1. SM and Measurement Depth of EM Radiation

Dependent on the penetration depth of EM radiation as well as within the
context of land surface modeling, the SM content is commonly referred to
as (1) skin or surface SM, (2) near‐surface SM, (3) root‐zone SM, or (4)

vadose zone SM. Skin or surface SM is commonly used within the context of optical and thermal RS and
describes the water content in the uppermost, very thin soil layer (~z ≤ 1 mm) at the interface between
the land and the atmosphere. The term near‐surface SM is usually related to the maximum measurement
depth of microwave remote sensors (i.e., X‐band, C‐ band, and L‐band) and is defined as the average water
content within the top few centimeters (~1 < z ≤ 10 cm) of surface soil. Root‐zone SM (RZSM) defines the
amount of water stored within the plant root‐zone and is available for transpiration and biomass production
(i.e., photosynthesis). While from a terrestrial hydrology point of view, the RZSM is highly variable in space
and time, it is commonly assumed as the water content of the top 1‐m soil layer. It can be directly
measured with weighing lysimeters or determined with P‐band microwave remote sensors, cosmic ray
sensors (section 3.4), profiling EM sensors (section 4), or via modeling approaches (section 7). The vadose
or unsaturated zone is defined as the soil compartment that extends from the land surface to the depth of
the unconfined groundwater table. Vadose zone SM can be measured with deep penetrating EM radiation
such as applied in airborne EM surveys (section 6.3.1).

The measurement depth of EM radiation is dependent on its frequency (wavelength). Optical RS techniques
measure changes in surface reflectance that are associated with a change in soil color (i.e., moist soil appears
darker than a dry soil). The spectral soil surface reflectance within the visible (Vis, 400–700 nm), near‐
infrared (NIR, 700–1,400 nm), and shortwave infrared (SWIR, 1,400–2,500 nm) EM range decreases with
increasing SM content (Sadeghi et al., 2015). Thermal infrared techniques monitor changes in skin soil tem-
perature that is intimately related to SM. In contrast to optical and thermal methods, microwave RS mea-
sures bulk dielectric soil properties (i.e., bulk dielectric permittivity) that are governed by SM content
(section 3.2).

Table 1 summarizes the measurement depths of microwave bands (C‐band, L‐band, and P‐band) for various
land surface covers. While short wavelengths (C‐band) are applicable for SM retrieval for bare soils or sparse
vegetation cover (Baghdadi et al., 2012; Prigent et al., 2005), longer wavelengths (L‐band and P‐band) are less
(partially) attenuated by vegetation canopies and are amenable for near‐surface and RZSM determination
(Jackson & Schmugge, 1995; Jonard et al., 2011; Moghaddam et al., 2000). Jackson and Schmugge (1995)
pointed out that the depth of the soil layer that contributes to the measured microwave signals (e.g., bright-
ness temperature) increases with wavelength. They also discussed that for vegetated surfaces the attenuation
of the microwave signal increases, affecting the soil layer depth contributing to SM retrieval.

2.2. Spatial Scales of SM

SM can be defined for different spatial scales that range from point measurements (Miralles et al., 2010;
Teuling et al., 2006) all the way to the global scale (Kerr et al., 2001; Naeimi et al., 2009). Point observations
are commonly directly obtained with in situ techniques such as simple gravimetric sampling, various EM
sensors (time domain reflectometry [TDR], amplitude domain reflectometry [ADR], and frequency domain
reflectometry [FDR]; see section 3.2) or application of neutron radiation (Famiglietti et al., 1999; Fares et al.,

Figure 1. Soil water characteristics for different soil textures.
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2016; Grayson &Western, 1998; Wang et al., 2016) with sensing volumes ranging from about 2 to 40 cm. The
significant spatial variability of SM, even over a distance of only a fewmeters (Vereecken et al., 2014), creates
challenges for accurate determination of larger‐scale SM with point measurement techniques, unless a large
number of sensors are deployed. This in many cases is prohibitively expensive and laborious. If spatially
averaged large‐scale SM is of interest, airborne or spaceborne microwave RS sensors with spatial
resolutions on the order of tens of meters to tens of kilometers are applied. To bridge the gap between
point and satellite observations, proximal sensing techniques can be applied. Figure 2 shows a
classification of the SM retrieval techniques presented in this review.

A unique definition of the spatial scales of SM measurements has been provided by Western and Bloschl
(1999). They proposed a scale definition based on spacing, extent, and support that applies to both SM mea-
surements and models. The term “spacing” refers to the distance between measurement points or model ele-
ments, the term “extent” to the overall coverage, and “support” refers to the measurement or model
integration volume or area. As an example, for a network of TDR SM sensors deployed in a field, the scale
may be defined based on 101‐m spacing (distance between sensors), 102‐m2 extent (area of the field), and
103‐cm3 support (volume of the soil sampled with a TDR sensor). Similarly, for a satellite image (e.g.,
Landsat‐8) the scale would be defined based on 30‐m spacing (distance between the centers of two

Table 1
Approximate Microwave Measurement Depths for Bare Soil and Different Land Surface Covers

Land surface cover
X‐band (2.5–3.75 cm)
(8–12 GHz)

C‐band (3.75–7.5 cm)
(4–8 GHz)

L‐band (15–30 cm)
(1–2 GHz)

P‐band (30–100 cm)
(0.3–1 GHz)

Bare soil ~1.25–1.87 cm ~1.87–3.75 cm ~7.5–15 cm ~15–50 cm
Agriculture and rangeland ~0.5–0.75 cm ~0.75–1.5 cm ~3–6 cm ~6–20 cm
Forest ~0.25–0.37 cm ~0.37–0.75 cm ~1.5–3 cm ~3–10 cm

Note. The measurement depth ranges for each microwave band were calculated based on one tenth (λ/10), one fifth (λ/5), and one half (λ/2) of the wavelength
ranges (Karthikeyan et al., 2017a;Wilheit, 1978) assumed for bare soil and sparsely and fully vegetated surfaces, respectively. It should be noted that soil moisture
content, soil texture, and surface roughness also affect the measurement depth of microwave signals.

Figure 2. Classification of soil moisture (SM) measurement methods: spaceborne and airborne remote sensing techniques (top left), static and mobile proximal
sensing methods (top middle), and in situ/ground sensor measurements (top right) for continuous monitoring of SM dynamics (bottom scatterplot, illustrating
an example of Soil Moisture Active Passive (SMAP) surface SM vs. in situ data for the Arizona Walnut Gulch site).
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neighboring pixels), 170 km × 185 km extent (the footprint area), and 302‐m2 support (the pixel size for
bands 1 to 9; Figure 3). The major application of such spatial terms is to study spatial variability of SM with
respect to the effect of geophysical and climate parameters. An overview of spatial scale in terms of support
and extent of existing SM measurement instruments and networks is provided in Table 2.

3. Ground‐Based Point Measurements and Sensor Networks

This section is devoted to novel and evolving SMmeasurement techniques ranging from neutron scattering,
EM, and heat pulse probe (HPP) point‐scale methods to larger‐scale cosmic ray neutron and other EM‐based
methods. In addition, other recent technologies such as (wireless) SM networks (WSMN) are introduced and
their potential to improve our understanding of hydrologic processes is evaluated.

3.1. Neutron Scattering

The neutron scattering technology was first introduced by Brummer and Mardock (1945) for laboratory
applications. Underwood et al. (1954) and Holmes (1955) were the first to develop and deploy portable neu-
tron probes (NP) for in situ SM measurements for agricultural applications. The theory at the core of the

Figure 3. Definition of spatial scales based on “support,” “spacing,” and “extent” as related to (a) in situ sensor networks
and (b) satellite remote sensing observations.

Table 2
Overview of Spatial Scales (Support and Extent) of Existing SM Instruments and Networks

Instrument/network Supporta Extent

Neutron probe Sphere (radius 15–40 cm) 1–20 m
TDR sensor array ~3‐cm radius around waveguide 1–20 m
Mobile invasive TDR 3‐cm radius around waveguide 10 m to 1 km
EMI 0.5–2 m3 10 m to 10 km
GPR 0.5–2 m3 10 m to 10 km
Cosmic ray neutron 40–400 m3 500–3,000 km2

GNSS reflectometry The radius area varies from 50 m (for antenna with 1‐m height)
to 330 m (for antenna with 20‐m height)

5,000–12,000 km2

Gamma ray 12–15 m3 (for a radius 100 m and bulk density 1.6 g/cm3) 5,000–12,000 km2

Sensor network ~3‐ to 10‐cm radius around sensors 10 m to 10 km
Airborne remote sensing 1–100 m 50 m to 100 km
Satellite remote sensing 10–40 km 1–1,000 km

Note. SM = soil moisture; TDR = time domain reflectometry; EMI = electromagnetic induction; GPR = ground pene-
trating radar; GNSS = Global Navigation Satellite Systems.
aThe effective support strongly depends on SM content.
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neutron scattering technique is based on the tendency for hydrogen nuclei
to slow (thermalize) high‐energy (2–4 MeV) neutrons to approach the
characteristic speed of particles at ambient temperature with correspond-
ing energies of about 0.03 eV. A typical NP consists of a radioactive neu-
tron source (americium‐241 and beryllium) and a detector to determine
the flux of thermalized neutrons that form a cloud of nearly constant den-
sity near the probe. Neutrons lose different amounts of energy when col-
liding with various atomic nuclei. The greatest energy loss is due to
collisions with particles of similar mass, such as hydrogen. The quantity
of hydrogen in the soil is largely dependent on the amount of water and
to a lesser extent on the amount of organic matter and clay minerals.
Therefore, a calibration function that relates the number of detected slow
neutrons to soil water content can be developed. The sphere of influence
(measurement volume) of a NP depends on the SM content and chemical
composition and on the strength of the radioactive source (Figure 4). Note
that reliable measurements cannot be obtained close to the soil surface
(i.e., top 20 cm) as neutrons escape into the atmosphere. Ideally, the NP
should be calibrated for each soil type (soil‐specific calibration) and access
tube material (Vachaud et al., 1977). Prior to the terrorist attacks on 9/11,
NPs utilizing a radioactive source and detector were widely used for SM
profile assessment as part of irrigation management owing to the ability
to monitor water content in bore holes. The subsequent increase in regu-
lations and paperwork related to radioactive devices has made NPs
impractical for most users. Additional information about the practical
and theoretical aspects of neutron scattering for SM measurements are
provided in Sadeghi, Babaeian, et al. (2018).

The cosmic ray neutron probe (CRNP) for recording the neutrons that are generated by cosmic rays within
air and soil and other materials is a newer method for noninvasively measuring area‐averaged (effective) SM
within the top soil (Zreda et al., 2008). Similar to the NP method, a calibration function is commonly devel-
oped to relate the change in low‐energy neutrons to the change in hydrogen content for SM determination.
For instance, a common theoretical function has been developed by Desilets et al. (2010) relating SM to rela-
tive neutron counts

θv Nð Þ ¼ 0:0808
N
N0

� �
−0:372

−0:115 (3)

whereN is the neutron count rate (count per hour) normalized to a reference atmospheric pressure and solar
activity level and N0 is the counting rate (count per hour) over dry soil under the same reference conditions.
A detailed description of the cosmic ray technique can be found in Zreda et al. (2012).

Due to the higher propagation of cosmic rays in thin air, the lateral footprint extent is inversely proportional
to the atmospheric (vapor) pressure and is up to 300 m in diameter, while the penetration depth strongly
depends on the SM content (Franz et al., 2012; Zreda et al., 2008) and ranges from 15 cm in wet soils to
approximately 70 cm in dry soils (Figure 5) which decreases exponentially with distance to the sensor
(Kohli et al., 2015). The exact CRNP footprint and sensitivity are still an active area of research. At present,
most research is being conducted to interpret the measured signals, as the sensors measure not only SM but
also the presence of water in vegetation, subsurface biomass and organic matter, surface water, atmospheric
vapor, and clay lattices water (Baatz et al., 2015) as well as to determine the radius of influence (Kohli
et al., 2015).

SM derived from CRNP is frequently validated using local‐scale wireless SM networks (Franz et al., 2012).
Comparison of CRNP measurements with TDR SM data at 10 test sites in Germany (catchment of the river
Rur) demonstrated reliable measurements of SM with root‐mean‐square error (RMSE) of 0.032 cm3/cm3

(Baatz et al., 2014). Baatz et al. (2014) installed a catchment‐wide network consisting of 10 cosmic ray sensor
systems at the Terrestrial Environmental Observatories (TERENO) Rur site in Germany in order to compare

Figure 4. Schematic of a portable neutron probe.
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three different parameterizationmethods: (1) the N‐Omethod, (2) the hydrogenmolar fractionmethod (hmf
method), and (3) the Cosmic method. All three methods were found to perform well after calibration. The
hmf and Cosmic methods showed more similar calibration curves than the N‐O method.

First attempts are now being undertaken to establish networks of CRNP at larger scales. The COsmic ray Soil
Moisture Observing System (COSMOS) network (Zreda et al., 2012) is presently being installed in the United
States with the aim to install 500 cosmic ray sensors (see section 6.1). Currently, there are approximately 194
permanent CRNP stations worldwide (Andreasen et al., 2017) including 109 COSMOS stations in the United
States (Zreda et al., 2012), 20 TERENO stations in Germany (Baatz et al., 2015), 13 CosmOz stations in
Australia (Hawdon et al., 2014), and 32 COSMOS‐UK stations in the United Kingdom (Evan et al., 2016).
Also, mobile CRNP rover systems have been developed (Dong et al., 2014). Due to its large footprint, the
CRNP could potentially fill the spatial gap between SM ground point data and satellite estimates; hence, it
can serve as a reference for the validation of satellite SM products. The CRNP SM has been recently used
for validation of spaceborne SM products such as SMAP, SMOS, and ASCAT in the United States,
Australia, Europe and Africa (Akbar & Moghaddam, 2015; Babaeian et al., 2018; Fascetti et al., 2016;
Montzka et al., 2017; Van der Schalie et al., 2016).

One important limitation of the CRNP in humid climates and wooded regions is that it is significantly influ-
enced by various sources of hydrogen in environment (e.g., water vapor in the atmosphere, litter water,
organic matter, and root biomass), which in some cases yield volumetric SM contents that exceed soil por-
osity. Thus, CRNP data need some additional adjustments to remove the effect of additional hydrogen con-
tained in these pools. Adjustment methods have been presented in Franz, Zreda, Ferre, et al. (2012) and

Figure 5. Interactions of cosmic ray neutrons (black dots) with the soil in directionsXY (left) and YZ (right), prior to detec-
tion with a central sensor. The footprint (red circle) is denoted as distance (X = 220 m, Y = 220 m) or depth (Z = 0.52 m)
within which about 86% of the detected neutrons are characterized.
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Bogena et al. (2013). Figure 6 shows an example of CRNP data adjustment for the ArizonaWalnut Gulch site
after subtracting the contribution of additional hydrogen pools during converting neutron counts into SM
content. It is obvious that corrected CRNP data better capture in situ SM data from the Soil Climate
Analysis Network (SCAN).

3.2. EM SM Sensors

Topp et al. (1980) revolutionized soil water content sensing with the introduction of TDR. At that time, the
first TDR instruments were very expensive and only deployable for laboratory measurements. Since then,
the costs of TDR devices have decreased by several orders of magnitude, while other EM sensors based on
capacitance or impedance circuits have also been developed. As a result, over the last decade, numerous
companies have developed a variety of sensors based on EM measurements of soil permittivity (Bogena
et al., 2007; Jones et al., 2005; Seyfried & Murdock, 2004; Vaz et al., 2013). Permittivity, also called dielectric
constant, is a measure of the electrical potential energy of a substance under the influence of an EM field.
The EM sensor electric field is generally directed into the soil along 2‐, 3‐, or 4‐parallel electrodes or an adja-
cent pair of rings. For example, the Hydra Probe (Stevens Water Monitoring Systems Inc.) uses one central
and three outer electrodes based on an impedance circuit operating at 50 MHz. The Hydra Probe is the only
EM water content sensor offering both real and imaginary permittivity output (Figure 7a). While there is
potential to extract additional information from complex permittivity, few have attempted to fully utilize
these measurements (Kelleners et al., 2005; Peplinski et al., 1995). The Hydra Probe is widely used by the
U.S. federal agencies in weather and snow monitoring stations (e.g., SCAN; SNOwpack TELemetry, and
SNOTEL). The measurement of permittivity provides a highly accurate determination of water content in
soil because the permittivity of water is about 80, while permittivities of solids and air are around 4 and 1,
respectively. Interestingly, the most accurate water content determination method remains the original
TDR method operating at around 1‐GHz frequency, despite a larger number of low‐cost low‐frequency
(<100 MHz) water content sensors being marketed today (Blonquist et al., 2005; Vaz et al., 2013). In general,
TDR does not require soil‐specific calibration and is less susceptible to secondary effects such as electrical
conductivity, temperature and relaxation (from high clay or organic matter content) than lower‐frequency
EM sensors. This immunity to secondary effects comes in part because of the higher measurement frequency
(~1 GHz) and the use of travel time as the measurement method. The travel time, t, of the EM signal is pro-
portional to the relative permittivity, Kr, of the substance through which it travels according to

t ¼ 2l
ffiffiffiffiffiffi
Kr

p
c

(4)

where l is the length of the TDR electrodes and c is the speed of light (3 × 108 m/s) (Robinson et al., 2003).
OnceKr is measured, the relationship between the volumetric moisture content (θ) of the substance and Kr is
given from a general mixing model (Dobson et al., 1985; Jones et al., 2002), written as

Figure 6. Correction of CRNP soil moisture data for the Walnut Gulch site in Arizona. Uncorrected and corrected data
after removing the effects of additional hydrogen pools (water vapor, organic matter water content, and lattice water)
are shown. The colored lines represent Soil Climate Analysis Network (SCAN) soil moisture data at different depths.
CRNP = Cosmic Ray Neutron Probe.
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θ ¼ Kβ
r− 1−nð ÞKβ

s−nK
β
a

Kβ
w−K

β
a

(5)

where n is the soil porosity and subscripts s, a, and w refer to permittivities of constituent solids (minerals),
air, and water, respectively. The exponent β summarizes the geometry of the substance and has a range
−1 < β < 1, with β = 0.5 representing an isotropic mixed medium. Recently, gigahertz frequency TDR
(Figure 7b) has been developed and reduced in size using low‐cost cellular phone components, facilitating
production of TDR sensors that are competitively priced with more common lower‐frequency sensors.
Limitations of the TDR method include restricted applicability under highly saline conditions due to signal
attenuation and the requirement of soil‐specific calibration for soils with high clay or organic matter (OM)
contents. Severe attenuation of TDR waveforms in the presence of high salinity and/or some clays having
high surface area and surface charge may interfere with, or even preclude, water content measurements.
In soils with an abundance of 2:1 clay minerals that commonly exhibit large specific surface areas, the bulk
dielectric permittivity is more susceptible to temperature fluctuations due to the release of bound water
under very dry conditions (Escorihuela et al., 2007; Wraith & Or, 1999). In organic matter rich soils, the
amount of bound water is commonly higher due to the large specific surface are and associated higher
adsorptive surface forces, which is manifested in lower bulk permittivity values when compared to soils with
low OM contents (Bircher et al., 2016). Further limitations include the inability to measure the frozen water
content due to the similarity of the permittivities of ice and the mineral soil constituents (Jagdhuber et al.,
2014) and restricted applicability in highly structured soils with an abundance of large pores that prevent
a close contact between the sensor electrodes and the soil matrix.

In recent years, several EM‐based borehole or downhole solutions, most employing parallel rings and
capacitance circuitry to estimate water content in the vicinity of the cylindrical sensor (Figure 7c), have
been developed. A growing trend for environmental sensors in general is to employ SDI‐12 communica-
tion, which uses addressing to facilitate multiple sensors connected to a single digital port of a data log-
ger. With options for addressing with single digit numbers and both uppercase and lowercase letters,
more than 60 sensors can be connected to each available port on a data logging device. Given these
advances, deployment of water content sensors for RS calibration has become more user friendly with
lower costs.

Figure 7. Examples of electromagnetic water content sensors are (a) the Stevens Water impedance‐based Hydra Probe
measuring at 50 MHz, (b) the Acclima True TDR measuring in the range of 1000 MHz, and (c) the Sentek capacitance‐
based EnviroSCAN sensor, which employs frequency domain resonance, that is, the water content determines the reso-
nant frequency in the range from 100 to 150 MHz. (Please note that sensor manufacturers are only named for the con-
venience of readers, which does not imply an endorsement of specific sensors by the authors).
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In general, EM‐sensors are well suited for monitoring SM profiles, but seemingly few if any were developed
specifically for near‐surface moisture monitoring. In order to calibrate optical RS measurements from satel-
lites or drones, the soil “skin”moisture content is needed, but common practice has the closest sensor to the
surface at just 5 cm below the surface. This leads to a great deal of uncertainty since the soil typically wets
and dries from the surface downward. There are certainly times when the surface has been wetted by rain-
fall, but the wetting did not penetrate to the sensor, and similarly, when the surface has air dried while the
soil 5 cm below the surface is still quite moist. For these scenarios and others, novel and improved EM‐based
sensors are desired to address the growing need for accurately calibrating soil surface RS data using ground
measurements more focused on the soil skin. Recently, a novel sensing instrument has been developed for
more accurate measuring surface and near‐surface SM content. Sheng et al. (2017) designed and tested a
TDR array sensor that provides centimeter‐resolution measurements of near‐surface SM (0–8 cm) with high
accuracy (±1 permittivity unit).

3.3. HPPs

The use of heat as a tracer for thermal property determination in soil was pioneered several decades ago, but
technological limitations hindered application of this method (Al Nakshabandi & Kohnke, 1965; De Vries,
1958). HPP were miniaturized, and their measurements automated in the early 1990's (Bristow et al.,
1993; Campbell et al., 1991), and a growing body of literature attests to the many applications for which they
are well suited owing to the water content dependence of soil thermal properties (Hopmans et al., 2002;
Kamai et al., 2008; Y. Lu et al., 2014, Lu et al., 2016; Ochsner et al., 2003; Ren et al., 2000; Yang et al.,
2013). Probes generally consist of one heater needle (typically 18 Ga or 1.27‐mm diameter) and one to five
thermistor needles spaced approximately 6 mm from the heater needle, which makes them ideally suited
to small sample interrogation (Figure 8). Various algorithms have been developed and applied to infer ther-
mal conductivity (λ, W·m−1·K−1), thermal diffusivity (k, m2/s), or heat capacity (C, J·m−3·K−1) from HPP
temperature rise measurements. The interrelationship between these three thermal properties means that
only two of the three parameters must be determined for calculation of the third. The heat capacity can
be computed from

C ¼ λ=k (6)

A heat pulse of 8 s is generally applied resulting in a temperature rise of about 1 °C at the sensing needles.
This translates to 5% precision in heat capacity estimation if temperature measurements are on the order of
0.05 °C accuracy (Kluitenberg et al., 1993). These measured temperature rise data are used to fit one or more
thermal properties as functions of analytical or numerical solutions. One estimate of k is given as (Bristow
et al., 1994)

Figure 8. Heat pulse probes used for thermal property assessment: (a) a commercial dual‐needle probe for heat capacity
determination (METER Group Inc., Pullman, WA, USA) and (b) the Utah State University‐developed penta‐needle heat
pulse probe yielding thermal conductivity and diffusivity in addition to heat (and water) velocity in two directions.
(Please note that sensor manufacturers are only named for the convenience of readers, which does not imply an
endorsement of specific sensors by the authors).
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where r is the mean heater needle to thermistor needle spacing, tm is the time from the initiation of heating
to the occurrence of the maximum temperature, Tmax, and t0 is the heating duration (8 s). To estimate λ, an
expression for C from Knight and Kluitenberg (2004) is multiplied with the thermal diffusivity
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where e is the Naperian constant (≈2.718) and ε = t0/tm. The soil volumetric heat capacity is an important
link between thermal properties and volumetric moisture content of soil (θ). The soil heat capacity describes
the amount of heat stored in the soil, which can be summed as the heat capacities of individual constituents
according to (De Vries, 1963)

C ¼ ρcð Þs 1−φð Þ þ ρcð Þwθþ ρcð Þa φ−θð Þ (9)

where ρ is constituent density (kg/m3), c is constituent specific heat (J·kg−1·K−1), ϕ is total porosity, and sub-
scripts s,w, and a indicate the soil's solid, water, and air phases, respectively. If the air phase is neglected and
the solid phase is assumed to exhibit typical soil mineral density and heat capacity, we can substitute
Cw = (ρc)w and Cs = (ρc)s resulting in a simplified relationship written as (Campbell, 1985)

C ¼ Cs 1−φð Þ þ Cwθ (10)

Estimates of C can ultimately be used to estimate the soil volumetric water content, θ, using the expression

θ ¼ C−ρbcs
Cw

(11)

where ρb is soil bulk density (kg/m3) and cs is the specific heat capacity of the soil solids (J·kg
−1·°C−1).

Heat pulse sensor needles are generally short, and needle spacing is several millimeters apart because of the
interest in minimizing energy input to the soil while maximizing the signal to noise ratio. This makes heat
pulse measurements well suited for near‐surface determination of soil properties including SM content
(Mori et al., 2003).

3.4. Other SM Sensors

A potential new source of information about continental‐scale SM is observations of temporal changes in
gamma radiation. It has long been recognized that airborne gamma radiation surveys with low‐flying planes
can be used to determine SM content (Carroll, 1981) and snow water equivalent (SWE) for flood forecasting
applications (Peck et al., 1971). The GAMMA instrument on the NOAAAC690A Turbo Commander aircraft
has been used operationally by NOAA's National Weather Service since 1979 to measure the mean areal
SWE and SM along the flight path (Peck et al., 1980). Attenuation of natural terrestrial gamma radiation
by water in air, snow, soil, and vegetation between the ground and the aircraft is the basis of SWE and
SM measurements. After the nuclear reactor accident in Chernobyl in 1986, most countries of the
European Union established in situ monitoring networks measuring outdoor gamma radiation for early
warning. The data are composite gamma radiation measurements over a broad energy spectrum, and the
sources of gamma radiation can be separated into terrestrial, cosmic, and artificial origin. These gamma
radiation measurements are published in near‐real time and archived by the EUropean Radiological Data
Exchange Platform. As a result of this network of networks, measurements of more than 4,600 monitoring
stations are made accessible to the public at least once a day. The footprint of a typical EUropean
Radiological Data Exchange Platform gamma ray monitoring station has a radius of about 7 m and 90% of
the sensor response originates from the top 12 to 25 cm of the soil (Bogena et al., 2015; Mao et al., 2015).
The gamma ray intensity measured near the soil surface has been shown to be related to soil water content
(Mao et al., 2015), but it is also known to depend on cosmic rays that enter and interact with the atmosphere,
anthropogenic Cs137 from nuclear tests and accidents, and atmospheric Rn222. For accurate SM estimation
from gamma radiation measurements, all interfering time variable, anthropogenic, and nonterrestrial
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signals have to be removed from the data (Bogena et al., 2015). If this can be achieved, SM of the top 25 cm of
the soil can be determined with an expected accuracy of 0.025 g/g (Loijens, 1980). Recently, the potential of
gamma ray sensors for measuring SM has gained popularity, especially in Europe where these sensors have
been deployed in the aftermath of the Chernobyl nuclear accident to monitor the spread and fate of radio-
nuclides. A comprehensive review of these methods is provided in Bogena et al. (2015).

Another promising technology for SM determination at larger scales is the utilization and analysis of signals
that are recorded on the ground through Global Navigation Satellite Systems (GNSS) such as Global
Positioning System (GPS) receivers (Katzberg et al., 2006; Larson et al., 2008; Rodriguez‐Alvarez et al.,
2009) that have initially been established for geodynamic (navigation and positioning) applications. In this
technique, also called GPS interferometric reflectometry (GPS‐IR or GNSS‐IR), SM retrieval is based on the
analysis of power variations of the GNSS signals, where the direct signal from the GNSS satellite and the sig-
nal reflected by the land surface are simultaneously received by the antenna (Figure 9). Considering their
phase difference due to the motion of the GNSS satellites, the simultaneously received direct and coherently
reflected signals cause an interference pattern in the signal power. This interference pattern is dependent on
the height differences between the GNSS antenna and the reflection level (Vey et al., 2016). The interference
between the direct and reflected signals produces a modulation that can be observed in temporal variations
of the signal‐to‐noise ratio (SNR) recorded by the GPS receiver. A change in the soil permittivity (due to
change in moisture content) affects all three GPS interferogram parameters, including the effective reflector
height, amplitude, and phase (Larson et al., 2008), where the phase of the SNR is the most sensitive para-
meter for SM determination. If the soil is wet, the active L‐band microwave GNSS signal (~1.2 and
1.5 GHz) is reflected from a layer just below the land surface, while for dry soil the signal penetrates deeper
into the soil and is reflected within a surface layer of up to 7‐cm thickness (Bogena et al., 2015). It has been
shown that the changes in SNR are highly correlated with near‐surface SM in the top 5 cm of soil (Larson
et al., 2010; Rodriguez‐Alvarez et al., 2009, 2010). It has been also demonstrated that GPS‐based SM esti-
mates are independent of the soil type (Chew et al., 2014).

The GNSS‐IR has been shown to have great potential for SM estimation using ground‐based receivers (Chew
et al., 2014; Zhang et al., 2018). However, variables such as snow depth and vegetation water over land may
affect SM retrieval accuracy (Larson et al., 2008; Zhang et al., 2017). The GNSS‐IR footprint can cover up to
thousands of square meters, depending on antenna height and satellite elevation angle (Larson et al., 2010).

Figure 9. Sketch illustrating the geometry of a multipath signal for antenna height ha and satellite elevation angle θE.
Black and gray arrows represent the Global Positioning System signal transmitted from the satellite and the reflected
signal from the ground, respectively. The solid circle represents the gain pattern of the antenna, and the dashed circles
indicate power levels of the receiving antenna gain pattern. When the satellite is approaching the horizon, the reflected
signal is associated to a larger distance to the Global Positioning System antenna.
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For a GPS antenna installed at heights of 1 and 50 m, the footprint area
radius varies from 50 to 330 m (Bogena et al., 2015). In this technique,
the current temporal resolution of SM retrievals is daily because each
GPS satellite has a 1‐day revisit time at any antenna location.

Numerous studies have been conducted in different regions of the World
indicating the good accuracy of SM retrievals from GNSS data (Chew
et al., 2018; Rodriguez‐Alvarez et al., 2009; Sanchez et al., 2015).
Recently, Zhang et al. (2018) analyzed GNSS‐IR data over a dense grass-
land site in southwestern France and compared the GNSS SM retrievals
to in situ observations at 5‐cm depth and reported RMSE values of

0.035 cm3/cm3 (for grass covered surfaces) and 0.018 cm3/cm3 (after grass
has been cut). We also compared the GPS SM inferred over a Savana site
in California to the SMAP L4 surface SM values and obtained a very simi-

lar pattern with R2 and RMSE values of 0.52 and 0.09 cm3/cm3,
respectively (Figure 10).

The NASA Cyclone Global Navigation Satellite System (CyGNSS) that has
been designed for tropical ocean surface wind sensing is also capable to
record GNSS reflections over land and thus has potential for large‐scale
SM estimations. In a study by Kim and Lakshmi (2018), they used the
CyGNSS in conjunction with SMAP SM and provided improved SM esti-
mates with higher temporal resolution (five times per day). Chew and
Small (2018) related L‐band CyGNSS signals to SMAP SM and found a
strong positive linear correlation between the change in CyGNSS reflec-
tivity and the change in SMAP SM with a daily averaged RMSE of

0.045 cm3/cm3. Yet direct applications of this technology to improve our understanding of hydrological pro-
cesses need to be documented in literature. The value of these larger‐scale networks resides less in their
potential to directly study hydrological processes but rather in their ability to provide spatially averaged data
for the calibration and validation of remotely sensed data and their use in data assimilation methods to
improve predictions of hydrological fluxes and states. The GPS SM data are available publicly through the
National Science Foundation Plant Boundary Observatory (NSF'Topps Plant Boundary Observatory) at
http://xenon. colorado. edu/portal/.

3.5. Wireless Network Technology
3.5.1. Network Structure
The development of WSMNs has gained a strong momentum in the last few years due to the development of
low‐cost SM sensors and transmitting technologies, offering the potential to determine spatiotemporal SM
dynamics at the field to catchment scales (Bogena et al., 2015; Vereecken et al., 2014) and permitting real‐
time data access to distributed SM sensors through a centralized communication architecture.

Most WSMNs consist of five basic elements, including (1) a series of SM probe/sensor nodes, (2) a series of
infrastructure nodes or routers, (3) an end node (gateway or coordinator) for data gathering and transfer, (4)
a datalogger or PC, and (5) an internet server with a web interface.

SM probes which are installed below the soil surface should be low cost, reliable, low power, and easy to
install (Robinson, Campbell, et al., 2008). The most promising sensors are those that measure soil electrical
permittivity, as described above in section 3.2. The routers are commonly installed above the ground. They
receive data from SM probe nodes and other infrastructure nodes and transfer to the coordinator. Each net-
work has only a single coordinator which controls and keeps the network running and streams information
from the sensor network to the user and vice versa. ZigBee Alliance (ZigBee Alliance, 2010) is a low‐cost
mesh networking property standard that has been widely used for communication in wireless control and
monitoring applications (Bogena et al., 2010; Kuorilehto et al., 2008; Valente et al., 2006).

Two main topologies for wireless sensor networks have been proposed: (i) underground topology and (ii)
hybrid topology (Akyildiz & Stuntebeck, 2006). In underground topology all sensor units are deployed below
the soil surface except for the coordinator unit (Ritsema et al., 2009). Whereas in hybrid topology a

Figure 10. Soil moisture content inferred with GPS‐IR (circles) compared to
SMAP L4 surface soil moisture (black line) over California (Calaveras GPS
site with Savanna vegetation cover) and daily precipitation (blue bars) from
April 2015 to October 2017. The green symbols represent standard deviation
(SD). GPS = Global Positioning System; SMAP = Soil Moisture Active
Passive.
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combination of underground and aboveground devices is considered. It
has been pointed out that a hybrid topology, which is composed of a mix-
ture of underground sensors and aboveground router devices, is prefer-
able to achieve longer transmission ranges (Bogena et al., 2009). The
basic structure of hybrid topology is illustrated in Figure 11.

Since WSMNs mainly operate on battery power, overall power consump-
tion becomes a critical constraint. Thus, it is important to design WSMNs
that minimize retransmissions. Underground topologies require consider-
able power to overcome soil attenuation. Hybrid topologies on the other
hand allow data to be routed from the underground in a few steps, thus
reducing underground travel distance to conserve power (Bogena
et al., 2010).
3.5.2. WSMN Applications
ManyWSMNs have been used to study spatiotemporal dynamics of SM at
the field (Vereecken et al., 2014), catchment (Graf et al., 2014; Schröter
et al., 2015) and landscape (Qu et al., 2015) scales. Earlier work has
focused on the identification of SM patterns and their temporal stability
(Brocca, Tullo, et al., 2012; Mittelbach & Seneviratne, 2012; Western
et al., 1999). The seminal work of Western et al. (1999) about the
Tarrawarra catchment where they deployed an array of SM sensors
showed that SM in catchments exhibits dry and wet states that switch in
function due to the interplay between local and nonlocal hydrological
controls. This finding has been further corroborated in other catchment
studies such as at the TERENO Wüstebach site in Germany (Graf et al.,
2014). Brocca et al. (2014) used data from six SM networks around the
Earth to study absolute versus temporal anomaly and percentage of global
SM saturation. One major application of WSMNs is the validation of SM
products from microwave RS missions.

Recently, Wiekenkamp et al. (2016) used wireless SM networks to identify
the occurrence and controls of preferential flow in a forested catchment.

Their approach is based on the work of Graham and Lin (2011), who based on the changes in SM observed
at different depths after rainfall events identified three major flow regimes: preferential flow, sequential
flow, and nondetectable flow. Preferential flow refers to out of sequence SM changes where deeper locations
respond earlier to an increase in soil water than locations closer to the surface. The SM measurements indi-
cated that preferential flow occurred throughout the catchment. No clear controls triggering the spatial
occurrence of preferential flow could be identified. Wiekenkamp et al. (2016) used the WSMN at the
Wüstebach site to analyze catchment‐wide controls of preferential flow. Based on the sensor response times,
they identified four different flow regimes: (1) nonsequential preferential flow, (2) velocity‐based preferen-
tial flow, (3) sequential flow, and (4) no response. Different potential factors that may control preferential
flow and its spatial occurrence were analyzed: hydrological, topographical, and soil physical and chemical
parameters as well as temporal factors such as precipitation events and antecedent SM status were studied.
None of these factors were found to control preferential flow. Apparently, occurrence of preferential flow
was governed by small‐scale soil and biological processes. During storm events, the preferential flow
occurred across the whole catchment. Blume et al. (2009) used a combination of sparse SM measurements
in space, but with high temporal resolution, and rainfall simulation experiments and dye tracing to study
the controls of preferential flow. They found that hydrophobicity in combination with small‐scale variability
in rainfall and strong heterogeneity in hydraulic conductivity were the main drivers controlling preferential
flow. Stockinger et al. (2014) used the WSMN in combination with stable δO18 isotope measurements in
water to study travel time distributions in the Wüstebach catchment. They showed that the presence of
wet and dry states is reflected in the stream flow discharge pattern. Under the dry state, the uphill regions
of the headwater catchment are disconnected from the river system and were found not to contribute to dis-
charge. Only the riparian part of the catchment is contributing to river discharge under this state. Under the
wet state both the uphill and riparian part of the catchment supply water for river discharge. The change

Figure 11. An example for a hybrid topology wireless soil moisture network
(adapted from Bogena et al., 2010).
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from wet to dry state was found to occur at a mean water content of 0.35 cm3/cm3, which corresponds to the
maximum spatial variation of soil water.

SM data obtained from wireless sensor networks can be coalesced to produce the mean water content (σθ)
function (i.e., the relationship between the spatial mean of SM and its standard deviation) for the observa-
tion area. The interpretation and analysis of this function has been the focus of various studies (Qu et al.,
2014; Rosenbaum et al., 2012). Vereecken et al. (2007) was the first to use a closed form analytical expression
based on stochastic perturbation theory to predict this function. Rosenbaum et al. (2012) observed the pre-
sence of hysteretic behavior in the σθ with drying events leading to a decrease in the spatial variability and
wetting events to an increase for identical mean water content values. Qu et al. (2014) applied inverse opti-
mization of the observed SM content values using the Hydrus‐1D model at 102 points at the German
TERENORollesbroich site to link temporal stability of measured locations with key soil hydraulic properties
(SHPs). Qu et al. (2015) expanded the work of Vereecken (2007) by deriving a closed form expression for the
van Genuchten (1980) equation. Using pedotransfer functions (PTFs) to generate the input parameters for
the closed form expression, they were able to predict the σθ function for different sites. This approach has
been applied at the global scale by Montzka et al. (2017).

4. Proximal Sensing Methods

Because of high costs and laborious installation of point‐scale SM sensors, they are not well suited to provide
spatially continuous profile SM distributions at larger scales. In recent years, several geophysical proximal
sensing methods such as ground penetrating radar (GPR), ground‐based radiometer and radar systems, elec-
tromagnetic induction (EMI), and magnetic resonance imaging (MRI) techniques have been developed for
field‐scale SM determination (Robinson et al., 2008; Robinson, Campbell, et al., 2008). It should be noted
that CRNP and GPSmethods (section 3.4) may be considered as proximal sensing techniques. However, here
we classify them as ground‐based techniques as they provide temporally continuous SM measurements and
have been used in SM networks for calibration and validation of remotely sensed SM estimates. This section
provides an overview of the basic principles and recent advances of proximal sensing techniques.

4.1. GPR

GPR, also known as georadar, subsurface radar, and ground probing radar, is a promising proximal soil sen-
sing technique that has proven to be applicable for high‐resolution profile SM mapping in two or three
dimensions at the field scale. The GPR technique can be used to bridge the present scale gap between
small‐scale invasive sensors (e.g., TDR sensors) and large‐scale airborne or satellite RS observations. GPRs
transmit high‐frequency (1MHz to 1 GHz) EM signals into the subsurface in a noninvasive manner. The tra-
vel time associated with an EM signal traveling between a radar transmitter and receiver is measured and
used to estimate the dielectric permittivity of the soil (Huisman et al., 2002, 2003). GPR‐derived dielectric
bulk permittivity is then transformed to volumetric SM content using, for example, Topp's empirical rela-
tionship (Topp et al., 1980) or other dielectric mixing models (Sihvola, 1999). Three GPR types including
cross‐borehole, airborne or off‐ground, and surface‐based or on‐ground systems are commonly deployed
for SM determination (Huisman, Hubbard, et al., 2003). Cross‐borehole systems are used to monitor SM
dynamics in the vadose zone. The transmitting and receiving antennas are located in two parallel boreholes
and generate a two‐dimensional velocity image between the boreholes, which can then be converted to
dielectric permittivity and consequently to SM (Binley et al., 2002; Looms et al., 2008). The borehole GPR
has been successfully applied to reconstruct two‐dimensional images (tomographs) of SM distributions
between borehole locations (Binley et al., 2001; Looms et al., 2008), but it remains limited to smaller‐scale
(a few meters) applications, as it requires the installation of vertical boreholes for transmitter and receiver
deployment. Although borehole GPR performs well (van der Kruk, 2006), the systems are time consuming
to operate, effectively limiting their suitability for larger‐scale spatial investigations.

Alternatively, off‐ground and on‐ground GPR systems have been deployed to map SM variability at the field
scale (Ardekani, 2013; Jonard et al., 2011; Minet et al., 2012; Serbin & Or, 2003). Off‐ground GPR configura-
tions are installed at distinct heights above the soil surface and in many cases mounted on mobile platforms
to rapidly move over the soil surface. Such systems are also used for airborne and spaceborne applications
(Ulaby et al., 1986). Using full‐waveform GPR signal modeling, field‐scale SM mapping is feasible
(Lambot et al., 2004; Minet et al., 2012; Weihermüller et al., 2007). Combined with a vector network
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analyzer, off‐ground systems commonly use the surface reflection coefficient for soil characterization and
SM estimation (Jonard et al., 2011; Serbin & Or, 2003). The main challenge for off‐ground GPR is its
sensitivity to surface roughness (Lambot et al., 2006; Van der Kruk et al., 2010) and the shallow
measurement depth of the signal as compared to on‐ground GPR techniques (Vereecken et al., 2014).
However, the effect of surface roughness may be alleviated by operating at low frequencies (0.2–0.8 GHz;
Jonard et al., 2011). The off‐ground GPR may be used for validation of microwave RS SM products
(Koyama et al., 2017).

On‐ground GPR systems represent a perfect alternative for mapping of profile SM because of their ability to
measure direct ground wave propagation velocity (Grote et al., 2003; Huisman et al., 2002, 2001), which
allows for deeper signal penetration when compared to the off‐ground systems due to ground coupling.
On‐ground GPR measurements are performed with a fixed separation distance between transmitting and
receiving antennas (Figure 12). The combination of GPR signals with other sensors/data such as EMI
(Moghadas et al., 2010) and seismic (Ghose & Slob, 2006) has become more common for providing better
estimates of SM. However, GPR has limitations such as poor performance in clay or electrically conductive
soils, contact issues in dense shrubs, and soils with rock fragments (i.e., on‐ground GPR), as well as requiring
more sophisticated data interpretation (Robinson et al., 2012). A detailed review about the application of
GPR for measuring SM is provided in Klotzsche et al. (2018).

4.2. EM Induction

SM determination with EMI sensors relies on the strong correlation between soil water content and the EMI
measured apparent soil electrical conductivity (ECa; Moghadas et al., 2010). Applications of EMI for SM
variability mapping and monitoring at intermediate (hillslope to catchment) scales are discussed in, for
example, Sheets and Hendrickx (1995), Allred et al. (2005), and Huth and Poulton (2007), Tromp‐van
Meerveld and McDonnell (2009), and Shanahan et al. (2015).

EMI sensors apply current to the soil through EMI; hence, no direct contact with the soil surface is required
(Corwin & Lesch, 2003). Common instruments consist of a transmitter coil that, when energized with alter-
nating current (AC) at audio frequency, produces an EM field (Figure 13). The time‐varying EM field
emitted from the transmitter coil induces weak circular eddy current loops in the conducting soil, which
in turn generate a secondary EM field that differs in amplitude and phase from the primary field
(McNeill, 1980). The magnitude of amplitude and phase differences between primary and secondary fields
primarily depends on soil properties including moisture content, type, and concentration of ions in the soil
solution, the amount, and type of clay minerals in the soil matrix, the temperature, and the phase of soil
water (Brevik & Fenton, 2002; Carroll & Oliver, 2005; Kachanoski et al., 1990; Reedy & Scanlon, 2003) as
well as spacing between the transmitter and receiver coil, the distance between coils and soil surface, and
coil orientation (parallel or perpendicular to the soil surface). The effect of magnetic permeability of the

Figure 12. Sketch illustrating the on‐ground Ground Penetrating Radar (GPR) basic principle and reflection profiling,
where Tx is the transmitting and Rx is receiving antenna. Reflections at interfaces arise from changes in subsurface
velocity (v) and dielectric constant (ε).
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soil seems to be negligible according to De Jong et al. (1979). The primary and secondary fields are sensed as
apparent conductivity at the receiver coil in Siemens per meter (S/m; McNeill, 1980). A detailed description
of the theoretical background of EMI is provided in Tuller and Islam (2005).

EMI sensors commonly used for soil investigations include monofrequency (e.g., DUALEM‐1, DUALEM‐

2, EM31, EM38, EM38‐DD, EM38‐MK2, and EMP‐400) and multifrequency (e.g., GEM‐300) sensors. EMI
has been also thoroughly tested for estimating soil salinity (Williams et al., 2006), soil texture (White
et al., 2012), clay content (Harvey & Morgan, 2009), cation exchange capacity (Triantafilis et al., 2009),
soil compaction (Sudduth et al., 2010), soil pH (Van Meirvenne et al., 2013), soil organic carbon
(Martinez et al., 2009), leaching rates of solutes (Slavich & Yang, 1990), herbicide partition coefficients
(Jaynes et al., 1994), groundwater recharge (Williams et al., 2006), and for estimation of the leaf area
index (Rudolph et al., 2015). An excellent review by Doolittle and Brevik (2014) details EMI applications
for soil studies.

Monofrequency instruments have been recurrently used to estimate SM, yielding R2 values ranging from
0.11 to 0.99 (Robinson, Binley, et al., 2008; Tromp‐van Meerveld & McDonnell, 2009). Recently, several stu-
dies have shown that multifrequency EMI sensors can be effectively used for measurement of SM distribu-
tions within soil profiles (Tromp‐van Meerveld & McDonnell, 2009). For example, Calamita et al. (2015)
used a multifrequency sensor with eight frequencies between 7 and 2 KHz for the retrieval of shallow SM
at four sites in Italy and indicated a linear relationship between SM and ECa with R2 between 0.46 and
0.69 and RMSE between 0.064 and 0.077 cm3/cm3. Tromp‐vanMeerveld andMcDonnell (2009) tested amul-
tifrequency sensor with four frequencies (7–14 KHz) to monitor SM for a 9‐month period over an upland
forested hillslope and found a better relationship between ECa and SM at depths ~>30 cm (R2~0.84–0.87)
than at a depth <15 cm (R2~0.78‐0.83).

Combining GPR and EMI data in an integrated inverse modeling scheme that increases the information
extracted from geophysical data has become more common. Moghadas et al. (2010) investigated the joint
analysis of GPR and EMI synthetic data to reconstruct the electrical properties of a two‐layer medium and
reported that the GPR‐EMI inversion approach can accurately estimate the soil electrical parameters when
the values of conductivity and permittivity of the first layer are low.

4.3. Nuclear Magnetic Resonance

Nuclear magnetic resonance imaging (NMRI; also called magnetic resonance imaging, MRI) is another
proximal sensing technique for noninvasive SM determination. It is based on the sensitivity of the MRI sig-
nal intensity (echo) to SM content. Paetzold et al. (1985) first applied this concept to monitor SM. Guillot
et al. (1989) then recorded the first images of a porous medium during moisture depletion.

The most fundamental MRI principle for SM is spin‐echo imaging (Merz et al., 2016), in which an echo is
created by a 180° radiofrequency pulse following an initial 90° radio frequency pulse. The echo intensity
depends on the proton density, which is proportional to the water content of the medium and the

Figure 13. Sketch illustrating the propagation of electromagneticfields in soil for an electromagnetic induction (EMI) sensor.
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relaxation times. Since relaxation times also change with water content,
the echo intensity is not necessarily proportional to the water content
(Barrie, 2000). Because echo intensity itself is also affected by experi-
mental parameters like echo time and repetition time, it is preferable
to record an entire series of echoes and extrapolate to zero to obtain
a quantity that is proportional to the water content if the relaxation
time is sufficiently long (Edzes et al., 1998). In most natural porous
media that include high content of silt or clay, the relaxation time
might be quite short. In this case the so‐called single point imaging
(SPI) technique, originally developed to monitor water in saturated
rocks, may provide more reliable estimates (Balcom et al., 2003). Merz
et al. (2014) tested three MRI methods (unilateral NMR, spin echo mul-
tiscale (SEMS), and SPI3D) for estimating near‐surface moisture based
on equation (12)

θMR ¼ θa;MR−θr;MR
� �

= 1−θr;MR
� �

(12)

with θα,MR = M(0,r)/M(0,r)saturated in which M(0,r) and M(0,r)saturated
denote the signal amplitude at partial and initial saturation, respectively,
θr,MR is the relative magnetic resonance (MR) signal at dry (residual) soil
condition. The assumption of this model is the linear relationship
between MR signals and the moisture content. Figure 14 depicts high‐
resolution near‐surface moisture profiles of medium sand monitored over
time with the three MRI methods.

4.4. ELBARA/JULBARA and ComRAD Ground‐Based Radiometer and Radar Systems

The Eidgenössische Technische Hochschule (ETH) Zürich L‐Band Radiometer (ELBARA) is a passive sys-
tem operating at a frequency of 1.4–1.427 GHz. It was constructed by the University of Bern in collabora-
tion with ETH to infer SHPs from the SM dynamics of top soil. The radiometer consists of a dual‐mode
conical horn antenna mounted on a back of a truck (mobile) or a tower (fixed) with 4–17 m elevation at
zenith angle between 30 and 330°. It measures the brightness temperature at the soil surface for SM
retrieval. The radiometer is equipped with internal cold (273°K) and hot (338°K) loads for measurement
calibration (Jonard et al., 2011). The ELBARA II system has been designed by ESA as part of SMOS, and
it is used for ground‐based campaigns in Europe for calibration of SMOS and SMAP SM algorithms and
for validation of SM retrievals (Miernecki et al., 2014; Schwank et al., 2010; Wigneron et al., 2012).
Miernecki et al. (2014) used ELBARA II SM estimates for evaluation of SMAP and SMOS SM retrieval
algorithms and demonstrated that SMAP single channel (Single Channel Algorithm [SCA]‐H and SCA‐
V) and dual channel (DCA) algorithms and the SMOS land parameter retrieval model (LPRM) provide
results very close (RMSEs 0.035–0.056 cm3/cm3) to those obtained from L‐band Microwave Emission of
the Biosphere (L‐MEB) model‐based multi‐angular ELBARA II measurements. The JULBARA system
at the Forschungszentrum Jülich in Germany is a Dick‐type L‐band (1.414 GHz) radiometer that has been
used for SM retrieval at the field scale with RMSEs of 0.062 (horizontal polarization) and 0.054 cm3/cm3

(vertical polarization) (Jonard et al., 2011).

The Combined Radar and Radiometer (ComRAD) ground‐based L‐band simulator (O'Neill et al., 2007)
developed jointly by NASA/GSFC and George Washington University has been used to refine SMAP SM
retrieval algorithms under controlled conditions (Srivastava et al., 2015) and to develop new radiative trans-
fer based SM retrieval models for vegetated terrain and small tree canopies (Kurum et al., 2011). It consists of
a quad‐polarized radar (1.25 GHz) and a dual‐polarized radiometer (1.4 GHz) sharing the same 1.22‐m para-
bolic dish antenna with 12° field of view andmounted on a 19‐mhydraulic boom truck for field deployment.
Before field measurements, the radiometer is calibrated with cold sky and ambient microwave absorber tar-
gets. In a study by Srivastava, et al. (2015), ComRAD data were used for evaluation of the SCA‐H algorithm
integrated with Mironov/Dobson dielectric mixing models for SM retrieval at a USDA field site covered with
corn and soybeans. Results indicated that SCA‐H is promising for L‐band SM retrieval with a RMSE
of 0.04 cm3/cm3.

Figure 14. Temporal near‐surface soil moisture profile evolution measured
by Spin Echo Multi Slice (SEMS), Single Point Imaging 3D (SPI3D), and
unilateral Nuclear Magnetic Resonance (NMR) Magnetic Resonance
Imaging (MRI) techniques. The crosses at the abscissa represent the gravi-
metric water content (Merz et al., 2014).
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5. RS Methods for SM Retrieval

RS approaches for SM estimation have been applied since the 1970s. These promising methods produce spa-
tially explicit measurements of SM. This section provides an overview of progress and constraints of optical,
thermal, andmicrowave RS techniques for skin and near‐surface SMmeasurements and monitoring. A brief
overview of these RS techniques for SM retrieval and associated pros and cons is provided in Table 3.

5.1. Optical RS

In optical RS, the Vis, NIR, and SWIR EM radiation bands with wavelengths ranging from 350 to 2,500 nm
are used to provide SM estimates from spectral surface reflectance information. Optical RS systems are clas-
sified into multispectral and hyperspectral imaging systems, depending on the number of spectral bands
used in the imaging process. In this section, we discuss optical imagery and reflectance spectroscopy techni-
ques that are deployed for SM retrieval at large and small (laboratory) scales.
5.1.1. Optical Imagery
Optical RS methods have been proposed to quantify skin SM from broadband and narrowband optical satel-
lite and airborne remote sensors such as Landsat (Profeti & Macintosh, 1997; Vincente‐Serrano et al., 2004),
MODIS (Zhang &Wegehenkel, 2006), Hyperion (Song, Ma, et al., 2014), HyMap (Haubrock et al., 2008) and
simulated satellite bands (Castaldi et al., 2015; Muller & Decamps, 2000). Despite the numerous optical
remote sensors currently in orbit, a limited body of literature exists on the exploitation of optical observa-
tions for skin SM estimation. This seems to be partly due to the inability of optical signals to penetrate clouds
and vegetation covers (Zhao & Li, 2013) and the lack of an agreed physically based model for accurate esti-
mation of SM from optical data (Sadeghi et al., 2017). In addition, some optical and hyperspectral data from

Table 3
Overview of Remote Sensing Methods for SM Measurement and Monitoring

Group Advantages Constraints References

Optical (Vis‐NIR‐SWIR) Wide spatial coverage
High spatial resolution
Potential for real‐time applications
(e.g., Drone)

Promising multi spectral and
hyperspectral
sensor results

Limited surface measurement
depth (a few millimeters)

High signal perturbation by clouds
and vegetation

Attenuated by Earth's atmosphere
Low temporal resolution

Lesaignoux et al. (2013), Oltra‐Carrio
et al. (2015), Sadeghi et al. (2015),
and Zhang et al. (2013)

Thermal Wide spatial coverage
High spatial resolution
Potential for real‐time applications
(e.g., Drone)

Strong correlation between surface
SM and temperature

Limited surface measurement
depth (a few millimeters)

High signal perturbation by clouds
and vegetation

Attenuated by Earth's atmosphere
Perturbed by vegetation biomass

Sugathan et al. (2014) and
Verstraeten et al. (2006)

Active microwave Sensitive to soil‐water dielectric
constant/permittivity

Wide spatial coverage (global)
Surface measurement depth (up to 5 cm)
High spatial resolution
Strong correlation between SM
and backscattered power

Backscatter not perturbed by clouds and
atmospheric constituents

Backscatter is independent
of solar illumination

Low temporal resolution
Perturbation of signals by surface
roughness and vegetation biomass

Crapolicchio and Lecomte (2004)
and Wagner et al. (2007, 2013)

Passive microwave Sensitive to soil‐water dielectric
constant/permittivity

Wide spatial coverage
Surface measurement depth (up to 5 cm)
High temporal resolution
Brightness temperature not perturbed by
atmospheric constituents and clouds

Low spatial resolution
Perturbation of signals by surface
roughness and vegetation biomass

Chan et al. (2016), Entekhabi et al. (2010),
and Kerr (2007), and Njoku et al. (2003)

Note. SM = soil moisture; NIR = near infrared; SWIR = shortwave infrared.
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satellite sensors exhibit low temporal resolution, which limits their applicability for monitoring state vari-
ables such as SM.

Because of the wider spectral resolution of satellite/airborne sensors when compared to laboratory instru-
ments that operate within the 1‐ to 8‐nm spectral range and natural heterogeneities at larger scales, it is chal-
lenging to directly apply laboratory‐developed SM retrieval methods to RSmeasurements. Besides SM, other
soil properties (e.g., organic matter, color, salinity, texture, vegetation, roughness, and crust) affect surface
reflectance; hence, RS spectral measurements are highly variable in space (Ben‐Dor et al., 2002). This affects
the accuracy of large‐scale applications. Despite these limitations there is significant interest in SM estima-
tion from optical RS data, because the high spatial resolution SM products are useful for
agricultural applications.

Recently, Hassan‐Esfahani et al. (2015) developed a neural networkmethod that translates high spatial reso-
lution unmanned aireal system (i.e., AggieAir) imagery to reasonably accurate SM estimates (RMSE less
than 0.03 cm3/cm3) for a large center pivot irrigated field in Scipio, Utah. Although the application of hyper-
spectral imaging has generally provided promising results for surface SM (Anne et al., 2014; Peng et al., 2013;
Wang et al., 2011), the usefulness of this technique needs to be further explored in future research.
Hyperspectral sensors with finer spatial resolution and narrow spectral bands may offer an alternative to tra-
ditional multispectral analysis of SM, in particular for landscapes with high spatial heterogeneity. New mis-
sions such as Hyperspectral Precursor and Application Mission (Galeazzi et al., 2008), the Environmental
Mapping and Analysis Program, that will be launched in 2020 (Stuffler et al., 2006), or the HYPerspectral
IMager, scheduled to launch prior to 2020 (Michel et al., 2010), are able to fully cover the solar domain
(400 to 2,500 nm) with high spectral resolution (average of 10 nm) and offer new opportunities for estimating
surface moisture from hyperspectral imagery.
5.1.2. Reflectance Spectroscopy
Reflectance spectroscopy (diffuse optical spectroscopy) has been applied as a powerful means for large‐scale
SM estimation or for skin SMmeasurements at smaller scales. This spectroscopic technique exploits the fact
that the EM spectrum exhibits several distinct water absorption bands within the NIR (~1,414 nm) and
SWIR (~1,915 and 2,210 nm) frequency ranges (Clark, 1999; Viscarra Rossel et al., 2006). Reflectance spec-
troscopy can be also classified as a proximal sensing techniques. Diffuse reflectance relies on a focused pro-
jection of the spectrometer beam onto a sample of interest, where it is reflected, scattered, and transmitted
through the sample material. Spectrometers that operate within the Vis, NIR, and SWIR (400–2,500 nm)
range are applied for both laboratory and field measurements.

The relationship between skin SM and spectral reflectance has been extensively studied and is well docu-
mented in literature (Ben‐Dor & Banin, 1995; Bogrekci, & Lee, W. S., 2006; Chang et al., 2001; Hummel
et al., 2001). Numerous studies have been conducted, mainly at the laboratory scale, to explore the relation-
ships between spectral reflectance and skin SM for a wide range of soil types (Gao et al., 2013; Lobell &
Asner, 2002; Philpot, 2010; Tian & Philpot, 2015). Findings from these studies indicate that reflectance
decreases relative to an increase of SM with the effect being more pronounced in the SWIR range
(Angstrom, 1925; Liu et al., 2002; Sadeghi et al., 2015; Weidong et al., 2002). Exceptions to this trend have
been observed, particularly when approaching saturation (Liu et al., 2002; Neema et al., 1987) and when
models that consider Fresnel reflectance were applied (Sadeghi et al., 2015).

In general, empirical and physical approaches can be discerned for estimating SM from spectral reflectance
data. Most studies that capitalized on the full hyperspectral signature of soils have focused on empirical
regression models such as partial least squares regression (Bogrekci, & Lee, W. S., 2006; Castaldi et al.,
2015), principal component regression (Chang et al., 2001), and multiple linear regression (Ben‐Dor &
Banin, 1995; Liu et al., 2002; Lobell & Asner, 2002) to estimate SM. Hyperspectral signatures measured in
the laboratory are very repetitive and highly oversampled with a high degree of intercorrelation between
neighboring bands. For such cases, band aggregation can be applied as a simple method to reduce and down-
sample spectral data, which in turn is helpful to obtain accurate calibrations (Lopez et al., 2013). Several
empirical indices have been defined to estimate skin SM from measured surface reflectance. The most reli-
able results have been obtained with the Water Index SOIL (Bryant et al., 2003), the Normalized SM Index
(Haubrock et al., 2008), and the Shortwave Angle Slope Index (Khanna et al., 2007). The main drawback of
such indices is the use of bands located within the water absorption features, making them very sensitive to
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effects of atmospheric water vapor. Although empirical methods seem to work reasonably well for the
distinct conditions they were developed for, they cannot be universally applied as spatially significantly
varying soil composition (i.e., SM, organic matter content, minerals, and salts) strongly affects spectral
reflectance (Huan‐Jun et al., 2009).

Physical approaches for SM estimation from optical reflectance are mainly based on radiative transfer theory
(Philpot, 2010; Twomey et al., 1986). Sadeghi et al. (2015) proposed a promising physically based method to
determine skin SM from transformed reflectance of bare and sparsely vegetated soils based on the Kubelka‐
Munk (Kubelka &Munk, 1931) two‐flux radiative transfer theory, which describes diffuse reflectance from a
uniform, optically thick, absorbing, and scattering medium. This approach yielded reasonable results with a
RMSE of less than 0.07 cm3/cm3 when compared to directly laboratory‐measured water contents for various
soils (Figure 15). The potential applicability for large‐scale skin SMmeasurements and associated challenges
is yet to be assessed. While diffuse spectroscopy has been proven to yield good skin SM results, a few studies
also documented its potential for accurate predictions of more complex properties such as water retention
and hydraulic properties (Babaeian et al., 2015; Santra et al., 2009).

It is apparent that while the application of diffuse spectroscopy under laboratory conditions in most cases
provides reasonable results, field measurements exhibit higher uncertainty due to natural heterogeneity of
soil properties, topography, and vegetation effects. This points to the need for further investigations of spatial
heterogeneity effects on the relationships between reflectance and skin SM. A more detailed analysis of
reflectance spectra and comparison to laboratory spectral resolutions are required to overcome this limita-
tion (Haubrock, Chabrillat, Lemmnitz, & Kaufmann, 2008).

5.2. Thermal Infrared RS

Thermal infrared RS exploits the EM wave band between 3,500 and 14,000 nm for SM retrieval from land
surface temperature (LST) determined with the thermal inertia method (Jackson, 1982; Price, 1980;
Schieldge et al., 1982; Verstraeten et al., 2006) or in conjunction with vegetation indices (VI; Claps &
Laguardia, 2004). Over the past three decades, the LST‐VI concept has been widely applied for the estimation
of SM (Gillies et al., 1997; Mallick et al., 2009) and evapotranspiration (Heilman et al., 1976; Stisen et al.,
2008). Several studies have documented the LST‐VI/fractional vegetation cover (FVC) relationship within
a triangular (Carlson, 2007) or trapezoidal space (Moran et al., 1994). The FVC ranges between 0 for bare soil
and 1 for full vegetation cover. The so‐called “universal triangle” concept was first proposed by Price (1990)
for prediction of evapotranspiration and later adapted for surface SM retrieval (Carlson et al., 1994; Gillies
et al., 1997).

A central assumption of the triangle method is that when a large number of pixels capturing the full range of
soil surface moisture and FVC are considered, sharp boundaries in the LST‐VI scatter plot reflect real

Figure 15. Comparison of the Sadeghi et al. (2015) model estimates with directly measured skin soil moisture for single
samples representing four different soil orders (left) and multiple samples of two different watersheds (right). RMSE =
root‐mean‐square error.
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physical limits that include bare soil, full‐cover vegetation, and lower and upper limits for surface SM (e.g.,
completely dry points A and C and saturated points B and C in Figure 16a). The dry and wet edges intersect
at point C for full vegetation cover. The relative value of surface SM and the surface energy fluxes for each
pixel can be defined in terms of its position within the triangle (Wang et al., 2011). A detailed description of
the universal triangle method is provided in Carlson (2007). While an advantage of the triangle method is its
independence of ancillary data (atmospheric and surface data), it is challenging to define the triangular
space for locations with narrow VI range or for regions with rainy/dry seasons, which results in narrow
scattering of the LST‐VI points. The establishment of the LST‐VI relationship is more complicated for
large scales due to the spatial heterogeneity of surface properties that may affect the shape of LST‐VI
space and thereby interfere with the precise determination of the dry and wet edges (Wang et al., 2011).

Figure 16. Triangular LST‐FVC space (a), conventional trapezoidal LST‐FVC space (b), and two‐stage trapezoidal LST‐
FVC space (c) reproduced from Sun (2016). LST = land surface temperature; FVC = fractional vegetation cover.
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Numerous studies have been devoted to estimation of surface SM from the LST‐VI space. For example,
Sandholt et al. (2002) proposed a dryness index for estimation of SM via linking the surface temperature
Ts‐Normalized Difference Vegetation Index (NDVI) scatter plot with a temperature‐vegetation dryness
index and found similar spatial patterns (R2 = 0.70) between TDVI and SM simulated with a hydrological
model. Wang et al. (2001) proposed a Vegetation Temperature Condition Index for monitoring drought
occurrence and its spatial distribution at the regional scale in China. Rahimzadeh‐Bajgiran et al. (2013)
developed a new method to estimate SM from the surface evaporative fraction retrieved from the LST‐
FVC space. Some studies used multiple regression analysis for estimation of SM. For example, Sobrino
et al. (2012) applied high‐resolution thermal images acquired with the Airborne Hyperspectral Scanner
to estimate SM at field scale from emissivity, NDVI, and LST data and obtained a RMSE value
of 0.05 cm3/cm3.

Based on the triangular LST‐FVC feature space method, Zhang et al. (2015) proposed a simple method to
estimate SM for the North China Plain with a second‐order polynomial interpolation function. This method
requires a number of atmospheric input parameters to establish the edges of the triangular LST‐FVC space
from energy balance considerations, which allows comparison of the directly derived SM for a wide range of
atmospheric forcing conditions. Validation experiments with ground data for 10‐ and 20‐cm depths yielded
RMSEs from 0.04 and 0.10 m3/m3, respectively.

The universal triangle method has been previously employed to predict SM at the regional/global scales from
low spatial resolution but high revisit frequency satellite imagery such as provided byMODIS and Advanced
Very High Resolution Radiometer for a wide range of land surface covers (Sandholt et al., 2002; Wan et al.,
2004). NASA's Landsat‐8 satellite that was launched in February 2013 provides thermal data (bands 10 and
11) at a moderate resolution of 100 m that has been applied for thermal SM RS (Amani et al., 2016; Shafian &
Maas, 2015).

The trapezoid method first proposed by Moran et al. (1994) describes the relationship between the surface
soil and air temperature difference (Ts‐Ta) and the FVC. This method has been applied to estimate evapo-
transpiration rates for both fully covered and partially vegetated land surfaces via the Water Deficit Index
(WDI). While the universal triangle method establishes the dry and wet edges empirically, the trapezoid
method is based on physical processes (Yang et al., 2015); hence, derived WDI values are comparable for dif-
ferent times. In addition, the trapezoid method is applicable for finer scales and regions with a narrow SM
and vegetation cover range (Wang et al., 2011). Although the idea of a trapezoidal (Ts‐Ta)‐FVC space is
widely accepted, only a few applications for SM estimation are documented in literature. This is partly
due to challenges associated with the calculation of the soil surface and air temperature difference (Ts‐Ta)
and partly due to the lack of atmospheric data (i.e., air temperature, wind speed, and relative humidity).
These limitations motivated Wang et al. (2011) to apply the Ts‐VI space. They proposed an iterative proce-
dure for quantifying the Ts‐VI trapezoid and calculated the WDI from MODIS surface temperature and
an Enhanced Vegetation Index. SM validation experiments in the Walnut Gulch Experimental Watershed
in Arizona revealed that while temporal variations of SM can be captured reasonably well, the quantification
of spatial variations is limited, at least for semiarid climatic conditions. This might be due to the often erro-
neous assumption of a linear relationship between SM and soil temperature. Although this assumption
yielded reasonable SM estimates in the past, it is not supported by laboratory and fieldmeasurements. A sim-
ple evaporation experiment conducted in our laboratories revealed a nonlinear (L‐shaped) relationship
between soil surface temperature and surface SM that is also confirmed by field observations at a SCAN site
within the Little River Watershed in Georgia (Figure 17). These observations point to the need to quantify
and apply the actual soil temperature‐SM relationship that is mainly influenced by atmospheric forcing
(i.e., air temperature, humidity, and wind) to improve SM predictions.

Recent attempts to modify the trapezoid method have mainly focused on a more accurate definition of space
edges based on the actual response of soil and vegetation to SM dynamics. For example, a two‐stage trape-
zoid method (i.e., two merged triangular spaces) proposed by Sun (2016) proved to be more efficient than
the conventional trapezoid method as it resolves some of the challenges discussed above (Figures 16b and
16c). The central assumption of the two‐stage trapezoid is that Ts is governed by surface SM within the
LST‐FVC space, while vegetation temperature (Tv) is governed by RZSM (Carlson, 2013). In fact, when
moisture within a vegetated soil profile varies from its wettest to its driest value, the surface moisture
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approaches its lowest value before the RZSM does. This indicates a difference in variation rates for Tv and Ts,
where Tv is lagging Ts because vegetation absorbs RZSM for photosynthesis and transpiration.

Sun (2016) simulated the LST‐FVC space with the “SimSphere” model and demonstrated that the new tra-
pezoid is more consistent with the simulated LST‐FVC space and can evolve the LST‐FVC space from the
triangular to the trapezoidal form (Figure 16c). Additionally, they compared both the two‐stage trapezoid
and the conventional trapezoid to estimate the evaporative fraction based on 110 MODIS LST and VI pro-
ducts. Comparisons have indicated that the two‐stage trapezoid is more effective than the classical trapezoid
for evaporative fraction estimation. The uncertainty analysis has also revealed that this method is better sui-
ted for areas and periods exhibiting low SM levels.

Recently, Sadeghi, Babaeian, et al. (2017) and Babaeian et al. (2018) proposed a novel optical trapezoid
model named OPTRAM as an alternative to the conventional triangle/trapezoid methods for estimating
SM from transformed reflectance (SWIR transformed reflectance, STR) data of Sentinel‐2, Landsat‐8, and
MODIS in the SWIR band. The trapezoid is formed by distribution of NDVI as a measure of vegetation frac-
tion versus STR as a measure of SM (Figure 18, left). The latter is based on a simple two‐flux radiative trans-
fer model indicating a linear relationship between surface SM and STR within SWIR bands, which proved to
be valid for a broad range of soils (Sadeghi et al., 2015; Sadeghi et al., 2018).

θ
θs

¼ r−rd
rs−rd

(13)

where θs is the saturated water content, r is transformed reflectance, and rs and rd are the transformed reflec-
tance of saturated and dry soils, respectively. This novel approach was evaluated based on in situ measure-
ments of SM in different watersheds in the United States and showed reasonably good performance for SM
retrieval (see Figure 18, right). The OPTRAMmodel has also performed equally well or, in some cases, better
than the traditional trapezoidmodels. Themain advantage of OPTRAM is its applicability to new higher spa-
tial resolution optical satellites with no thermal band (e.g., Sentinel‐2).

5.3. Microwave RS

As with EM in situ SM sensors, the vast disparity in dielectric permittivity of water, air, and solids is also
exploited for microwave RS (Ulaby et al., 1982). The dielectric properties of the soil phases (i.e., water, air,
and solids) affect the emissivity and backscattering of microwaves at the soil surface. SM is routinely
retrieved from low‐frequency microwave data, including the P‐band, L‐band, C‐band, and X‐band. Several
dielectric mixing and empirical models have been proposed to infer bulk soil permittivity that can be related
to SM content (Dobson et al., 1985; Mironov et al., 2009; Roth et al., 1990; Topp et al., 1980; Wang and
Schmugge, 1980). Passive and active microwave RS of SM are currently the most promising techniques for

Figure 17. Nonlinear relationship between laboratorymeasured surface/skin SM (soil moisture) and average (0–5 cm) SM
(blue circles) and surface temperature (red circles) during evaporative drying of a sand column (left). Field‐measured
SM and temperature at different depths at a Soil Climate Analysis Network site in 2013 within the Little River Watershed
in Georgia (right).
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global‐scale monitoring. Microwave‐based SM products are the only ones routinely supplied various satellite
missions. In terms of continues availability of large‐scale data products, microwave‐based techniques are
substantially more advanced than optical‐ and thermal infrared‐based SM products. For example, some
agencies (e.g., EUMSETAT and JAXA) have made operational commitments to their microwave SM
products (i.e., ASCAT and AMSR‐2) by launching a new mission to ensure product continuity in the
event of a satellite/sensor failure.
5.3.1. Passive Microwave RS
Passive microwave sensors (radiometers) record the natural microwave emission (brightness temperature,
Tb) that is dependent on emissivity and physical temperature of the emitting body. For passive SM retrieval,
knowledge of the physical temperature of the land surface is required. The Fresnel reflection equations
describe the emissivity of a smooth bare soil surface based on the incidence angle of the sensor and the com-
plex dielectric constant of the soil. Typically, soils have a rough surface, which decreases reflectivity and thus
increases emissivity. Vegetation cover also alters microwave emissions and adds a separate contribution to
the land surface emission signal. To simulate these effects, Mo et al. (1982) developed the τ‐ω model that
requires the optical depth (τ) and the single‐scattering albedo of the vegetation (ω) as input parameters.
The τ‐ω model is the basis for virtually all passive microwave SM retrieval models that include the SCA,
the L‐MEB Model, the Community Microwave Emission Model, and the LPRM as presented in
Mladenova et al. (2014), Wigneron et al. (2007), and Drusch et al. (2009). Where vegetation opacity governs
the attenuation effects, the single scattering albedo describes the scattering effects within the canopy
(Brunfeldt & Ulaby, 1984). Because the optical depth is typically not directly available, it can be derived from
vegetation water content (VWC; Njoku & Entekhabi, 1996) or vegetation indices (Hasan et al., 2014). Amore
detailed discription of current passive microwave instruments is presented in section 6.2.
5.3.2. Active Microwave RS
While radiometers captureweak naturalmicrowave emissions from the land surface, radars actively transmit
a microwave signal and record the normalized backscattered fraction, which after SAR (Synthetic Aperture
Radar) proccessing provides higher spatial resolutions than obtained with passive systems. The microwave
energy backscattered from land surfaces is determined by soil properties as well as vegetation cover. As the
roughness of the surface increases, the specular reflection decreases and surface scattering increases, which
in turn increases the backscatter returned to the sensor (Ulaby et al., 1982). Because of these interactions, SM
retrieval is highly dependant on accurate characterization of soil surface roughness (Verhoest et al., 2008).
The effect of soil surface roughness on SM estimates can be removed by means of multiincidence angle or
multipolarimetric observations, which eliminates the need for independent roughness measurements
(Jagdhuber et al., 2013; Kweon & Oh, 2014; Oh, 2006; Rahman et al., 2008; Srivastava et al., 2003). Existing
SM retrieval methods from active microwave measurements can be classified as empirical (Le Hégarat‐
Mascle et al., 2002), semiempirical (Oh et al., 2002), or physically based (Elfouhaily & Guérin, 2004). In the
presence of vegetation cover, the scattering process is more complex as it is affected by plant geometry and
plant moisture content. The plant contribution to backscattering depends on the specific vegetation

Figure 18. Sketch illustrating OPTRAM trapezoid (left), and the evaluation results of the optical trapezoid using Sentinel‐
2 data in the Little Washita watershed in Oklahoma (right) (Sadeghi, Babaeian, et al., 2017). STR = SWIR transformed
reflectance; NDVI = Normalized Difference Vegetation Index; MAE = mean absolute error; RMSE = root‐mean‐square
error LW = Little Washita watershed.
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structure that is determined by occurrence, orientation, water content, and optical depth of stalks, branches,
and trunks. Vegetation effects are commonly taken into consideration by means of multiangular observa-
tions (Gherboudj et al., 2011; Grant et al., 2010; Magagi and Kerr, 1997), multilayer canopy representation
(Toure et al., 1994), or polarimetric decomposition of vegetation and soil contributions (Jagdhuber et al.,
2013, 2015). More details regarding radar microwave instruments are given in section 6.2.
5.3.3. Downscaling Coarse (Passive) Microwave RS Data
Because of its coarse spatial resolution, passive microwave‐based SM is not suitable for small‐scale (e.g., field
scale and catchment scale) applications, where SM commonly exhibits significant horizontal spatial variabil-
ity. Recently, some progress has been made toward improvement of spatial SM representation via downscal-
ing of radiometer data. The general idea behind combining active and passivemicrowave observations for SM
retrieval from SMAPwas driven by the fact that passive (radiometer) observations are typicallymore accurate
but exhibit low spatial resolution, whereas active (radar) observations are more susceptible to surface rough-
ness conditions but exhibit higher spatial resolution (Das, Entekhabi, Dunbar et al., 2018). Combining both
observations may provide lower accuracy but higher spatial resolution. Das, Entekhabi, Dunbar et al. (2018),
Das, Entekhabi, Kim et al. (2018) applied the SMAP active‐passive algorithm and combined 3‐km L‐band
radar and 36‐km radiometer observations as an effective approach to high spatial resolution (3 and 9 km)
and accurate SM estimation (ubRMSE of 0.039 cm3/cm3). Several other published approaches for
active/passive microwave data fusion include the temporal change detection method (Piles et al., 2009,
2014), a Bayesianmerging approach (Zhan et al., 2006), and the fusion of two single‐source SMproducts from
radar and radiometer (Montzka et al., 2016). Akbar and Moghaddam (2015) developed a combined active‐
passive SM retrieval algorithm, which is based onMonte Carlo simulations and optimization. Their approach
yields reasonable results for a wide range of SM (0.04 to 0.40 cm3/cm3) and vegetation (VWC, between 0 and
5 kg/m2) conditions. They concluded that the application of the combined active‐passive algorithm for corn
surface cover (with VWC 5 kg/m2) reduced the SM retrieval error from 0.050 cm3/cm3 (active only) and
0.045 cm3/cm3 (passive only) to 0.035 cm3/cm3. The performance of active‐passive microwave observations
and various retrieval and fusion methods have been evaluated for several regions of the World; for example,
North America (Bindlish et al., 2009; Colliander et al., 2012; Magagi et al., 2013; Narayan et al., 2006; Njoku
et al., 2002), Australia (Panciera et al., 2014), and Europe (Montzka et al., 2016).

The combined application of active and passive microwave observations is exploited not only to improve the
spatial resolution but also to improve the parameterization of retrieval models. The combined application
dates back to Ulaby et al. (1983). Recently, Rötzer et al. (2017) estimated the relationship between radar
backscatter and vegetation opacity for radiometer brightness temperature inversion for SM estimation from
Aquarius data. Dente et al. (2014) applied a discrete scattering model to forward simulate both emission and
backscatter and used C‐band AMSR‐E and ASCAT observations for calibration. The application of active
and passive microwave observations in conjunction with optical NDVI data in an artificial neural network
simulation scheme improved SM retrieval accuracy (Santi et al., 2016). The potential of SMAP combined L‐
band radar‐radiometer for high spatial resolution (3 and 9 km) and accurate global SM has been demon-
strated in Das et al. (2018a).

Additional downscaling methods are based on optical/thermal high‐resolution remote sensors, mainly rely-
ing on MODIS LST/NDVI products (Merlin et al., 2012, 2013; Piles et al., 2011, 2014; Srivastava et al., 2013),
cumulative distribution function (CDF) matching (Kornelsen & Coulibaly, 2014), and MODIS soil evapora-
tive efficiency (Djamai et al., 2015; Merlin et al., 2008) and provide SM estimates at finer resolutions ranging
from 100‐m to 1‐km pixel size. In the course of the Southern Great Plains (SGP‐97) experiment, Chauhan
et al. (2003) inverted the brightness temperature from the Special Sensor Microwave Imager (SSM/I) to
SM and then linked the SSM/I‐derived low‐resolution SM to Advanced Very High Resolution
Radiometer‐derived parameters NDVI, surface albedo, and LST, to obtain higher resolution SM estimates.
Similarly, Merlin et al. (2013) downscaled ~40‐km SMOS SM data with 1‐km soil evaporative efficiency data
fromMODIS. Fang et al. (2018) improved a passive microwave SM downscaling algorithm based on thermal
inertia for the use with SMAP. Pellenq et al. (2003) coupled a radiative transfer model with a hydrological
model to consider topography and soil texture patterns for SM downscaling. Montzka et al. (2018) used soil
textural information to estimate the subgrid SM heterogeneity to account for during downscaling. A good
review of the existing methods for spatial downscaling of coarse‐scale SM products is provided by Peng
et al. (2016).
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6. Data Resources

This section provides an overview of ground and RS data resources available for long‐termmonitoring of SM.
First, an overview of SMmonitoring networks used for RS measurement validation is provided. Then newly
developed active and passive microwave satellite instruments and microwave airborne remote sensors for
near‐surface and root‐zone SM retrieval are described.

6.1. SM Monitoring Networks

Due to the importance of measurements in identifying SM patterns and key hydrological processes, field to
catchment‐scale SM data have been integrated in global or continental networks. These data have found use
both for evaluating models and for validating remotely sensed SM estimates. The International SMNetwork,
ISMN, (Dorigo et al., 2011) combines and hosts in situ SM data from various networks including the U.S.
Climate Reference Network, USCRN (Coopersmith et al., 2015) and the SCAN (Schaefer et al., 2007) for
vadose zone research applications (Wang & Franz, 2015). Robock et al. (2000) were the first to initiate a glo-
bal SM data bank including about 600 stations in five regions. The ISMN has been initiated in 2009 by ESA
for the SMOS project andmade possible through the voluntary contributions of scientists and networks from
around the World. The ISMN is hosted by the Vienna University of Technology and provides free access to
the data set at http://ismn. geo. tuwien. ac. at/networks. The ISMN currently contains SM data contributions
frommore than 35 networks and about 2,000 stations located in North America, Asia, Europe, and Australia.
While the database contains measurements from as early as 1964, most data sets were initiated during the
last decade (see Table 4). A long‐time data set of gravimetrically measured SM has been previously presented
by Robock et al. (2005), who compiled 45 years (1958–2002) of SM data for the top 1‐cm soil layer from over
141 stations in croplands in the Ukraine with 10‐day temporal resolution. However, this data set does not
represent all the biomes to the same extent, which may provide uncertainties for validation of SM estimates.
The latest SM networks in the United States are the COSMOS and GNSS networks, which are described in
Sections 3.1 and 3.4. These data have been used for validation of remotely sensed SM products such as SMAP
(Akbar & Moghaddam, 2015; Colliander et al., 2017; Montzka, Bogena, et al., 2017), SMOS (Montzka,
Bogena, et al., 2017; Van der Schalie et al., 2016), ASCAT (Fascetti et al., 2016), and AMSR‐2 (Wu et al.,
2016). The USCRN data have been used to validate AMSR‐E SM data products (Coopersmith et al., 2015).
The ISMN data have been widely used to validate the ESA CCI SM product (Al‐Yaari et al., 2016;
Chakravorty et al., 2016; Cui et al., 2018; Dorigo et al., 2015; Karthikeyan et al., 2017b). For further informa-
tion, interested readers are referred to a comprehensive review of Ochsner et al. (2013).

A SM time series may prove to be helpful for evaluation of climate model simulations and identifying trends
in the hydrological cycle due to the impact of regional climate change and land use. Some of the stations
(e.g., OK Mesonet and ARM SGP Sites) only monitor soil matric potential with matric potential sensors.
These matric potentials can be converted to SM estimates via site‐ and depth‐specific soil water retention
curves (see section 2). Apart from SMmeasurements, important atmospheric variables such as precipitation,
air temperature, soil temperature, humidity, pressure, and solar radiation are also monitored in some U.S.
networks that include SCAN, CRN, and SNOTEL. These auxiliary data assist users with correct interpreta-
tions of SM observations. Table 4 provides a detailed overview of the most important ISMNs that are cur-
rently measuring SM on an operational basis within and outside the United States. It should be noted that
this overview of networks presents a current snapshot with the ISMN continuously expanding.

Not only in the United States but also in Europe and Asia several large‐scale SM monitoring networks have
been established for research purposes, validation of RS SM products, and as support for natural hazard fore-
casting. It is widely acknowledged that significant additional efforts are needed to enhance measurement
consistency and standardization, data, andmetadata. Furthermore, to reach the goal of a fully integrated glo-
bal SM observation system, it will be important to establish, expand, and improve current SM observations,
both in situ and remotely sensed.

6.2. Microwave Satellite SM Data Resources

Microwave RS has been applied for SM retrieval since 1978 (Chen et al., 2012). Recent and currently operat-
ing spaceborne sensors that provide SM information include (1) the Advanced Microwave Scanning
Radiometer on NASA Earth Observing System Aqua and the GCOM‐W1 (AMSR‐E and AMSR‐2; Jackson
et al., 2012; Kachi et al., 2014), (2) the ASCAT on EUMETSAT MetOp‐A and MetOp‐B (Wagner et al.,
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http://cosmos.hwr.arizona.edu/
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2013), (3) NASA's WindSat Spaceborne Polarimetric Microwave Radiometer on the Naval Research
Laboratory's Coriolis satellite (Gaiser et al., 2004), (4) the European SMOS (Kerr et al., 2001); (5) NASA's
SMAP (Entekhabi et al., 2010), (6) the JAXA Advanced Land Observation Satellite 2, and (7) the ESA
Sentinel‐1 (Bartalis et al., 2007), which are selectively described in more detail below and in Table 5. The
Scanning Multichannel Microwave Radiometer (SMMR) onboard Nimbus‐7 (1978–1987) and the SSM/I
satellite data have been interpreted in terms of SM as well (De Jeu, 2003), and though the accuracy may be
lower, these data do cover time periods that are otherwise missing. A combination of several initial active
and passive satellites is provided by the CCI for global SM. The U.S. and Indian radar mission NISAR
(NASA‐ISRO SAR Mission) that is currently in the planning stage and projected to be launched in 2021 will
operate at the L‐band and S‐band. However, it is still unclear whether NISAR will generate official SM
products. A Tandem‐L mission that enables the systematic monitoring of dynamic processes on the Earth
surface has been proposed as an innovative interferometric and polarimetric radar mission (Krieger et al.,
2007) using a pair of cooperating L‐band SAR satellites flying in close formation (Krieger et al., 2009).
Moreover, a Copernicus candidate mission has been proposed incorporating optical, thermal, and
microwave data from ESA's Sentinels and SMOS with contribution of non‐ESA satellites such as ASCAT,
Terra‐SAR, and RADARSAT‐2. The current state of SMRS has been reviewed byMohanty et al. (2017).

The integration of multiple SM data sources at various spatial and temporal scales is beneficial for numerous
applications. An excellent example is NASA's Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC), which provides scientific and other user access to SM data for North America from
airborne (Airborne Microwave Observatory of Sub‐canopy and Subsurface [AirMOSS]), satellite (SMAP,
GRACE) and ground network sources (SCAN, USCRN, COSMOS, SNOTEL, Soil Moisture Sensing
Controller and oPtimal Estimator, and FLUXNET) through a single platform called SM Visualizer (http://
daac. ornl. gov). The National Snow and Ice Data Center (NSIDC) also manages and distributes such data
for users (https://nsidc. org/data).

6.2.1. The Advanced Microwave Scanning Radiometer (AMSR‐E/AMSR‐2)
The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) is a passive mul-
tiband sensor onboard of NASA's Earth Observing System Aqua satellite (Figure 19a) that measures geophy-
sical variables related to the Earth's water cycle such as precipitation rate, water vapor, cloud water, sea
surface wind/temperature, sea ice concentration, SWE, and SM content. AMSR‐E uses the X‐band and C‐
band for SM retrievals. Because of radio frequency interference (RFI) in the C‐band (6.9 and 10.7 GHz), espe-
cially over the U.S., Middle East, Japan, Italy, and the U.K. (Njoku et al., 2005), the X‐band has been exten-
sively used for SM retrieval. The AMSR‐E spatial resolution has improved (50 km) when compared to
previous missions (e.g., SMMR with 150 km), while sustaining all channels of the previous sensors (i.e.,
SMMR, SMM/I, and TMI). Providing ~10‐year data across several channels, AMSR‐E generates new oppor-
tunities and very useful insights toward the development of SM retrieval algorithms (e.g., development of
SMAP and SMOS algorithms) and long‐term monitoring of soil, water, and climate interactions. Several
retrieval algorithms have been developed to estimate global SM from AMSR‐E data (Du et al., 2016;
Jackson et al., 2010; Njoku et al., 2003; Owe et al., 2001). The LPRM developed by VU University
Amsterdam in collaboration with NASA (Owe et al., 2008) is one of the more widely applied algorithms
for simultaneous SM, vegetation optical depth, and surface temperature retrieval (Cho et al., 2015; Kim
et al., 2015; Meesterns et al., 2005).

As a follow‐on to AMSR‐E, the AMSR‐2 (Figure 19b) sensor onboard of Japan's Aerospace Exploration
Agency (JAXA) GCOM‐W satellite started measuring and releasing brightness temperature (passive) data
in multiple frequencies (bands) in January 2012 with a revisit time of 1–2 days and crossing nodes at 1:30
p.m. and 1:30 a.m. local solar time for ascending and descending orbits, respectively. The lower frequencies
(6.9 GHz, C‐band) provide more accurate SM retrievals for the top ~1–2 cm soil layer (Molero et al., 2017).
The underlying concept of AMSR‐2 is identical to that of AMSR‐E (Kachi et al., 2014). Major improvements
of AMSR‐2 include (1) a larger reflector system of 2.0‐m diameter to provide better spatial resolution, (2) the
inclusion of an additional 7.3‐GHz dual polarization frequency channel for improvement of RFI mitigation,
(3) 12‐bit quantization for all channels, and (4) an improved calibration system (Imaoka et al., 2010). Table 5
provides operational details of the AMSR‐E and AMSR‐2 sensors. AMSR‐2 includes several SM products.
The LPRM SM product for descending overpass has provided more accurate results than that of ascending
orbit (Molero et al., 2017) probably due to the more uniform surface temperature and SM.
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6.2.2. The ASCAT
The Active Microwave Instrument Wind Scatterometer onboard of the European Remote Sensing (ERS)
satellite is a C‐band (5.3 GHz) sensor initially intended for wind monitoring but also widely utilized as the
first active sensor for retrieving SM. The ERS‐1 SCAT has been monitoring the Earth between 1991 and
2000. The second instrument (ERS‐2 SCAT) was launched in 1995 and ceased operation in 2011. The
ERS‐1/2 SCAT had a spatial resolution of 50 km and a revisit time of 2–7 days. ERS‐1/2 SCAT provides a
valuable long‐term SM data set for climate change applications that is used to create the ESA CCI active
SM products. As a successor of ERS‐1/2 SCAT, the ASCAT is a C‐band scatterometer with no SAR‐based
resolution enhancement deployed on satellite platforms of the European Organization for the
EUMETSAT (Figure 19c). The EUMETSAT MetOp‐A satellite was launched in October 2006, and MetOp‐
Bwas launched in September 2012. TheMetOp‐C platformwas launched in November 2018. The instrument
was initially designed for monitoring wind speed and direction over the oceans, but ASCAT has also been
widely used for monitoring SM (Albergel et al., 2009; Draper et al., 2011; Matgen et al., 2012) due to its
high‐quality calibration, high radiometric accuracy, and multiple‐viewing capabilities (Wagner et al.,
2013). The ASCAT sensor includes three vertically polarized antennas oriented at 45°, 90°, and 135° angles
with respect to the satellite track, resulting in a double swath of about 500 km with a gap of about 360 km.
The ASCAT near‐surface SM estimates are obtained with a linear change detection retrieval algorithm

Figure 19. Renderings of the (a) Advanced Microwave Scanning Radiometer for the Earth Observing System,
(b) Advanced Microwave Scanning Radiometer 2 (AMSR‐2), (c) Advanced Scatterometer (ASCAT), (d) Soil Moisture
Ocean Salinity (SMOS), (e) Soil Moisture Active Passive (SMAP), and (f) Sentinel‐1 satellites.
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developed by Wagner et al. (1999), where estimates are obtained at a distinct incidence angle (taken at 40°).
This algorithm yields SM content in terms of relative saturation. The algorithm is part of theWAter Retrieval
Package software, which provides the means for deriving long‐term SM time series (Naeimi et al., 2009;
Naeimi, Scipal, et al., 2009). The basic assumptions of the algorithm include a linear relationship between
backscatter (dB) and near‐surface SM and stability of backscatter despite seasonal change in vegetation
and roughness (Naeimi et al., 2009a & 2009b). Thus, a disadvantage of the change detection algorithm is that
the different contributions to the observed total backscatter from the soil, vegetation, and soil‐vegetation
interaction effects cannot be separated (Wagner et al., 2013). It should be noted that the algorithm calculates
only relative changes in SM and not absolute SM. Hence, tie points to convert relative saturation to absolute
SM are required.

The MetOp‐C, unlike SMOS and SMAP, is an operational platform that generates a real‐time operational
product that is publicly distributed by EUMETSAT (https://navigator.eumetsat.int/product/EO:EUM:
DAT:METOP:SOMO12). This constitutes a much stronger commitment to data continuity than provided
by scientific missions such as SMOS and SMAP.
6.2.3. The Soil Moisture Ocean Salinity (SMOS) Mission
The SMOS satellite with the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument
is developed by the Centre d'Etudes Spatiales de la Biosphère with support from ESA and in collaboration
with the Centre National d'Etudes Spatiales (CNES) and the Centro Para el Desarrollo Tecnological
Industrial (Figure 19d). SMOS is the first satellite dedicated to the global measurement of near‐surface SM
(top 5 cm) with moderate spatial resolution (Kerr et al., 2001; Kerr et al., 2010). Using an interferometric
radiometer, SMOS captures brightness temperature (Tb) at several incidence angles. The radiometer exploits
the interferometry principle, where 69 small receivers measure the phase difference of the incident radiation
emitted from the Earth's surface. The technique is based on cross correlation of observations from all recei-
ver pair combinations to generate the scene Tb. As the satellite moves along its orbital path, each observed
area is imaged at various viewing angles. The microwave signal within the L‐band is much more sensitive to
changes in SM than it is to atmospheric disturbances or land surface characteristics (i.e., surface roughness,
soil texture, topography, and soil bulk density; Kerr et al., 2012). The SMOS mission provides SM estimates
generated from Tb (L1) via the SMOS L2 processor (Kerr et al., 2010), which in principle contains the L‐MEB
model proposed byWigneron et al. (2007). In general, L‐MEB is applied to compute multiangular top‐of‐the‐
atmosphere brightness temperatures based on a set of soil (e.g., moisture, temperature, and texture), vegeta-
tion (e.g., water content and temperature), and radiative transfer parameters (e.g., single scattering albedo,
polarization coupling factor, and surface roughness). The retrieval algorithm as outlined in Kerr et al. (2012)
is based on a Bayesian approach, where L‐MEB based brightness temperatures are compared with direct
observations through minimizing a cost function. SMOS L1 and L2 products have been used to derive
higher‐level products, L3 and L4. SMOS L3 products include surface SM and vegetation optical depth
(VOD), while SMOS L4 products provide root‐zone SM (0–100 cm), surface roughness, neural network‐
based SM from AMSR‐E/SMOS synergies, and an agricultural drought index with spatial resolution of
25 km (EASE‐2 grid; Al Bitar et al., 2013; Mecklenburg et al., 2016; Parrens et al., 2016; Rodríguez‐
Fernández et al., 2016). A comprehensive overview of modeling approaches and SM retrieval algorithms
has been presented by Wigneron et al. (2017).

The recent diurnal L3 product, SMOS‐IC, has been released by the French Institut National de la Recherche
Agronomique in collaboration with the Centre d'Etudes Spatiales de la biosphere to provide global estima-
tions of SM (Figure 20, top) and VOD (Fernandez‐Moran et al., 2017). The VOD product can be used in sup-
port of agricultural applications related to food security (Mecklenburg et al., 2016). SMOS‐IC is based on L‐
MEB, but its algorithm is simpler than the operational SMOS L2 and L3 SM retrieval algorithms. In SMOS‐
IC pixels are assumed homogeneous (a single value of each input model parameter is used for the whole
pixel), while operational SMOS L2 and L3 algorithms correct for pixel heterogeneity. This provides greater
independence of SMOS‐IC from uncertainties in auxiliary data (e.g., MODIS LAI data and SM information
used as auxiliary data in L2/L3 algorithms to estimate Tb in the pixel fractions of heterogeneous pixels) and
tends to perform better than previous SMOS products due to considering updated soil roughness and vegeta-
tion albedo parameters for calibration of L‐MEB SM retrievals based on ISMN SM data (Fernandez‐Moran
et al., 2017; Parrens et al., 2016). L‐band observations have been challenged by unexpected RFI. Despite
being a protected band for scientific studies, the SMOS mission has suffered significantly from RFI effects

10.1029/2018RG000618Reviews of Geophysics

BABAEIAN ET AL. 35

https://navigator.eumetsat.int/product/EO:EUM:DAT:METOP:SOMO12
https://navigator.eumetsat.int/product/EO:EUM:DAT:METOP:SOMO12


in certain regions (Oliva et al., 2012). The number of RFI sources has been reduced in Europe, North and
South America, and China but remains significant in Asia and the Middle East (Soldo et al., 2016). SMOS
data are publicly available from ESA (L2 and L3; http://smos‐diss.eo.esa.int/) and CATDS (L3 and
L4; http://www.catds.fr/Products).
6.2.4. The SMAP Mission
The SMAP satellite is the most recent microwave sensor designed to measure and map SM within the top
5 cm of soil and to discern between frozen and thawed states by applying both active and passive sensors.
The major science objectives of SMAP are to understand processes that link the water, energy, and carbon
cycles, land surface global water, and energy fluxes and to improve weather and climate predictions
(Entekhabi et al., 2010). This was intended to be accomplished with an instrument that combines L‐band
radar with an L‐band radiometer, which share a conically rotating 6‐m aperture reflector antenna that scans
a 1,000‐km‐wide swath while the observatory orbits the Earth (Figure 19e and Table 5). The radiometer pro-
vides “passive”measurements of microwave emissions from the upper soil layer. It is more sensitive to near‐
surface SM and less sensitive to the effects of surface roughness and vegetation when compared to the radar.
The SMAP mission yields 15 publicly available baseline science data products that include near‐surface and
root‐zone SM (RZSM) estimates. The RZSM estimates are based on the assimilation of SMAP data into land
surface models (NASA Catchment land surface model; Reichle et al., 2014). The joint processing of the radar
and radiometer data was intended to yield SM at spatial resolutions of 3, 9, and 36 km with 3‐day temporal
resolution (Entekhabi et al., 2010).

While the SMAP satellite was designed to spend at least 3 years in orbit, the high‐resolution SMAP radar
failed in July 2015 (three months after launch), leaving only the SMAP radiometer operational to this day.
The SMAP target accuracy for SM is 0.04 cm3/cm3 (based on unbiased RMSE) and is determined based on
threshold VWC less than 5 kg/m2. There are two types of SMAP level 2/3 passive surface SM products:
the standard product is posted on a 36‐km Equal‐Area Scalable Earth (EASE)‐2 grid (L2/3 SM_P), while
the optimally interpolated “enhanced” product is posted on a 9‐km EASE‐2 grid (L2/3 SM_P_E). The
actual resolution of the latter is coarser than 9 km (Figure 20, bottom). Both products include SM retrie-
vals for both a.m. and p.m. orbits. These data have a revisit time of 2–3 days at any location and a latency
of 12–24 hr from the time of observation. Of particular interest is the SMAP level 4 (L4) model‐based SM
product obtained from assimilating SMAP level 2 (L2) brightness temperature observations into the
NASA catchment land surface model (Reichle et al., 2017). SMAP L4 provides global estimates of both
surface (0–5 cm) and RZSM (down to 100 cm) with 9‐km spatial and 3‐hr temporal resolutions,

Figure 20. Comparison of SMOS‐IC (top) and SMAP L3 (bottom) monthly surface (0–5 cm) soil moisture retrievals for
August 2017. SMOS = Soil Moisture Ocean Salinity; SMAP = Soil Moisture Active Passive.
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interpolated from the coarse‐scale (36 km) observations in space and in time (Reichle et al., 2017). The
improved SMAP L4 product resolution provides additional information about the spatial variability of
SM making it suitable for medium‐scale applications. As a replacement for the radar, SMAP has recently
released an active/passive SM product at a 3‐km posting, which uses C‐band backscatter observations
from Sentinel‐1 to replace the SMAP L‐band radar. It is only available for the locations and times where
SMAP and Sentinel‐1 overlap.

The experience gained from SMOS aided SMAP in the development of better back‐end mitigation tools and
filters for RFI for both radiometer and radar instruments (Colliander et al., 2017). L‐band RFI is a critical
threat to future efforts to globally measure SM. It should be noted that to date, SMAP provides themost accu-
rate global SM products (L3 and L4) for various applications (Chan et al., 2016 & 2018; Chen et al., 2018;
Colliander et al., 2017; Crow et al., 2017; Koster et al., 2016). Passive SMAP data are publicly available from
the National Soil and Ice Data Center (NSIDC) (https://nsidc. org/data/smap/smap‐data. html).
6.2.5. The Sentinel‐1 Mission
The ESA Sentinel‐1 mission (S‐1) is a two‐satellite polar‐orbiting and day‐and night‐radar imaging system
for land and ocean monitoring (Figure 19f). The goal of the mission is to provide data continuity following
the retirement of ERS‐2 and Envisat (Paloscia et al., 2013). The S‐1 yields improved spatial, temporal, and
radiometric resolutions when compared to the previous Envisat ASAR GM mode, while working at nearly
the same frequency (e.g., 5.4 versus 5.3 GHz; Table 5). Another improvement is the application of cross
polarization to correct for seasonal vegetation effects in the copolarized backscatter measurements. In gen-
eral, due to the better penetration of horizontally polarized (HH) waves through vertically oriented vegeta-
tion (grasses, crops), HH polarization is preferred (Brown et al., 2003). While the ESA provides Level‐1
georeferenced single looked complex and projected multilook ground range detected products, a dedicated
SM product is not available. Several attempts have been made to develop algorithms for retrieving SM from
S‐1 SAR data (Balenzano et al., 2012; Pierdicca et al., 2014). For example, Paloscia et al. (2013) presented an
Artificial Neural Network‐based algorithm to retrieve SM from S‐1 data and tested their approach based on
in situ ground data from several test sites in Italy, Australia, and Spain and obtained mean RMSEs less than
0.046 cm3/cm3, which is in line with S‐1 target retrieval accuracy (0.05 cm3/cm3).

In general, SM retrieval from SAR data is challenging due to the confounding influence of surface roughness
and vegetation on the signal. Although numerous approaches utilizing different backscatter models have
been developed, SM retrieval from S‐1 data remains an enigma, mainly due to significant roughness changes
(e.g., due to agricultural practices) and higher complexity of vegetation characterization at finer scales (e.g.,
wheat versus sugar beet) (Barrett et al., 2009). Due to the loss of the SMAP radar, S‐1 is currently the only
active sensor with a high spatial but 6‐day temporal resolution for near‐surface SM estimations. Such tem-
poral resolution is not adequate for applications where 3 days or less is required. Recently, the S‐1 radar
backscatter measurements (C‐band) have been combined with SMAP radiometer brightness temperature
(L‐band) observations to produce a high resolution SMAP‐Sentinel‐1 SM product (SPL2SMAP_S) with
3‐km EASE‐grid providing SM from April 2015 to present and available to the public through NASA
DAAC at the NSIDC (https://nsidc. org/data/SPL2SMAP_S/versions/2) (Das et al., 2018b).

6.2.6. The CCI
The CCI is a part of ESA's global monitoring of Essential Climate Variables (program, which includes SM).
The CCI aims to provide the most complete and consistent global SM products based on several active and
passive microwave remote sensors dating back to 1978. The record is based on three products that differ in
the data source: (1) an active‐only data set, (2) a passive‐only data set, and (3) a merged active‐passive data
set (Liu et al., 2012; Wagner et al., 2012). The active data set (1991–2014) was generated with the change
detection algorithm (Naeimi, Scipal, et al., 2009; Wagner, Lemoine, & Rott, 1999) based on observations
from the C‐band scatterometer onboard of ERS‐1, ERS‐2 (AMI SCAT) and METOP‐A (ASCAT). The passive
data set (1978–2014) was generated by VU University Amsterdam in collaboration with NASA using the
LPRM (Owe et al., 2008) based on observations from Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, and
Aqua AMSR‐E (Liu et al., 2012). The new 04.2 version of the CCI additionally includes passive AMSR‐2
and SMOS SM data in the merged SM product (Chung et al., 2018). It is possible to include SM data from
new satellite missions (i.e., SMAP, Aquarius, and Sentinel‐1) (Wagner et al., 2012) (Figure 21). This CCI
SM merged data set is publically available from https://www.esa‐soilmoisture‐cci.org. Figure 22 shows an
example of the CCI product for global monitoring of SM.
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6.2.7. Evaluation of Microwave Satellite SM Retrievals
SM retrieval from RS observations may be biased by numerous factors, which are mainly related to atmo-
spheric interferences, vegetation properties, and soil roughness. This necessitates comprehensive validation
of the resulting SM estimates. Significant efforts have been devoted to the development of novel algorithms
providing reliable SM estimates for a variety of land surface conditions (Al‐Yaari et al., 2017; Das et al., 2011;
Fernandez‐Moran et al., 2017; Kerr et al., 2016; McNairn et al., 2015; Montzka et al., 2014; Piles et al., 2009;
Rodríguez‐Fernández et al., 2015; Schwank et al., 2010; van der Schalie et al., 2018; Vittucci et al., 2016).

Validation of SM retrievals is commonly performed based on data from in situ SM networks. For example,
validation of SMAP SM products is performed with a global network of 34 high‐quality core validation
sites that provide estimates of SM at SMAP grid product scales (Colliander et al., 2017). A comprehensive
assessment of SMAP L4 surface and root‐zone SM products based on sparse network and core validation
sites in the World has been provided by Reichle et al. (2017). Their findings indicate that the SMAP L4
meets its established SM retrieval accuracy requirement (0.04 cm3/cm3) with ubRMSE of 0.035–
0.038 cm3/cm3 and 0.026–0.03 cm3/cm3 for surface and root‐zone retrievals, respectively (https://nsidc.
org/data/smap/technical‐references). Table 6 provides an overview of validations of a number of SMAP
SM products.

Data provided by the SMOS mission has a target SM retrieval error of less than 0.04 cm3/cm3. Experimental
validation has been carried out in Europe (Dall'Amico et al., 2012; Dente et al., 2012; Fascetti et al., 2016;
Pierdicca et al., 2015; Rötzer et al., 2014; Wigneron et al., 2012), the United States (Al Bitar et al., 2012;
Jackson et al., 2012; Wagner et al., 2014), Africa (Fascetti et al., 2016; Louvet et al., 2015; Pierdicca et al.,
2015), South America (Niclòs et al., 2016), and Australia (van der Schalie et al., 2015). The validation ranged
from local (Jackson et al., 2012; Louvet et al., 2015) to continental scales (Al Bitar et al., 2012; Fascetti et al.,
2016). Different validation experiments for SMOS SM products have generally revealed varying retrieval
accuracies ranging from 0.030 to 0.140 cm3/cm3 depending on soil type, seasonality, and vegetation density
(see also Table 6). For example, for rain‐fed croplands in Argentina, Niclòs et al. (2016) determined a SM
retrieval uncertainty of ±0.07 cm3/cm3 for SMOS L2 SM products. Louvet et al. (2015) evaluated SMOS L3

Figure 21. Active and passive microwave remote sensors used for generation of the European Space Agency climate
change initiative data sets. Although the SMAP and Aquarius missions have not been included in the latest version of
the climate change initiative (Essential Climate Variable SM 04.2), they are already included in this diagram to highlight
their potential future inclusions. Envisat Advanced Synthetic Aperture Radar (ASAR) and Sentinel‐1 aremerely shown for
evaluation purposes. While the vertical black solid lines represent the start/end of missions, the arrows indicate that a
specific mission has been in orbit beyond the planned mission lifetime (adapted and expanded from Chung et al., 2018).
TMI = Tropical Rainfall Measuring Mission [TRMM] Microwave Imager; AMSR‐E = Advanced Microwave Scanning
Radiometer for the Earth Observing System; AMSR‐2 = Advanced Microwave Scanning Radiometer 2; SMOS = Soil
Moisture Ocean Salinity; SMAP = Soil Moisture Active Passive; ASCAT = Advanced Scatterometer; SMMR = Scanning
Multichannel Microwave Radiometer; ERS 1‐2 SCAT = European Remote Sensing Satellites 1‐2 Scatterometers.
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SM data with ground‐based SMmeasurements at the local and regional scales overWest Africa and found an
average RMSE of 0.047 cm3/cm3. Petropoulos et al. (2015) extensively evaluated SMOS SM operational esti-
mates for some European sites with a variety of climate, environmental, biome, and seasonal conditions
against the Carbo‐Europe in situ network and found that SMOS performed better for low vegetation cover
(with a RMSE from 0.044 to 0.061 cm3/cm3) and during the autumn season (with a RMSE of 0.076 cm3/
cm3). Global comparison of SMOS to other missions like AMSR‐2 indicated consistent results for SMOS over
all surfaces from very dry (African Sahel, Arizona) to wet (tropical rain forests; Al‐Yari et al., 2014; Kerr et al.,
2016; Van der Schalie et al., 2016).

Since AMSR‐2 is a new passive system, efforts have been devoted to the evaluation of the quality of its SM
estimates by utilizing existing in situ observation networks (Cho, Choi, & Wagner, 2015; H. Lu et al.,
2014; Parinussa et al., 2014). For example, Kim et al. (2015) evaluated the accuracy of global AMSR‐2 SM
estimates based on COSMOS networks in the United States, Australia, Europe, and Africa and reported reli-
able performance. More recently, Wu et al. (2016) evaluated the performance for ascending and descending
AMSR‐2 SM products during a 3‐year period (2012–2015) based on in situ measurements at 598 stations of
the ISMN network obtained for various land cover types and ecoregions. Their results revealed the best
agreement with in situ measurements for the Great Plains (RMSE 0.051 cm3/cm3) and the worst for forested
areas (RMSE 0.094 cm3/cm3; see also Table 6).

Validation experiments for ASCAT SM estimates indicated reasonable performance for several regions in
Europe, with even somewhat better results than provided by the initial SMOS and best AMSR‐E SM retrie-
vals. The performance of ASCAT for mountainous regions or desert land was unsatisfactory (Wagner et al.,
2013). A comparison between ASCAT and SMOS SM retrievals with in situ groundmeasurements in Europe
and Northern Africa for the period from 2010 to 2013 has shown similar results (with mean RMSE
0.124 cm3/cm3; Fascetti et al., 2016). A validation experiment for ASCAT and SMOS SM data for four U.S.
watersheds yielded large differences. The ASCAT SM estimates were very noisy and unstable, which may
be due to higher sensitivity of the active observations to surface roughness (Leroux et al., 2014). In a similar
study, Rötzer et al. (2014) evaluated SMOS and ASCAT SM products based on upscaled in situ measure-
ments at three TERENO test sites in western Germany for the time period from 2010 to 2012. They applied
the Water Flow and Balance Simulation (WaSiM) model for upscaling in situ measurements and found that
while SMOS provided relatively constant bias, ASCAT bias was variable throughout the year. While ASCAT
provides accurate SM estimates for bare and sparsely vegetated soils, estimates for tropical forests and other
densely vegetated regions are associated with significant SM retrieval errors (Wagner et al., 2013).

The ASCAT surface SM estimates have been applied to determine SM distributions within the soil profile by
means of the Soil Water Index (SWI), an exponential relationship that links surface and subsurface SM via a
characteristic time length (Ceballos et al., 2005; De Lange et al., 2008; Wagner et al., 1999). For example,
Paulik et al. (2014) evaluated SWI estimates based on in situ measurements at 664 stations (distributed over
23 observation networks) in the United States for a 5‐year period and found an average correlation

Figure 22. Soil moisture seasonality (climatology) in August derived from the combination of six active and passive sen-
sors over the period from 1979 to 2010 (Source: Technische Universität Wien, http://www.esa‐soilmoisture‐cci.org/node/
93; WACMOS: Water Cycle Multi‐mission Observation Strategy).
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coefficient of 0.54 and RMSEs below 0.079 cm3/cm3. A global validation of the ASCAT SWI with in situ data
from the ISMN has been provided by Paulik et al. (2012). The ASCAT near‐surface SM products have also
been assimilated into land surface models to provide profile SM (Dharssi et al., 2011; Draper et al., 2011,
2012; Reichle et al., 2007). An ASCAT root‐zone SM profile product, the so‐called SM‐Data Assimilation
System‐2, SM‐DAS‐2 or H14, has been developed by the European Organization for the EUMETSAT based
on a near‐surface SM index, the H‐16 SM‐OBS‐3 product, and a Simplified Extended Kalman Filter Data
Assimilation System (De Rosnay et al., 2011). This product is available for four soil layers from the surface
down to 3m (i.e., 0–7, 7–28, 28–100, and 100–289 cm) with global daily coverage. This product has been eval-
uated based on in situ measurements and yielded better SM estimates than model or satellite estimates alone
(Albergel et al., 2010, 2012). The ASCAT root‐zone SM profile retrieval algorithm is now operational at the
European Centre for Medium‐Range Weather Forecasts (ECMWF). A significant constraint of ASCAT SM
data is the irregular temporal coverage.

However, so far only a few validation experiments have been conducted to determine the performance of the
S‐1 data with regard to SM retrieval. Table 6 provides an overview of the accuracy and performance of vali-
dation experiments used to retrieve SM from various microwave satellite remote sensors.

Several studies have been conducted to evaluate CCI products based on in situ measurements and finer spa-
tial resolution remotely sensed SM data. In a comprehensive validation, Dorigo et al. (2015) evaluated histor-
ical CCI products based on ground measurements at 596 sites from 28 globally distributed SM networks.
They reported RMSE of 0.05 cm3/cm−3 (R = 0.46) for absolute values and 0.04 cm3/cm−3 (R = 0.36) for
SM anomalies. In a similar study, Wang et al. (2015) performed reliability analysis of CCI products for crop-
lands in North China for the period from 1981 to 2010. They obtained an average triple collocation (TC) ran-
dom error of 0.052 cm3/cm3 and an average Spearman correlation coefficient of 0.42. A quality assessment of
5‐year CCI data based on estimates from Envisat ASAR (Wide SwathMode) for various climate, topography,
land cover, and soil‐type conditions has provided reasonable agreement between the ASAR and CCI data
sets, with correlation values larger than 0.55 (Pratola et al., 2015). It has been pointed out that the merged
products have a similar or better performance than individual products (Dorigo et al., 2015). Recently,
Gruber et al. (2017) proposed a new merging approach based on weighted averaging and error variance esti-
mates obtained from TC analysis for blending multi‐platform (active/passive) SM products, which is being
used in the new CCI product (version v03.x and higher). An overview of validation results for microwave
satellite SM retrievals is given in Table 6.

High spatial variability of SM results in significant differences between the point‐scale in situ SM sensors and
the coarse‐scale satellite‐based SM retrievals, which provides a significant challenge for the validation of SM
from the current and the upcoming SMsatellitemissions. Upscaling point‐scale SMcouldhelp tofill in the scale
gaps and provide reliable validation of satellite SM products. An excellent review of the SM upscaling problem
and measurement density requirements for ground based SM data has been provided by Crow et al. (2012).

6.3. Airborne Microwave Sensors and Imagery

Over the past few decades, extensive L‐band and C‐band airborne observations have been conducted with
the aim of preparation for L‐band and C‐band satellite missions. Such microwave instruments are only cap-
able of measuring near‐surface SM, which is then assimilated into hydrologic models to determine profile
SM (Draper et al., 2012; Montzka et al., 2011; see also section 7.2). There is significant interest in direct,
large‐scale, profile SM measurements because data assimilation approaches that couple satellite‐based
near‐surface SM and subsurface SM may fail under specific circumstances (Kumar et al., 2009; Walker
et al., 2002). The application of lower‐frequency (deeper measurement) airborne microwave remote sensors
for profile SM quantification has been an area of extensive research in recent years. In this section we focus
on lower‐frequency airborne activities only. At the lower P‐band microwave frequencies, the signal pene-
trates to deeper soil depths, which allows direct profile SM sensing, which is of significant importance for
many agricultural, hydrological, and meteorological applications and which is critical to strategic manage-
ment of water resources.

6.3.1. The AirMOSS Mission
The NASA AirMOSS mission that consists of a P‐band fully polarimetric SAR represents the first attempt to
provide high‐resolution observations of RZSM and net ecosystem exchange (NEE). The project targets nine
regions representative of the major North American climatic biomes for estimating the impact of RZSM on
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regional carbon fluxes and integrating the measurement‐constrained estimates of regional carbon fluxes to
the continental scale of North America (Chapin et al., 2012; Tabatabaeenejad et al., 2013). In contrast to L‐
band and C‐band microwave remote sensors, AirMOSS is designed to provide direct RZSM estimates. For
the AirMOSS mission, NASA has adapted its Uninhabited Aerial Vehicle Synthetic Aperture Radar, a
pod‐based repeat‐pass polarimetric SAR that operates within the L‐band (∼1.2 GHz) and incorporated a
P‐band (280–440 MHz) SAR, which operates at different frequencies onboard a Gulfstream‐3 aircraft. The
AirMOSS is capable of penetrating through vegetation extending to soil depths of about 0.5 m. The actual
measurement depth depends on SM status, soil type, and vegetation cover (Moghaddam et al., 2000). It
should be noted that P‐band SAR observations are influenced by Faraday rotation resultant from the aniso-
tropic ionosphere and the action of the geomagnetic field. This distorts P‐band data and complicates their
direct application for SM retrieval (Qi & Jin, 2007; Rignot et al., 1995).

AirMOSS test flights started in August 2012 and science operations commenced in October 2012. The sur-
veys cover approximately 25 × 100‐km areas that contain FLUXNET sites for ground calibration and span
regions ranging from boreal forests in Saskatchewan (Canada) to tropical forests in La Selva (Costa Rica)
(Tabatabaeenejad et al., 2015). The flights have provided high spatial resolution (100 m) measurements
for nine regions representative for the major North American biomes (Figure 23) at subweekly, seasonal,
and annual time scales. Furthermore, AirMOSS data can provide a direct means for validating RZSM algo-
rithms applied for the SMAP L4 SM retrieval (Tabatabaeenejad et al., 2015). A cross comparison between
AirMOSS and model‐based RZSM estimates generated by the Flux‐Penn State Hydrology Model (Flux‐
PIHM) over the nine biome sites demonstrated comparable levels of accuracy for the two products when
evaluated against in situ SM measurements and a significant temporal cross correlation. However, the
AirMOSS RZSM retrievals showed higher spatial and temporal variability than the Flux‐PIHM estimates
(Crow et al., 2018). AirMOSS data are publicly available from NASA at https://airmoss. jpl. nasa. gov.

6.3.2. The E‐SAR
The Experimental Synthetic Aperture Radar (E‐SAR) onboard the German DLR DO228 aircraft is capable of
simultaneously capturing data within the X‐band, C‐band, L‐band, and P‐band. The measurement modes
include single channel operation mode (i.e., one wavelength and polarization at a time), the SAR
Interferometry mode (X‐band and C‐band), and the SAR Polarimetry mode (L‐band and P‐band). The E‐
SAR captures an area of 3–5 × 20 km with slant range resolution of 2.3 to 4.5 m and azimuth resolution
of 0.7 to 2.5 m. The E‐SAR has been in operation since 1989 and has been continuously improved and applied
to various SM and ice study campaigns such as AgriSAR (Synthetic Aperture Radar in Agriculture, 2006),
OPAQUE (Operational discharge and flooding predictions in head catchments, 2007–2008), SARTEO
(Synthetic Aperture Radar within TERENO framework, 2008; Bogena et al., 2018), and ICESAR
(Synthetic Aperture Radar for Ice, 2007) (Jagdhuber et al., 2015; Parrella et al., 2016). In 2012, the
Microwaves and Radar Institute of the German Aerospace Center (DLR) developed an improved E‐SAR ver-
sion, termed F‐SAR, based on the same platform and frequencies. Several studies have demonstrated the
capability of E‐SAR for SM retrieval. Zwieback et al. (2015) showed that SM variations significantly affect
E‐SAR L‐band radar signals (i.e., phase, coherence, and phase triplets). Jagdhuber et al. (2015) coupled full
polarimetric L‐band E‐SAR data with an iterative generalized hybrid decomposition method to retrieve SM
for vegetated land surfaces and obtained RMSEs ranging from 0.04 to 0.044 cm3/cm3 for different vegetation
covers and soil types. The retrieved RZSM from microwave airborne instruments can provide validation of
RZSM retrievals from assimilation of near‐surface SM into hydrological models, which is discussed in
section 7.2.
6.3.3. The Polarimetric L‐Band Multibeam Radiometer
The Polarimetric L‐band Multibeam Radiometer (PLMR) is a passive microwave remote sensor onboard a
small aircraft owned by the Australian Research Council and several Australien universities. It provides
brightness temperature data at six different incidence angles (±7°, ±21.5°, and ±38.5°) to estimate high‐
resolution SM, salinity, and temperature at low to moderate vegetation conditions. The radiometer includes
a thermal imager (FLIR ThermaCam S60, 7.5–13μ) and a dual polarization L‐band (1.4 GHz) radiometer
with 1‐ and 50‐m resolutions, respectively, at a flight elevation of 150 m above ground. The instrument's
accuracy is 0.7 for H‐ and 2°K for V‐polarizations, which translates to a SM accuracy better than
0.01 cm3/cm3. It was used to assess the performance of the core algorithm (L‐MEB) used for SMOS SM retrie-
val (Peischl et al., 2014; Yan et al., 2015). For example, Panciera et al. (2009) used PLMR brightness
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temperature data from National Airborne Field Experiment conducted in southeastern Australia in 2005 to
evaluate the L‐MEB algorithm for SM retrieval and showed good accuracy with errors less than 0.048 cm3/
cm3 for crops and grasslands. It was also used in different studies for detection of land surface SM changes
(Ma et al., 2017; Summerell et al., 2009). The PLMR was also used in SMAP experiments in Australia for an
algorithm development test‐bed for the SMAP mission (Panciera et al., 2014; Wu et al., 2014, 2015).
6.3.4. The Passive Active L‐Band Sensor
The Passive Active L‐band Sensor (PALS) onboard NASA's P‐3, NCAR C‐130, and Twin Otter
International's aircrafts is a combined dual polarization radiometer and radar operating at 1.41 and
1.26 GHz, respectively. The antenna is a high beam efficiency conical horn with relatively low side lobes
pointed at a 38° incidence angle and the spatial resolution 600‐m at 1,200‐m altitude. It was designed and
built as the prototype for the Aquarius and SMAP missions to assess the benefits of combining active and
passive microwave sensors for SM and ocean salinity RS (Colliander et al., 2017; Wilson et al., 2001).
PALS has been used in varying configurations for four major field experiments between 1999 and 2007
(Colliander et al., 2012). PALS observations have been used to improve the calibration and validation
of SMAP SM algorithms (Colliander et al., 2012). For example, McNarin et al. (2015) used PALS in a
6‐week Canada‐U.S. field campaign in 2012 (SMAPVEX12) to simulate SMAP data. They showed that
PALS radar backscatter and radiometer brightness temperature data were able to closely follow dry down
and wetting events during SMAPVEX12. Akbar and Moghaddam (2015) used PALS data in Iowa in 2002

Figure 23. The Airborne Microwave Observatory of Sub‐canopy and Subsurface study regions in North America.
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(SMEX02) and introduced a combined active‐passive approach based on numerical modeling and para-
meter optimization in support of SMAP SM retrieval and showed retrieval errors of 0.035 cm3/cm3 for
corn (VWC equal to 5 kg/m2). Colliander et al. (2015) used PALS data acquired during the SMAP valida-
tion experiment in 2012 to evaluate SMOS satellite brightness temperature observations and found differ-
ences less than 5 and 6°K for V and H polarizations, respectively. They concluded that PALS estimates are
of significant value for the development of SMAP SM retrieval algorithms. Examples for other widely
applied microwave airborne systems for SM retrieval include the L‐band Electronically Scanned
Thinned Array Radiometer (Gao et al., 2004; Guha et al., 2003), the C/X‐band Polarimetric Scanning
Radiometer (Bindlish et al., 2006; Das & Mohanty, 2008), and the L‐band radiometer 2D‐DTAR (Rye
et al., 2010).

7. Root‐Zone SM Estimation

As discussed above, most of the commonly applied RS methods provide only skin and near‐surface SM esti-
mates. The increased interest in estimating RZSM based on RS observations has led to close cross‐
disciplinary collaborations between the RS community and soil physicists and hydrologists with the central
goal of linking RZSM to remotely sensed skin and near‐surface data. Correlations of surface and RZSM at
different depths are influenced by many factors such as soil type, land use, and prevailing hydroclimatolo-
gical conditions (Mahmood & Hubbard, 2007). Nonetheless, several approaches, reviewed by Kostov and
Jackson (1993), indicated that accurate estimation of RZSM based on near‐surface SM is possible. Kostov
and Jackson (1993) categorized these approaches into four main classes: (1) empirical regression‐based mod-
els, (2) knowledge‐based approaches, (3) microwave brightness temperature inversion techniques, and (4)
combinations of remotely sensed data with soil water flow models. They concluded that “Proper integration
of remote sensing and modeling is probably the best approach to the problem of profile SM estimation”. Soil
water flow models commonly applied to this approach are classified as analytical and numerical models as
discussed below.

7.1. Analytical Modeling

One approach to link RZSM to surface/near‐surface SM is the derivation of a simple analytical equation
from an approximate mass balance equation (Albergel et al., 2008; Ceballos et al., 2005; Wagner,
Lemoine, & Rott, 1999). An excellent contribution to this class of models is the pioneering work of
Wagner, Lemoine, and Rott (1999), who introduced a simple one‐parameter model by solving the following
approximate mass balance equation:

L
dθ
dt

¼ C θsur−θð Þ (14)

where θ is the volumetric SM content averaged from z = 0 to z = L (z denotes soil depth), θsur is the SM
content at the surface (z = 0), t is the time, and C is a pseudo diffusivity coefficient that depends on the
soil properties. Solving equation (14), Wagner et al. (1999a) obtained the following simple equation to
estimate deeper layer (profile) SM, θ(t), from a time series of remotely retrieved surface/near‐surface
SM, θsur (ti), data

θ tð Þ ¼ ∑iθsur tið Þ exp − t−tið Þ=T½ �
∑i exp − t−tið Þ=T½ � (15)

where T = C/L is a “characteristic time length” or recession constant, considered to be a calibration para-
meter to be determined by fitting model estimations to ground observations.

Although the solution of Wagner, Lemoine, and Rott (1999) relies on some simplifying assumptions (i.e.,
neglect of transpiration and invariant soil diffusivity), it is useful as a general concept for estimating the pro-
file SM, accounting for the decreasing influence of measurements with increasing time lag. Equation (15)
has been tested with both simulated and measured data and yielded good results (Tobin et al., 2017). The
model has also been extensively used to improve the description of the RZSM for rainfall‐runoff applications
(Brocca, Melone, Moramarco, Wagner, et al., 2010; Brocca, Tullo, et al., 2012; Manfreda et al., 2011; Matgen
et al., 2012).
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Another analytical approach for retrieving RZSM is the physically based
model of Sadeghi et al. (2017), which builds on the second‐order polyno-
mial model of Tabatabaeenejad et al. (2015). Sadeghi, Tabatabaeenejad,
et al. (2017) mathematically solved Richards' equation (RE; see equa-
tion (17) and section 7.2.1) for unsaturated flow in soil and introduced a
more realistic model for retrieving profile SM fromAirMOSS P‐band radar
data. The general form of their equation, neglecting initial and boundary
conditions, is

θ ¼ c1z þ c2 exp
z

hcM

� �
þ c3

� �1
P

(16)

where c1, c2, and c3 denote the unknown coefficients that need to be
retrieved, P and hcM are soil‐dependent parameters related to water reten-
tion function parameters (van Genuchten, 1980). The values of these two
parameters are available for the 12 soil textural classes of the USDA clas-
sification scheme (Carsel & Parrish, 1988; Sadeghi, Tabatabaeenejad,
et al., 2017). The AirMOSS retrieved SM profiles, using equation (16),
revealed better performance than the original AirMOSS polynomial algo-
rithm by improving the inversion accuracy and providing more accurate
SM profiles (Figure 24).

7.2. Numerical Modeling and Data Assimilation

For several years, SM has been estimated with “open loop” strategies,
where hydrological land surface models are simply coupled with precipi-
tation and other meteorological data. For example, SM has been provided
as volumetric or soil wetness by the National Centers for Environmental
Prediction‐National Center for Atmospheric Research (NCEP‐NCAR;
Kalnay et al., 1996), the ECMWF (Simmons & Gibson, 2000), the
Japanese 25‐year Reanalysis (JRA‐25) project, the Global Land Data

Assimilation System (GLDAS; Rodell et al., 2004; https://rda.ucar.edu/), the Global Energy and Water
Cycle Experiment (GEWEX) Global Soil Wetness Project (GSWP‐2; Dirmeyer et al., 2006), and the North
American Land Data Assimilation System (NLDAS; Luo, 2003).

Another strategy to provide high‐accuracy RZSM is the combination of surface SM measurements with a
numerical model. Numerical modeling to estimate RZSM from near‐surface SM estimates is commonly
accompanied by sequential data assimilation, that is, the combination of observations with previous simula-
tions for estimations used for the next model forecast (Entekhabi et al., 1994; Crow & Wood, 2003; Das &
Mohanty, 2006; Han et al., 2013; Montzka et al., 2011; Song, Shi, et al., 2014). Reichle et al. (2004) were
among the first to show that the assimilation of SM observations can globally improve model‐based RZSM
predictions (Reichle et al., 2007; Reichle & Koster, 2005). In geosciences, and especially for estimation of
RZSM, sequential data assimilation often forms an inverse problem. Here, near‐surface SM (indirect mea-
surements) can be used to update RZSM simulations (previous forecast) to initialize a corrected state for
the next prediction (Hoeben & Troch, 2000). With this approach, a dynamically consistent motion picture
of the hydrological system can be generated with known error bars (Ghil & Malanotterizzoli, 1991). In this
case, accurate precipitation observations serve as the driving force for the hydrological model and have
similar significance and largely independent information to contribute to the RZSM algorithm as compared
to assimilated near‐surface SM measurements (Reichle et al., 2014). The benefit of near‐surface SM data
assimilation to infer RZSM is the connection to water and energy cycles, for example, evapotranspiration
and infiltration estimation (De Lannoy & Reichle, 2016; Lievens et al., 2015).

Various assimilation techniques such as the Ensemble Kalman Filter (Evensen, 1997), the Particle Filter

(Gordon et al., 1993; Moradkhani et al., 2005), or variational methods (Lorenc, 2003) including their modi-

fications have been applied to RZSM estimation (Montzka et al., 2012). Sabater et al. (2007) compared differ-

ent assimilation methods for RZSM retrieval. In addition to the assimilation method, subsurface physical

Figure 24. Comparison of the Richards' equation (RE)‐based solution for
Airborne Microwave Observatory of Sub‐canopy and Subsurface soil
moisture retrieval with measured soil moisture data and the polynomial
algorithm for two flights over the Metolius (Oregon) and BERMS
(Saskatchewan) sites in 2015. The MAE denotes the mean absolute error
(cm3/cm3).
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models also play an important role in the improvement of RZSM estimates. Kumar et al. (2009) found this to

be a function of surface‐root‐zone coupling strength, where the catchment land surface model outperforms

the Mosaic, Noah and Community Land Model (CLM) models by describing the deviations from the equili-

brium SM profile. The coupling to very deep soils is weaker but still possible using longer assimilation per-

iods with more observations (Walker & Houser, 2001). During extreme hot conditions, the long‐term

correlations between near‐surface and RZSM conditions degrade (Hirschi et al., 2014), and inversion may

become misleading. A decoupling occurs during such extended drying periods as a result of a divergence

between the drying rates at the soil surface and at deeper locations within the soil profile (Walker et al.,

2002). However, Sabater et al. (2007) tested various data assimilation techniques derived from Kalman filter

and variational methods and generated satisfactory RZSM results by assimilation of near‐surface SM mea-

surements into a model. Reichle et al. (2004) were among the first to show the discrepancy between absolute

SM values between the datasets (satellite, model, and in situ) and point out the importance of bias correction

and rescaling data before SM retrievals can be assimilated into land surface models. Yilmaz and Crow (2013)

evaluated the optimality of three bias correction approaches including CDF matching, least squares regres-

sion, and TC to remove systematic differences between modeled and observed values and concluded that TC

is the optimal approach. However, TC rescaling only helps for multiplicative biases, whereas CDF matching

and least squares regression deal with both additive and multiplicative biases.

There are various examples of near‐surface SM assimilation for improved RZSM estimation (e.g., Carrera
et al., 2015; Draper et al., 2012; Kumar et al., 2014; Lievens et al., 2017; Pan et al., 2012). Dumedah et al.
(2015) used the advanced Evolutionary Data Assimilation procedure to assimilate downscaled (1 km)
SMOS surface SM data into the Joint UK Land Environment Simulator to better estimate the RZSM for
the western plains of New South Wales in Australia. Assimilation yielded a clear improvement of RZSM
retrieval by 34% for the 0‐ to 30‐cm soil depth, 59% for the 30‐ to 60‐cm soil depth, and 63% for the 60‐ to
90‐cm soil depth based on RMSE. Draper et al. (2012) used an ensemble Kalman filter to separately and
jointly assimilate ASCAT and AMSR‐E into the NASA Catchment land surface model and recommended
that joint assimilation of active and passive microwave observations provide maximum accuracy for
RZSM estimation. Kolassa et al. (2017) combined active and passive microwave data from ASCAT and
AMSR‐E in a SM assimilation system and obtained highly accurate SM products. Lievens et al. (2017)
demonstrated that joint assimilation of high‐resolution Sentinel‐1 and SMAP observations can improve
the spatiotemporal accuracy of surface and root‐zone SM estimates. Koster et al. (2018) indicated that inte-
gration of SMAP L2 surface SM data into the Catchment land surface model (the same as SMAP L4 model)
along withmodel calibration can improve simulated SM and streamflow estimates. This has important rami-
fications for maximizing the effective employment of SMAP data in hydrological simulations. Hain et al.
(2012) used dual assimilation of thermal infrared and passive microwave satellite observations of SM into
the Noah land surface model and reported improvements for surface and RZSM. In addition to RZSM,
satellite‐derived SM data have been used for initialization of numerical weather prediction models. In a
study by Drusch (2007), the TRMM Microwave Imager (TMI) SM product with 40‐km resolution was used
in three data assimilation experiments with the Integrated Forecast System (IFS) of the ECMWF over the
southern United States to infer RZSM and improve weather parameters and forecast quality. Satellite SM
products have been used to correct precipitation estimates with a water balance model via matching of
observed and simulated SM. Pellarin et al. (2008) demonstrated that the use of AMSR‐E SM measurements
can be useful to suppress a significant number of wrongly detected rain events.

Often, the model hydraulic parameterization leads to inadequate SM profile predictions. However, surface
SM assimilation for improved RZSM simulation can help to constrain the parameter space (Han et al.,
2013; Lee et al., 2014; Montzka et al., 2011). The process of combining observations and model forecasts dur-
ing data assimilation is typically carried out by weighting each on the basis of their respective errors (Kumar
et al., 2012). Therefore, one important issue during near‐surface SM data assimilation is the correct estima-
tion of the observation error characteristics (Reichle et al., 2008). Typically, most data assimilation
approaches assume random, zero‐mean observation errors, but in reality biases are unavoidable and it is dif-
ficult to attribute the bias to the model or the observations. Assimilating biased observations would lead to
biased model states (including RZSM) and model parameters. Therefore, several bias removal techniques
have been developed (Kumar et al., 2012). These techniques correct for both additive and multiplicative
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biases. In contrast to dynamically bias‐aware data assimilation systems (Chen et al., 2014; De Lannoy et al.,
2007; Montzka et al., 2013; Ryu et al., 2009), typically a priori bias mitigation is performed. Kumar et al.
(2012) compared the attribution of the bias to the model and a priori calibration of respective model para-
meters with the attribution to the observations and a priori SM climatology matching. They found similar
assimilation skills for near surface and RZSM, where the spatial variability of skill scores is reduced by a
priori parameter optimization. A priori bias mitigation strategies include cumulative distribution function
matching (Reichle & Koster, 2004) and least squares regression rescaling (Crow & Zhan, 2007), or TC
(Stoffelen, 1998). Applications of near‐surface SM assimilation are discussed in Lievens et al. (2015),
Parrens et al. (2014), Rains et al. (2017), and Xu et al. (2015).
7.2.1. Soil Water Flow Governing Equation
Estimating RZSM from surface/near‐surface SM is commonly accomplished through a land surface or
hydrological model. Land surface models applied to the RZSM simulations commonly consider a limited
number of soil layers along the soil profile and calculate SM for each layer using a water balance equation
(Crow & Wood, 2003; Sabater et al., 2007). More sophisticated hydrological models solve the SM profile
on a much finer grid where water flow is modeled based on Richards' (1931) equation (Das & Mohanty,
2006; Entekhabi et al., 1994; Han et al., 2012a; Heathman et al., 2003; Montzka et al., 2011). RE combines
the Buckingham‐Darcy equation (Buckingham, 1907), q = –K(∇h – 1), and the continuity principle (conser-
vation of mass), ∂θ/∂t = –∇q. Modified to account for root water uptake, the one‐dimensional (1‐D) form of
RE is written as

∂θ
∂t

¼ ∂
∂z

K
∂h
∂z

−K

� �
−S zð Þ (17)

where q is the water flux density [LT‐1], K is the unsaturated hydraulic conductivity [LT‐1], h is the pressure
head [L], θ is the volumetric SM content [L3L−3], t is time [T], z is soil depth [L] assumed positive downward
from the soil surface, and S is the sink term [L3L−3T−1] (i.e., root water uptake).
7.2.2. Soil Hydraulic Functions
In an unsaturated soil, h and K are functions of θwhich are referred to as SHPs or “soil hydraulic functions”
(SHFs) and assumed to be invariant for a given soil. Provided that K(θ) and h(θ) for any given soil component
are known, solving RE subject to specific initial and boundary conditions would result in an estimate of the
SM profile, θ(z), at any time of interest, t.

Various mathematical relationships exist for SHFs, h(θ) and K(θ). The most widely used unimodal SHFs are
relationships introduced by Gardner (1958), Brooks and Corey (1964), van Genuchten (1980), Russo (1988),
and Kosugi (1994, 1996) (Sadeghi et al., 2016; Tuller & Or, 2005a). The retention curves (see section 2) are
empirical relationships, and the conductivity models are derived from substitution of the retention curve
into a bundle of cylindrical capillaries (BCC) model. These empirical SHFs are commonly parametrized
via nonlinear regression analysis of measured h‐θ and K‐θ data for a soil of interest.

Several studies conducted within the past few decades have provided evidence that in addition to capillary
forces, adsorptive surface forces significantly impact the matric potential, especially in fine‐textured soils
with high specific surface areas (Lebeau & Konrad, 2010; Peters & Durner, 2008; Tuller et al., 1999; Tuller
& Or, 2005b).

Direct measurements of SHPs mostly rely on inversion of Darcy's law for steady state conditions or an
approximate analytical or numerical solution of RE for transient conditions. Therefore, these methods are
limited to the so‐called “Darcy scale,” where the RE originates, such as the sample scale (Kool et al., 1985;
Peters & Durner, 2008) or column scale (Sadeghi et al., 2014; Shao & Horton, 1998) in laboratory analyses
and at the point scale (Simunek & van Genuchten, 1996) and block/plot scale (Hillel et al., 1972) in field
experiments. Hence, these methods are not optimal for large‐scale modeling of soil water flow, for example,
at the satellite footprint scale. To tackle this problem, effective SHPs at the footprint scale have been recently
investigated using RS techniques (Babaeian et al., 2016).

Most of the existing methods for RS‐based estimation of SHPs rely on inverse modeling of RE or its extended
forms in which footprint scale effective SHPs are solved such that model simulations best fit remotely sensed
data. Camillo et al. (1986) were among the first to estimate soil hydraulic parameters (Brooks‐Corey para-
meters) by inversion of an extended form of RE accounting for nonisothermal soil water flow and heat
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transfer to fit microwave‐based surface SM and soil temperature. They conducted a plot‐scale experiment,
where passive microwave data were acquired with a dual‐polarized L‐band radiometer mounted on a boom
truck. Later, Ines and Mohanty (2008a, 2008b, 2009) developed Genetic‐Algorithm‐based inverse modeling
and data assimilation methods for estimating footprint‐scale effective values of the van Genuchten (1980)
soil hydraulic parameters, incorporating time series data of airborne and satellite (e.g., AMSR‐E) RS‐based
near‐surface SM data. In a synthetic study, Montzka et al. (2011) explored the potential of using near‐surface
SM retrieved from different satellites to estimate SHPs (van Genuchten parameters) and SM profiles using
the 1‐D RE and a particle filtering data assimilation method. The inverse modeling approaches for estima-
tion of SHPs using RS data have been thoroughly reviewed by Mohanty (2013).

Besides inverse modeling approaches, there exist a few studies on the potential of direct estimation of SHPs

using RS data. Hollenbec et al. (1996) indicated that soil hydraulic heterogeneity could be identified by detec-

tion of relative changes in passive microwave RS observations. They concluded that the variogram of relative

change indicates existence of an effective correlation length much larger than that commonly observed in

ground‐based soil surveys, and their findings encourage the use of passive microwave RS for assessing soil

hydraulic characteristics that are valid at a scale appropriate for hydrometeorological models. Mattikalli

et al. (1998) observed that temporal changes of airborne passive microwave (L‐band) brightness temperature

(a function of SM) held statistically significant negative lognormal relationships with saturated hydraulic

conductivity (Ks). They showed that regression‐basedmodels could accurately relate the brightness tempera-

ture variations to Ks across large regions.

Limited literature exists on predicting SHPs based on hyperspectral optical imaging (Babaeian et al., 2015a).
Such methods are mainly based on regression models between SHPs or parameters as target variables and
various features of soil absorbance and reflectance spectra as explanatory variables. These regression‐based
predictive models were termed “spectrotransfer functions” or “spectral transfer functions”, STFs, and spec-
tral pedotransfer functions (analogous to “PTFs”; Babaeian, Homaee, Vereecken, et al., 2015; Santra et al.,
2009). Studies of Santra et al. (2009), Babaeian, Homaee, Montzka, et al. (2015), and Babaeian, Homaee,
Vereecken, et al. (2015)) are among a few in this category, relating soil reflectance at various optical wave-
lengths (400–2,500 nm) to Ks and van Genuchten hydraulic parameters. Although the STFs were developed
using laboratory spectroscopy (i.e., a spectroradiometer), they are potentially promising for airborne and
spaceborne hyperspectral remote sensors for SHPs estimation (see section 5.1.2). Recently, Babaeian et al.
(2016) used coarse‐scale STFs and Spectral Pedotransfer Functions (SPTFs) to provide coarse‐scale estimates
of the van Genuchten‐Mualem hydraulic parameters. They evaluated the effective values of the hydraulic
parameters and showed that the coarse‐scale spectral transfer functions coupled with vadose zone flowmod-
eling can be applied to predict profile SM dynamics at larger scales.
7.2.3. Scale Mismatch
Since the RE has been originally developed for the Darcy scale, which ranges from the representative ele-
mentary volume (REV) to the sample or column scale, application of RE to the RS footprint scale, i.e., from
a few meters to hundreds of kilometers, may lead to physically unrealistic results. When solving RE in order
to simulate θ(z,t), h should be translated as θ. As mentioned above, this is accomplished through the appli-
cation of the soil water retention curve, which is valid for hydrostatic conditions (i.e., no flow). This means
that a “local equilibrium” between water content and water potential is assumed when solving RE (Vogel &
Ippisch, 2008). The equilibrium (stationary) condition is not always guaranteed, for example, when solving
the RE numerically in a coarsely discretized domain. Therefore, allocation of more computational resources
to solve the RE for finer spatial grids is often required not only to avoid numerical errors but also to satisfy
the local equilibrium assumption (Roth, 2008). Failure to satisfy this essential requirement is not only due to
the numerical discretization issue but also may occur at the scale of the REV. Roth (2008) argued that “vio-
lation of the stationary assumption at the scale of the REV leads to a fundamental failure of the Richards'
equation that cannot be amended.” This condition is observed, for example, with infiltration instabilities
that lead to localized flow processes.

Several studies addressed the much debated question: “Do the underlying physics in the RE formulation
apply at large scales of practical interest?” (Or et al., 2015). Several authors (Or et al., 2015; Roth, 2008;
Vogel & Ippisch, 2008) argued that, due to the underlying assumption of local equilibrium, there exists an
upper limit of spatial discretization (δ) above which the solution is expected to be biased. By equating
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diffusive and convective water flows, Vogel and Ippisch (2008) analytically derived an upper limit for δ.
Their solution showed δ ranges from a few centimeters to a few meters depending on the SHPs (smaller δ
for coarser soils) and the total water potential gradient (smaller δ for larger gradients). For large‐scale hydro-
logic applications, Or et al. (2015) also indicated that the spatial extent of lateral flow interactions under most
natural capillary gradients rarely exceed a few meters. Despite this fact, the RE has been widely applied at
the footprint scale as discussed above. For such applications the spatial discretization of the numerical solu-
tion of the RE is limited to the remote sensor's spatial resolution (e.g., from 10 m for optical Sentinel‐2 to
about 40 km for microwave SMOS and SMAP). This scale mismatch should be considered as an unavoidable
source of error in numerical models linking surface SM and RZSM (Entekhabi et al., 1994; Han et al., 2012a;
Heathman et al., 2003).

Due to inherent spatial variability of soil properties, application of the RE at large scales is accompanied with
upscaling SHPs from point to footprint scale. Two general approaches for upscaling SHPs are commonly
applied: (1) forward upscaling and (2) inverse upscaling (i.e., inverse modeling; Vereecken et al., 2007).
Forward upscaling methods directly calculate large‐scale properties from small‐scale properties. Various
theories exist for forward upscaling of SHPs such as simple averaging (Zhu & Mohanty, 2006), percolation
theory (Hunt & Idriss, 2009; Samouelian et al., 2007), homogenization theory (Neuweiler & Cirpka, 2005;
Neuweiler & Vogel, 2007), hybrid mixture theory (Hassanizadeh & Gray, 1979), similar/dissimilar media
scaling theory (Miller & Miller, 1956; Sadeghi et al., 2012; Warrick et al., 1977), stochastic methods (Yeh
et al., 1985; Zhang & Lu, 2002), and renormalization methods (King & Neuweiler, 2002; Saucier, 1992).
Forward upscaling requires detailed information of SHPs at small scales, and hence, is not appropriate for
RS applications. As discussed above, a common approach to incorporate RS data for effective SHP estimation
is inverse modeling, where SHFs are parametrized to match the RE solution with RS‐based observations at
large scales. This strategy may alleviate the scale mismatch issue discussed above, as it basically calibrates
RE so that it fits large scale observations. However, calibration of RE in hydrological models with insuffi-
ciently fine discretization will likely result in parameter values that are physically unrealistic (Downer &
Ogden, 2004). Here the effective parameters also appear to be dependent on the type of boundary condition
(Vereecken et al., 2007). In other words, the parameters may not work under boundary conditions different
from those applied during calibration.

8. Spatial and Temporal Variability of SM

The high variability of SM in space and time is well documented (Crow et al., 2012; Famiglietti et al., 2008;
Vereecken et al., 2014) and to a certain extent the cause for the large variability of SM estimates obtained with
the various sensing methods discussed above. The surface soil layer generally exhibits the largest SM varia-
bility, due to the interaction of environmental (soil properties, topography, and vegetation), meteorological
(precipitation and temperature), and human factors, which decrease with soil depth. The magnitude of the
variabilities depends on the extent of scale (see section 2.2) as itfirst increases with increasing extent and then
when reaching a threshold remains constant (Brocca, Tullo, et al., 2012). The relationship betweenmean SM
and the standard deviation of SM has been considered as an important aspect when analyzing the spatial
variability of SM (Brocca, Melone, Moramarco, &Morbidelli 2010; Famiglietti et al., 2008). Figure 25 depicts
an example of this relationship for surface SM (0–5 cm) fromSMAPL4 data (April 2015 toMay 2017) from the
Tonzi Ranch site in California for an area about 2,000 km2. In particular, a convex upward relationship can be
identified between mean and standard deviation of surface SM (Brocca, Melone, Moramarco, & Morbidelli,
2010; Western et al., 2004) when the data set covers the whole range from dry to wet conditions. Crow et al.
(2012) reviewed different techniques for spatial upscaling of SM and discussed the upscaling problem and
measurement density requirements for ground SM networks. While this relationship describes spatial SM
variability, it does not provide information about temporal variability. Thus, the question is how can both
spatial and temporal variabilities be quantified and made comparable between different data sets?

In contrast to methods only describing variability in the spatial domain, for example, geostatistics (Haining
et al., 2010), or only in the temporal domain, for example, time series analysis (Fu, 2011; Sprott, 2003), there
exist several methods that simultaneously analyze both space and time domains. Especially for SM, the com-
bined analysis of spatial and temporal patterns of observations is important to understand their origin.
Several methods have been proposed for analysis of the spatiotemporal SM variability, including

10.1029/2018RG000618Reviews of Geophysics

BABAEIAN ET AL. 51



Temporal Stability Analysis (TSA; Martinez‐Fernandez & Ceballos, 2005),
TC (Crow et al., 2015; Gruber et al., 2017), and Empirical Orthogonal
Functions (EOFs; Yoo & Kim, 2004). In this section we discuss EOF and
TSA as newmethods available for understanding spatiotemporal variabil-
ity of SM.

8.1. EOFs

EOF analysis, which is also known as principal component analysis
(PCA), decomposes the observed variability of a data set into a set of
orthogonal spatial patterns and a set of multivariate time series called
expansion coefficients (Korres et al., 2010). With this separation, EOFs
can be used to identify the dominant processes and essential parameters
controlling spatiotemporal SM patterns (Korres et al., 2010). A temporal
sequence of spatial variables is expressed as a result of the superposition
of two or more temporally stable spatial structures. The spatial distribu-
tion of the variable at a specific point in time is then defined as a weighted
average of those patterns, where the weights vary with time. The first EOF
loadings (also called the eigenvectors) typically contain the dominant
fractions of the spatiotemporal variability, whereas the last EOF loadings
contain the residual variance classified as observation uncertainty or more
generally as noise. Therefore, the approach can be used to efficiently
extract information from observed data and to describe hydrological beha-
vior in heterogeneous systems in a quantitative way (Hohenbrink &
Lischeid, 2015). For more details see Hannachi et al. (2007).

Typical applications for SM datasets mainly include an analysis of the origins of spatiotemporal patterns.
Korres et al. (2010) related patterns of field‐scale SM measurements to soil properties and topography.
They applied EOF analysis and indicated that soil properties and topography control the spatiotemporal pat-
terns of SM. Perry and Niemann (2008) analyzed the TARRAWARRA data set (Western & Grayson, 1998)
and found a primary pattern association with soil water lateral redistribution. The second factor that was
found to impact SM distribution patterns was solar radiation, which differentially insolated the surface
due to topography. Moreover, they decomposed the data set into EOFs, interpolated the EOFs using a stan-
dard interpolation method, and used the interpolated EOFs to reconstruct the fine‐scale SM patterns in time.
This method outperformed the standard interpolation methods. Kim and Barros (2002) and Jawson and
Niemann (2007) explained the relationship between the spatial structure of estimated SM and that of ancil-
lary data including topography, soil texture, and vegetation cover with an EOF analysis. Joshi and Mohanty
(2010) quantified the contribution of soil texture to SM variability from the watershed to regional scales, as
microwave remotely sensed SM is retrieved with dielectric mixing models such as that from Wang and
Schmugge (1980) that, in part, is based on the dominant soil texture within the measurement footprint.

In addition to topography and soil properties, Qiu et al. (2014) also analyzed the role of precipitation on SM
variability at different spatial scales. They were able to quantify the influence of rainfall variability on SM
being small at watershed scales and larger at regional and national scales (e.g., China). This is because
large‐scale SM distribution is more closely related to atmospheric forcing processes. Nied et al. (2013)
reduced the dimensionality of their SM data set to identify the main driving patterns of flood initiation.
The EOF analysis of Fang et al. (2015) of simulated and observed SM revealed that introduction of hetero-
geneity in soil porosity effectively improved estimates of SM patterns. In the same region, Koch et al.
(2016) and Graf et al. (2014) conducted an EOF analysis on SM data and clustered the resulting loadings
to separate wet and dry periods. This classification was further used to assess the seasonality of the
SM patterns.

Fan and Dool (2004) showed the dominance of El Niño–Southern Oscillation in the first EOF of global long‐

term SM simulations. Bauer‐Marschallinger et al. (2013) performed a similar study for Australia. Schubert

et al. (2004) found the causes of long‐term drought in the U.S. Great Plains in the El Niño–Southern

Oscillation and pan‐Pacific sea surface temperature anomalies. Wang et al. (2015) found correlations of

Figure 25. Relationship between mean surface soil moisture and standard
deviation for SMAP L4 data for the 2,000‐km2 Tonzi Ranch site in
California. The red line represents a fitted third‐order polynomial function.
SMAP = Soil Moisture Active Passive.
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the Palmer Drought Severity Index in China with the Northern Hemisphere polar vortex, the Arctic

Oscillation, and the North Atlantic Oscillation. Tatli and Turkes (2011) analyzed different drought indices

with and without SM information in an EOF analysis to identify the most suitable index for drought char-

acterization in Turkey. EOFs are also used in downscaling approaches; for example, Busch et al. (2012)

developed a topography‐related downscaling algorithm, where the associated expansion coefficients are esti-

mated on the basis of the spatial average SM.

8.2. TSA of Spatial Structures

In contrast to EOFs, TSA assumes that there exists a single spatial pattern that manifests itself at all times as
spatial distributions of soil vegetation atmosphere transfer variables. TSA is considered to be a valuable tool
for identifying a small number of representative sampling points to estimate the grid mean SM. It temporally
averages the relative differences of the observations at a specific location to the spatial mean of all observa-
tions at a specific point in time (Vachaud et al., 1985). Each observation point is then ranked from dry to wet
locations, which describes the spatial pattern. Currently, the use of the mean relative difference is the most
common way to characterize the temporal stability (Vanderlinden et al., 2012). TSA of SM has been reported
for various spatial scales (Brocca, Melone, Moramarco, & Morbidelli, 2010; Mohanty & Skaggs, 2001) from
subfield (Abdu et al., 2017; Pachepsky et al., 2005) to regional (Brocca, Tullo, et al., 2012, Cho & Choi,
2014; Martínez‐Fernández & Ceballos, 2003) to global scales (Rötzer et al., 2015). The applications of TSA
are versatile, because the description of relative spatial SM patterns can be used for multiple purposes. For
example, the site rankings can also be used to reduce the number of observation points in an area of interest
by keeping the majority of the information about the spatiotemporal variability. So‐called “catchment aver-
age SM monitoring” sites were proposed for such locations at the watershed scale, which are able to repre-
sent the spatial mean SM (Western et al., 1998). Applications of the monitoring site reduction or
representative areal mean estimation can be found in Martinez et al. (2008), Schneider et al. (2008),
Thierfelder et al. (2003), Zhao et al. (2013), and Zucco et al. (2014). This concept has interesting applications
for upscaling and downscaling approaches for satellite RS SM validation (Dumedah et al., 2013; Molero
et al., 2018; Vanderlinden et al., 2012). Rötzer et al. (2014) used the TSA method to validate remotely sensed
SM products from SMOS and ASCAT in a relative way, focusing on the spatial patterns of SM. Also, Bhatti
et al. (2013) and Cosh et al. (2006) used TSA for satellite SM validation. Zhang et al. (2016) analyzed the SM
regimes under different land covers using TSA. It was determined that vegetation is able to introduce pat-
terns in the spatial distribution of SM (Wang et al., 2015). Lin (2006) reported that the high spatial variability
of SM in a catchment is largely a result of soil type and landform controls rather than a random process. In
other regions temporally stable SM patterns can be directly attributed to relatively high clay contents (Gao
et al., 2011). Ran et al. (2017) examined the capability of TSA for irrigated agricultural landscapes and indi-
cated that irrigation practices reduce the accuracy of the representative sampling error at the 1 and 5 km
scales. They introduced a stratified TSA that mitigates systematic and random errors by combining previous
information through stratification, which is important for validation of remotely sensed SM. Several SM TSA
results focus on SHPs (Cosh et al., 2008; Lin et al., 2016). But in hilly areas the contribution of topography to
spatial structures in SM increases (Brocca et al., 2009). The higher the mountains, the larger is the effect of
snow distribution on SM patterns (Williams et al., 2009). At larger scales, meteorological factors increase
their impact (Cho & Choi, 2014). In addition to SM, matric potential has also been studied with more direct
insights on the detailed soil characteristics and controls of spatial variability and temporal stability (Yu
et al., 2015).

8.3. TC Analysis

TC analysis was initially developed for ocean wind studies (Stofflen, 1998), but it is also used in land surface
hydrology (Chen et al., 2017; Yilmaz & Crow, 2014). TC relies on a linear error model to reduce the error
from an approximated linear relationship between different measurements of a geophysical variable. The
metrics that are typically used to assess the error of each data set are the variance of its errors and the corre-
lation with the true SM (Chen et al., 2016; Gruber et al., 2016). TC has been applied in the context of calibra-
tion, validation, bias correction, and error characterization to allow comparisons of diverse data records
from measurement and estimation techniques such as in situ SM and RS/modeled SM. In a study by
Chen et al. (2017), TC analysis was used for real validation of the SMAP L2 SM product at five core
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validation sites in the United States and it was found that TC can solve the impact of random representative-
ness errors in the point‐scale data against footprint‐scale SM estimates and provide an unbiased estimation
of the satellite versus ground correlationmetric. TC and other error estimationmethods only provide an esti-
mation of the total observation error variance that is the summation of the autocorrelated and the white
observation error. This can lead to inaccurate results in SM data analysis at time scales that are shorter than
the autocorrelation length of the errors. Some advances have been made in TC analysis. Dong and Crow
(2017) proposed a more generalized TC algorithm, which decomposes total errors provided by TC into its
autocorrelated and white error components, helpful for the ESACCI SM data set and additionally for hydrol-
ogy and climatology studies that require decomposed error information. Recently, Molero et al. (2018) eval-
uated the spatiotemporal representativeness degree of in situ SM within the satellite footprint in Little
Washita (U.S.) and Yanco (Australia) at timescales from 0.5 to 128 days. They proposed a new approach
called Wavelet‐based Correlation (WCor) and concluded that in contrast to the TC method, which performs
well at the week and month scales, WCor provides consistent results at all time scales and is a robust method
for sparse SM networks. An overview of implementations of SM TC analysis has been presented in Gruber
et al. (2016).

9. Application of SM Information and Outlook

There are numerous Earth and environmental sciences disciplines and applications benefitting from
detailed SM information (Figure 26). For example, knowledge of the SM status and its spatial and temporal
variability is key for forecasting weather and climate, modeling hydrological processes, predicting and mon-
itoring of extreme natural events (e.g., droughts, fires, and dust storms), managing water resources, agricul-
tural plant production and productivity, and for sustaining ecosystem services (Vereecken et al., 2016). A
brief discussion of SM information applications follows.

9.1. Weather Forecasting and Hydrological Modeling

The SM status governs water and energy exchange processes between the land surface and the atmosphere.
When soils are moist, the major portion of the net radiation is utilized for evapotranspiration (i.e., latent heat
flux), which leads to uplift of water vapor and cloud formation when the air temperature falls below the dew
point temperature. In dry soils, on the other hand, more energy is invested in sensitive heat exchange, which
reduces the atmospheric vapor pressure and cloud cover. Knowledge of the spatial and temporal SM varia-
bility aids in constraining the lower boundary conditions in atmospheric simulations. SM information can
be applied for accuracy improvement of rainfall estimations via a bottom‐up approach (Koster et al.,
2016Koster et al., 2018). Pellarin et al. (2008) was among the first to estimate precipitation occurrence from
AMSR‐E surface SM observations in West Africa. Brocca et al. (2014) assumed that if soil is considered as a
natural rain gauge, then rainfall can be successfully estimated from SM observations (i.e., ground based or
satellite based) with the SM2RAIN model that inverts the soil water balance equation. SM data have been
extensively used for validation of numerical weather prediction models (Cui et al., 2009; Drusch, 2007).
Specifically, the impact of SM on high temperature weather and heatwave events has been well documented
(Fischer et al., 2007; Lau & Kim, 2012; Zeng et al., 2014). For instance, Fischer et al. (2007) indicated that
during a heatwave, the SM is extremely low, which greatly increases the surface temperature and substan-
tially reduces the latent heat flux. This confirms the key role of SM as a lower boundary in the partitioning
of net radiation into latent and sensible heat fluxes and the evolution of the heatwave (Miralles et al., 2014).
Incorrect estimation of SM leads to erroneous simulations of the surface layer evolution and hence precipi-
tation and cloud cover forecasts could consequently be affected. Collow et al. (2014) examined the impact of
SM on precipitation, temperature, and humidity and pointed out that accurate initialization of SM in numer-
ical weather forecasting models could improve temperature, humidity, and precipitation forecasts for the U.
S. Great Plains.

As already discussed, SM is a key state variable and of crucial importance for hydrological modeling. Ground
and satellite SM products have been connected to hydrological models for prediction of hydrological fluxes.
However, the effective application of SM information for such modeling efforts is still in an infancy state.
Vereecken et al. (2015) discussed the value of SM information from a global hydrological observatory net-
work for identifying soil hydrological processes. Recently, Sadeghi et al. (2019) proposed an analytical model
based on RE for estimation of the net water flux (precipitation minus evapotranspiration) from near‐surface

10.1029/2018RG000618Reviews of Geophysics

BABAEIAN ET AL. 54



SM observations for different soil and vegetation conditions. Recent applications of SM data for hydrological
modeling have focused on joint assimilation of remotely sensed SM products and streamflow data into
distributed hydrologic models to provide more accurate estimations of SM (Lievens et al., 2016 & 2017;
Verhoest et al., 2015). Yan and Moradkhani (2016) used a particle filter Markov chain Monte Carlo
method to assimilate synthetic ASCAT SM retrievals and synthetic streamflow data into a fully distributed
Sacramento SM Accounting model for the Salt River Watershed in Arizona. They revealed that solely
assimilating outlet streamflow leads to biased SM estimates, whereas joint assimilation of streamflow and
SM products provides better predictions of surface SM. Lievens et al. (2015) coupled SMOS L3 SM data in
the Variable Infiltration Capacity land surface model using Ensemble Kalman Filter data assimilation to
improve modeled SM and streamflow prediction accuracies with high spatial resolution in Australia. They
showed that assimilation with SMOS SM reduces modeled SM RMSE from 0.058 to 0.046 cm3/cm3 and
enhances correlation from 0.56 to 0.71, which demonstrates the merit of SMOS data assimilation for stream-
flow predictions at large scale. Crow et al. (2017) validated the claim of improvement of operational hydro-
logic forecasting through RS SM products and concluded that SMAP L4, which is the product of L‐band
microwave radiometry and a data assimilation technique, provides a SM product with the highest hydrologic
forecasting skill observed to date for forecasting streamflow response to future rainfall events. More recently,
Crow et al. (2018) used SMAP L4 surface and root‐zone SM in combination with remotely sensed precipita-
tion and streamflow observations and explored the relationship between prestorm SM and rainfall infiltra-
tion in the south central United States. They found that land surface models generally underestimate the
correlation strength between prestorm SM and storm runoff.

Mahanama et al. (2008) examined the contribution of SM to streamflow initialization during subseasonal
and seasonal periods and pointed out that accurate SM data can contribute between 10% and 60% of the total
streamflow prediction accuracy that can potentially be obtained for perfect predictions of meteorological for-
cing. Soil profile moisture measurements (10, 20, and 40 cm) along with rainfall data as inputs of a general-
ized regression neural network model significantly improved runoff prediction accuracy for the Tiber River
in Italy (Tayfur et al., 2014).

Data fromWSMN or spatiotemporal information of SM are increasingly being used to validate hydrological
models (Fang et al., 2015; Koch et al., 2016; Wang et al., 2015) and to improve our understanding of hydro-
logical processes. Koch et al. (2016) compared the performances of the Hydro‐Geosphere (HGS) model, the
European Hydrological System Model (MIKE SHE), and the ParFlow‐CLM model for prediction of SM sta-
tus, discharge, and cumulative water balance components. All three models performed well‐predicting dis-
charge and the water balance components but diverged in their predictions of SM status. A comprehensive
review of hydrological applications of radar SM retrievals is also provided by Kornelsen and
Coulibaly (2013).

Figure 26. Importance of SM information for various disciplines and applications.
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9.2. Agriculture and Crop Productivity

Information about the SM status is crucial for agricultural applications to, for example, identify field traffic-
ability for heavy farm machinery or to make informed irrigation management decisions. Global scale SM
data assimilation can improve the representation of agricultural drought (Bolten & Crow et al., 2012).
While various factors, such as temperature stress and nutrient availability, impact the growth and persis-
tence of plants, much of the initial focus has been on those crop systems that are water controlled (Laio
et al., 2001; Ridolfi et al., 2000; Rodriguez‐Iturbe et al., 1999). The dynamics of SM has a significant impact
on plant stress and the adaptability of various plant species to particular climate and soil conditions.
Monitoring the amount of moisture retained in soil is critical for a healthy rhizosphere growth environment
and aids with crop yield forecasts and irrigation planning. Early assessment of SM reserves and monitoring
the change in plant available soil water, for example, with RS techniques, assist crop growers with risk
reduction strategies. McNairn et al. (2012) argued that the Canadian RADARSAT‐2 satellite can provide
accurate estimates of field scale SM, which has been further advanced with the launch of the ESA
Sentinel satellites as part of the Copernicus program. Continuous information of SM status can be used in
crop growth models in combination with data assimilation approaches to provide growers with crop water
demand estimates for precision irrigation management (Ines et al., 2013). Han et al. (2016) showed that
the assimilation of continuous SM data from cosmic ray neutron observations into the CLM can be used
for real‐time irrigation scheduling for citrus trees. Recently, Andreasen et al. (2017) demonstrated the poten-
tial of using mobile cosmic ray neutron detection to support precision farming. Louvet et al. (2015) used
SMOS L3 SM data in conjunction with the TRMM satellite‐based precipitation product (TMPA) with 3‐hr
time resolution in West Africa and produced a NRT SM product with good accuracy (RMSE 0.030–
0.044 cm3/cm3) for potential applications in agriculture and for drought detection. Escorihuela et al.
(2018) showed that the use of SMOS SM in synergy with Sentinel‐1 SM provides high spatial resolution
SM maps with high accuracy (RMSE less than 0.040 cm3/cm3) applicable for the national and global desert
early warning systems.

9.3. Natural Disasters

SM is a key variable for operational flood forecasts (Komma et al., 2008; Silvestro & Rebora, 2014; Wanders
et al., 2014), characterization of landslide occurrence (Baum et al., 2010; Krzeminska et al., 2012) and for
monitoring drought conditions (Chakrabarti et al., 2014; Scaini et al., 2015).
9.3.1. Landslides and SM
The ability to predict the spatial and temporal occurrence of rainfall‐triggered shallow landslides is of crucial
importance for prevention of human life and property losses. SM data are applied in conjunction with pre-
cipitation forcing as inputs for landslide models to obtain real‐time assessment and forecasting of landslide
occurrence (Posner & Georgakakos, 2015; Ray & Jacobs, 2007). SM plays a critical role for slope stability, that
is, as SM increases, slope stability decreases. Landslides commonly occur when SM is high. As soil saturation
increases the pore water pressure increases and once the pressure exceeds the cohesive soil strengths, land-
slides are triggered. Coe et al. (2003) demonstrated that there is a positive correlation between SM content
and landslide velocity, with velocities being highest during high SM conditions.

Remotely sensed SM data have been used to forecast landslides. For example, Brocca, Ponziani, et al. (2012)
used the SWI provided by the ASCAT satellite in conjunction with the antecedent precipitation index (API)
to improve the accuracy of landslide forecasting models in central Italy. Ray et al. (2010) used AMSR‐E SM
products as input information for a dynamic physically based slope stability model to generate landslide sus-
ceptibility maps. SM observations have been also used in landslide prediction models. Recently, Segoni et al.
(2018) demonstrated that SM threshold values can be defined to better predict landslides and improve the
performance of regional scale landslide early warning systems in Italy.
9.3.2. Floods and SM
Measurement and mapping of SM can potentially improve flood forecasting because initial SM conditions
impact timing of flood initiation and peak runoff during storm events. The initial water content in conjunc-
tion with the infiltration capacity determines how much precipitation water can be added to the soil porous
system before surface runoff (i.e., overland flow) and potential flooding occur. Silvestro and Rebora (2014)
pointed out that the initial SM conditions substantially influence flood forecasting. They argued that the
variability of flood forecasts is not constant and depends on the type and characteristics of the event and
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the initial SM conditions. Laiolo et al. (2016) used SM and LST to update the state variables of a physically
based, distributed, and continuous hydrological model. They investigated the impact of SM and LST on the
hydrological cycle and showed a general reduction of model discharge prediction errors by as much as 10%.
Pauwels et al. (2001) assimilated European Remote Sensing Satellite ERS‐1 and ERS‐2 surface SM data into
the TOPMODEL based Land‐Atmosphere Transfer Scheme, which led to 20–50% reduction of discharge
prediction errors for the Zwalm catchment in Belgium. Han et al. (2012b) demonstrated the potential for
improved streamflow predictions through assimilation of in situ near‐surface SM with the Soil Water
Assessment Tools model. The assimilation significantly reduced RMSE values for streamflow predictions.
Recently, high spatial and moderate temporal resolution SM from the ESA Sentinel‐1 satellite has been
assimilated into hydrological models for improving continuous streamflow simulations and enhancing flash
flood predictions for civil protection applications in Italy (Cenci et al., 2017).

Remotely sensed SM observations have improved NRT flood forecasts for large catchments. Tekeli and Fouli
(2017) argued that incorporating antecedent SM information with a CDF based threshold value derived from
AMSR‐E products can significantly reduce false flood warnings in Saudi Arabia. Wanders et al. (2014) eval-
uated the added value of assimilated remotely sensed SM for the European Flood Awareness System and its
potential to improve the timing and height prediction of the flood peak and low flows. They found that when
remotely sensed SM data were used, the timing errors of the flood predictions significantly decreased, espe-
cially for shorter lead times. In addition, imminent floods can be forecasted more precisely. Such capabilities
can improve the response time of government agencies to provide emergency and disaster relief. An excel-
lent example is the major flood events throughout North and South Carolina on 5 October 2015, where
SM data from SMAP were able to clearly show areas of potential flooding and the extent of flooding prior
to the event (see Figure 27).
9.3.3. Drought and SM
Another increasingly important application of remotely sensed SM information is to monitor global drought
conditions. There are four main drought categories that include meteorological, agricultural or agro‐
ecological, hydrological, and socioeconomic droughts (Dracup et al., 1980; Wilhite & Glantz, 1985).
Meteorological drought is defined based on the number of days with precipitation below a specific threshold.
Hydrological drought is commonly associated with effects of precipitation shortfalls on surface or subsurface
water resources. The frequency and severity of hydrological drought are often defined for the watershed or
basin scales. The definition of agricultural drought is based on soil water deficiency and its effect on crop pro-
duction, that is, when evapotranspirative losses exceed the plant available SM content. Finally, socioeco-
nomic drought occurs when the overall water demand exceeds supply.

Figure 27. Surface soil moisture in North and South Carolina retrieved from the Soil Moisture Active Passive level‐4 pro-
duct on 2 September 2015 (before flooding, left) and on 5 October 2015 (after flooding, right). Large parts of North and
South Carolina (red arrows) appear dark blue, representing the impact of heavy localized rains and flooding. Regions in
darker blue indicate areas with saturated soil conditions and possibly standing water. Large‐scale flooding was experi-
enced all over South Carolina from 1 to 5 October 2015.
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SM is a direct determinant of agricultural drought conditions that are commonly preceded by meteorolo-
gical drought and succeeded by hydrological drought. Despite the obvious importance of SM, classical
drought monitoring indices such as the Palmer Drought Severity Index neglect SM. Several in situ SM‐

based drought indicators have been recommended for agricultural drought monitoring, including the
SM index (Sridhar et al., 2008), soil water deficit (Torres‐Ruiz et al., 2013), and plant available water
(PAW; McPherson et al., 2007). These indices identify drought conditions based on water deficit and plant
available soil water. A major benefit of SM‐based drought indices when compared to precipitation‐based
indices is that SM not only characterizes drought events but also responds to both precipitation and eva-
potranspiration processes. Detailed discussions about SM drought indices are provided in Ochsner et al.
(2013) and Torres et al. (2013).

More recently, several studies have attempted to improve potential applicability of SM indices for drought
monitoring. For example, Cammalleri et al. (2016) proposed a novel Drought Severity Index for detecting
main drought events and estimating both the extent and magnitude of drought. The index is based on a mul-
tiplicative combination of the observed soil water deficit intensity and on the rarity of the event compared
with that of the site history (frequency of drought), in order to obtain a single measure of the severity of a
specific soil water status in terms of drought. The DSI varies between 0 (no drought) and 1 (extreme
drought), where the values between 0 and 1 can represent slight, moderate, and severe drought conditions.
The applicability of the DSI has been evaluated for vegetated lands in Europe for the time period from 1995
to 2012, yielding better results for a broad range of conditions than commonly applied drought indices
(Cammalleri et al., 2016).

Sohrabi et al. (2015) proposed a new SM drought index (SODI) that considers temporal variations in preci-
pitation, temperature, potential evapotranspiration, run‐off and SM to determine onset, continuation, and
cessation of droughts. The SODI is based on available water capacity and SM deviation from estimated field

capacity (θFC). This time‐dependent drought index combines advantages of other drought indices by charac-
terizing soil water retention processes and determining dry and wet conditions in subsequent time steps. The
SODI yielded better results for quantifying severe droughts associated with climate variability than
precipitation‐based indices. The advantage of SODI is that the index is, in fact, a time‐dependent and contin-
uous index that characterizes SM dynamics during time transitions from the current time step to the next.

Although SM is a key indicator for agricultural drought assessment, less attention has been paid to the appli-
cation of in situ SM networks for systematic drought monitoring. This may be due to the fact that these net-
works commonly measure absolute values of SM and do not provide SM in terms of PAW. Within this
context, the OklahomaMesonet (McPherson et al., 2007) is an exception, providing average daily PAWmaps
at three different soil depths (i.e., 10, 40 and 80 cm), which are publicly available from www.mesonet.org. It
should be noted that the Mesonet does not directly measure SM; instead, a heat pulse measurement is used
to infer soil matric potential, which is related to SM using water retention calibration data. Recently, Ford
et al. (2015) used the in situ SM data from 45 Mesonet stations for early drought warning in Oklahoma
and concluded that Mesonet observations are an important source of information for early warning of flash
drought events in the Southern Great Plains of the United States.

SM‐based drought indices have been also developed based on remotely sensed information (Babaeian et al.,
2018; Scaini et al., 2015) and land surface models (Mo & Lettenmaier, 2014). Because the number of ground
SM stations and networks is limited (see section 6.1), remotely sensed SM information has great potential for
continuous SM and drought monitoring. Chakrabarti et al. (2014) demonstrated that assimilation of down-
scaled (km) SMOS SM estimates into the decision support system for the agro‐technology transfer (DSSAT)
crop growth model can be used to analyze the impact of agricultural drought on crop yields. Recently,
Babaeian et al. (2018) analyzed optical satellite SM retrievals for a range of climate, land cover and soil con-
ditions for potential monitoring of agricultural drought in the United States. They compared the OPTRAM‐

based Soil Water Deficit Index with the widely applied Crop Moisture Index (CMI) and saw similar patterns
between these two indices and concluded that OPTRAM‐based Soil Water Deficit Index can potentially be
applied for agricultural drought monitoring. However, to date there are no operational agricultural drought
monitoring systems that rely on remotely sensed SM. Recently, a new SMOS L3 SM‐based drought index
product has been introduced by Al Bitar et al. (2013) for global monitoring of drought and is available
from ftp://ftp.ifremer.fr/Land_products.
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Real‐time drought monitoring systems are crucial for early warning and adaptive management of negative

environmental drought impacts. A real‐time monitoring system, the U.S. Drought Monitor (USDM), has

been established by the National Drought Mitigation Center and is accessible via www.droughtmonitor.

unl.edu (Figure 28, top). The USDM depicts drought integrated across all time scales and differentiates

between agricultural and hydrological impacts. It is based on measurements of climatic, hydrologic, and soil

conditions as well as reported impacts and observations frommore than 350 contributors around the United

States. There is a substantial correspondence between the USDMmap and SM percentile map obtained from

Figure 28. U.S. Drought Monitor map for 20 December 2016 (top) and the soil moisture percentile with respect to the
1916–2004 climatological period (bottom) estimated with the Community Land Model for 22 December 2016. (http://
droughtmonitor.unl.edu; http://www.hydro.washington.edu/forecast/monitor).

10.1029/2018RG000618Reviews of Geophysics

BABAEIAN ET AL. 59

http://www.droughtmonitor.unl.edu
http://www.droughtmonitor.unl.edu


the CLM, which simulates surface water for the continental United States (Figure 28, bottom). SMAP SM is a

potential input data source used by the U.S. Drought Monitor (Eswar et al., 2018).

10. Summary

State‐of‐the‐art SM measurement, monitoring, and modeling capabilities were reviewed with the aim of
extending the use of increasingly available RS data and to identify critical future research needs and direc-
tions. The latest ground, proximal, and satellite RS techniques; databases; and modeling approaches that
have been developed in recent years to characterize surface, near‐surface and root‐zone SM for a wide range
of spatial and temporal resolutions have been discussed. The main conclusions, challenges, and opportu-
nities can be summarized as follows:

1. SM networks and spatiotemporal SM data are increasingly applied to validate satellite RS observations.
Information from these networks is also utilized to characterize spatial SM dynamics, validate hydrolo-
gical models, identify trends in the hydrological cycle, identify needs yet to be developed, and improve
our understanding of hydrological processes. The problem with validation tests of coarse‐scale SM pro-
ducts are mainly due to disconnects between the sensing depth of ground and remote sensors and the
scaling disparity (support or measurement volume) between in situ measurements and satellite sensor
resolution. Antecedent and precise calibration of in situ sensors is crucial for reliable validation of remo-
tely sensed SM estimates. Validation methods for these tests need to be further refined and standardized
with due accounting for these scale mismatches that affect reliable validation. Along with the advance-
ment of more reliable sensors and data acquisition systems, the number of in situ SM networks continues
to increase. Because most of these networks have evolved without international standardization, they
present challenges to the validation of satellite‐based SM estimation and are not always representative
of the larger surrounding area.

2. The utilization of RS data within the optical and thermal bands with shallowmeasurement depth for sur-
face and near‐surface SM retrieval is sometimes restricted by atmospheric conditions (clouds and water
vapor), causing uncertainty in relating soil reflectance/temperature to SM. On the other hand, most of
the methods that use spectral/thermal data are, in principal, empirical models, which suffer from the
associated limitations of site specificity. Advances are needed for deriving physically based models for
SM retrieval from high spatial/temporal resolution optical/thermal RS data.

3. The applicability of RS techniques reviewed in this paper is dependent on the scale (spatial and temporal)
of interest and availability of data; hence, no single method can be suggested as a universal solution.
While the combined use of active and passive microwave products may improve the resulting SM retrie-
val accuracy, it certainly improves the spatial resolution. Proximal RS methods and their combinations
can potentially be used for mapping and monitoring SM variability at intermediate scales as well as for
validating microwave RS SM products using field surveys. Improving, testing, and integrating new mon-
itoring techniques able to provide SMmeasurements at intermediate scales like COSMOS, GPS, and EMI
are potential new topics for future research. Because of the loss of the SMAP radar, there is a need for
planning of a follow‐onmission for providing SMwith higher spatiotemporal resolution.SM spatial varia-
bility affects the accuracy of SM estimations from satellite remote sensors. Modeling and simulating SM
spatial variability are important to improve validation of coarse‐scale SM products. SM variability is asso-
ciated not only with soil properties but also with the distribution and intensity of rainfall across the land
surface and the heterogeneity of the vegetation cover. Within this context, SM data may be used for esti-
mating rainfall by considering the soil as a natural rain gauge. SM estimates can also be integrated into
hydrological models to estimate total water losses and gains, accounting for factors such as runoff, drai-
nage, and ground‐water recharge.

4. SM is a key indicator for agricultural drought assessment, but little attention has been paid to the appli-
cation of in situ networks and RS products for systematic drought monitoring. This may be due to the fact
that these networks and products only measure absolute values of SM and do not provide SM in terms of
PAW, which is a real representation of plant water stress. In this context, integration of remotely sensed
SM products with SHPs provides unique opportunities to determine PAW and enhance drought monitor-
ing. Integration of remotely sensed SM products and soil profile data (PAW) will provide invaluable
information for better characterizing and monitoring of agricultural drought. Information about root‐
zone SM is critical for crop producers as it aids with irrigation and drought management in dryland
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agricultural. An increase in spatial and temporal resolution of SM satellite data can be expected in future,
which will provide new opportunities for precision management of individual fields. This will be bene-
ficial where installation of SM sensors and UAV observations are not feasible.

5. It is necessary to improve SM retrieval accuracy over densely vegetated regions through development of
new algorithms that precisely incorporate vegetation optical depth.

6. A remaining grand RS challenge is the accurate estimation of root‐zone SM from the SM content within
the first few centimeters of the soil profile. The most commonly applied technique for retrieving root‐
zone SM from satellite RS is assimilation of near‐surface SM measurements into, for example, land sur-
face or crop growth models. Further information such as groundwater table depth, highly spatially
resolved soil data, and remotely sensed crop information should be considered for constraining root‐
zone SM estimates. In addition, improved descriptions of subsurface processes that control the status
of root‐zone SM are necessary to remove model prediction biases and to further decrease estimation
uncertainty.

Symbols and Notation

θv Volumetric soil moisture content
θm Gravimetric soil moisture content
θs Saturated water content
Se Relative saturation

θFC Water content at field capacity
θPWP Water content at permanent wilting point
ψm Matric potential

AirMOSS Airborne Microwave Observatory of Sub‐canopy and Subsurface
AMSR‐E Advanced Microwave Scanning Radiometer for the Earth Observing System
AMSR‐2 Advanced Microwave Scanning Radiometer 2
ASCAT Advanced Scatterometer

CCI Climate Change Initiative
CLM Community Land Model

ComRAD Combined radar/radiometer ground‐based L‐band simulator
COSMOS Cosmic ray Soil Moisture Observing System

CRNP Cosmic Ray Neutron Probe
CyGNSS Cyclone Global Navigation Satellite System

ECa Apparent Electrical Conductivity
ECMWF European Centre for Medium‐Range Weather Forecasts
ELBARA ETH L‐Band Radiometer

EM Electromagnetic
EMI Electromagnetic Induction
EOF Empirical Orthogonal Functions
ESA European Space Agency

E‐SAR Experimental Synthetic Aperture Radar
FVC Fractional Vegetation Cover

GCOM‐W Global Change Observation Mission‐Water
GNSS Global Navigation Satellite System
GPR Ground Penetrating Radar
GPS Global Positioning System
HPP Heat Pulse Probe

ISMN International Soil Moisture Network
JAXA Japan Aerospace Exploration Agency
JULES Joint UK Land Environment Simulator
L‐MEB L‐band Microwave Emission of the Biosphere
LPRM Land Parameter Retrieval Model

LST Land Surface Temperature
MLR Multiple Linear Regression
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NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NIR Near‐Infrared

NP Neutron Probe

NRT Near Real Time

NSIDC U.S. National Snow and Ice Data Center
OK Oklahoma

PALS Passive Active L‐band Sensor
PAW Plant Available Water
PLMR Polarimetric L‐band Multibeam Radiometer
PTF Pedotransfer Function
RE Richards' equation

REV Representative Elementary Volume
RFI Radio Frequency Interference
RS Remote Sensing

RZSM Root Zone Soil Moisture
SAR Synthetic Aperture Radars
SCA Single Channel Algorithm

SCAN Soil Climate Analysis Network
SHFs Soil Hydraulic Functions
SHPs Soil Hydraulic Properties
STFs Spectrotransfer Functions
SM Soil Moisture

SMAP Soil Moisture Active Passive
SMOS Soil Moisture Ocean Salinity

SMOSMANIA Soil Moisture Observing System – Meteorological Automatic Network Integrated
Application

SNOTEL SNOwpack TELemetry
SODI Soil Moisture Drought Index
SSM/I Special Sensor Microwave Imager
SWE Snow Water Equivalent

SWI Soil Water Index

SWIR Shortwave Infrared

TC Triple Collocation

TDR Time Domain Reflectometry

TSA Temporal Stability Analysis

USDM U.S. Drought Monitor

VWC Vegetation Water Content

WDI Water Deficit Index

WSMN Wireless Soil Moisture Network

Glossary

Brightness Temperature The brightness temperature is a measurement of the radiance of the
microwave radiation traveling upward from the top of the atmosphere
to the satellite, expressed in units of the temperature of an equivalent
black body.

Buckingham‐Darcy
Equation

The equation of motion for flow under partially saturated soil
conditions. Similar to Darcy's law, except that hydraulic conductivity is
not a constant, but a function of the matric potential.

Continuity Principle
(Equation)

The continuity equation states mathematically that mass can neither be
created or destroyed.
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Cosmic Rays High‐energy radiation mainly originating outside the Solar System. Any
stable particles such photons (gamma rays), electrons, protons, nuclei, or
neutrinos. Upon impact with the Earth's atmosphere, cosmic rays can
produce showers of secondary particles that sometimes reach the sur-
face. The most common type of cosmic rays detected on Earth are pro-
tons.

Data Assimilation The combining of diverse data, possibly sampled at different times and
intervals and different locations, into a unified and consistent
description of a physical system, such as the state of the atmosphere.

Dielectric Permittivity
(Dielectric Constant)

The degree to which a medium resists the flow of electric charge, defined
as the ratio of the electric displacement to the electric field strength.

Diffuse Reflectance
Spectroscopy

Spectroscopicmethod that relies ona focusedprojectionof a spectrometer
beam onto a sample of interest, where it is reflected, scattered and
transmitted through the sample material. The back reflected, diffusely
scattered light (some of which is absorbed by the sample) is then
collected by the accessory and directed to the detector optics.

Electromagnetic Induction
(EMI) Survey

An electrical exploration method in which electric current is introduced
into the ground via electromagnetic induction and in which the
magnetic field associated with the current is determined

Electromagnetic Radiation A traveling wave motion resulting from changing electric or magnetic
fields. Electromagnetic radiation ranges from x‐rays (and gamma rays)
of short wavelength, through the ultraviolet, visible, and infrared
regions, to radar and radio waves of relatively long wavelength.

Field Capacity The content of soil water, on a mass or volume basis, remaining in a soil
after full saturation due to irrigation or precipitation after internal
redistribution due to gravity‐driven flow (free drainage). For practical
purposes the water content at field capacity is often assumed to
coincide with a matric potential of ‐330 cm.

Fresnel Reflectance
Equations

The Fresnel equations (or Fresnel coefficients) describe the reflection
and transmission of light (or electromagnetic radiation in general)
when incident on an interface between different optical media.

Gamma Radiation Penetrating electromagnetic radiation arising from the radioactive decay
of atomic nuclei. The wavelength is generally in the range 1×10 –10 to
2×10 –13 meters.

Gravimetric Water Content Ratio of the mass of water within bulk soil to the mass of oven dry
(105°C) soil.

Ground Penetrating Radar
(GPR)

A GPR maps the form of contrasting electrical properties (dielectric
permittivity and conductivity) of the subsurface and records
information on the amplitude (strength), phase (structure) and time
(speed) of electromagnetic energy reflected from subsurface features.

Hydraulic Conductivity The proportionality factor in Darcy's law, as applied to viscous flow of
water in soil, that represents the ability of soil to conduct water and is
equivalent to the flux of water per unit gradient of hydraulic potential.

Matric Potential Potential energy of soil water due to capillary and adsorptive surface
forces that hold water within the soil matrix.

Neural Network A network of neurons that are connected through synapses or weights.
Each neuron performs a simple calculation that is a function of the
activations of the neurons that are connected to it. Through feedback
mechanisms and/or the nonlinear output response of neurons, the
network as a whole is capable of performing extremely complicated
tasks, including universal computation and universal approximation.

Optical Depth Natural logarithm of the ratio of incident to transmitted radiant power
through a material
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Pedotransfer Functions
(PTF)

Predictive functions of distinct soil properties using data from soil sur-
veys.

Permanent Wilting Point Below the permanent wilting point that is defined as the water content at
‐15000 cm matric potential, water is so tightly bound within the soil
matrix that plants are no longer able to recover their turgidity and
irreversibly wilt. This is only an approximation, as the permanent
wilting point depends on plant physiology.

Plant Available Water The amount of water released between in situ field capacity and the
permanent wilting point.

Poiseuille's Law States that the velocity of flow of a liquid through a circular tube varies
directly with the pressure and the fourth power of the diameter of the
tube and inversely with the length of the tube and the coefficient of
viscosity of the liquid. Valid for steady, well‐developed laminar flow.

Radar (Radio Detection and
Ranging)

A method, system or technique, including equipment components, for
using beamed, reflected, and timed electromagnetic radiation to detect,
locate, and (or) track objects, to measure altitude and to acquire a
terrain image. The radio detection instrument consists of a transmitter
that sends out high‐frequency radio waves and a receiver that picks
them up after they have been reflected by an object.

Radiative Transfer Physical phenomenon of energy transfer in the form of electromagnetic
radiation. The propagation of radiation through a medium is affected by
absorption, emission, and scattering processes. The radiative transfer
equation describes these interactions mathematically.

Radio Frequency Alternating (AC) electric current or radio waves, oscillating in the
frequency range from around 20 kHz to around 300 GHz, roughly
between the upper limit of audio frequencies and the lower limit of
infrared frequencies.

Radiometer An instrument for quantitatively measuring the intensity of
electromagnetic radiation in some band of wavelengths in any part of
the electromagnetic spectrum. Usually used with a modifier, such as
an infrared radiometer or a microwave radiometer.

Representative Elementary
Volume (REV)

Smallest volume over which a measurement can be made that will yield
a value representative of the whole.

Richards' Equation Most commonly used partial differential equation to represent transient
flow through unsaturated porous media.

Soil Bulk Density The mass of oven dry (105oC) soil per unit bulk volume. The value is
expressed as kilogram per cubic meter.

Soil Thermal Conductivity The proportionality factor in Fourier's law that represents the ability of
soil to conduct heat and is equivalent to the thermal flux per unit
temperature gradient.

Soil Thermal Diffusivity The ratio of the thermal conductivity to the volumetric heat capacity.
Soil Water Characteristic The relationship between the soil‐water content (by mass or volume)

and the matric potential. Also called the water retention curve or
isotherm, and the water release curve.

Swath The width of an imaged scene in the range dimension, measured in
either ground range or slant range on the swath.

Volumetric Heat Capacity The heat required to raise the temperature of 1 cm3 of soil by 1°C. The
change in heat content of unit volume of soil per unit change in soil
temperature.

Volumetric Water Content The soil‐water content expressed as the volume of water per unit bulk
volume of soil.

Young‐Laplace Equation Nonlinear partial differential equation that describes the capillary
pressure difference sustained across the interface between two static
fluids, such as water and air, due to the phenomenon of surface tension.
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